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AN ENRICHED SMALL OBJECT ARGUMENT OVER A
COFIBRANTLY GENERATED BASE

JAN JURKA

Abstract. The small object argument is a method for transfinitely constructing weak
factorization systems originally motivated by homotopy theory. We establish a variant
of the small object argument that is enriched over a cofibrantly generated weak fac-
torization system. This enriched variant of the small object argument subsumes the
ordinary small object argument for categories and also certain variants of the small ob-
ject argument for 2-categories, (2,1)-categories, dg-categories and simplicially enriched
categories.

1. Introduction

Quillen [Qui67] introduced a way of transfinitely constructing weak factorization systems,
dubbed the small object argument. The original motivation for the argument comes from
the theory of model categories, which is a categorical approach to homotopy theory.
Moreover, later on various variants of the small object argument ([AR94, 1.37], [Gar09],
[Rie14, 13.2.1]) became an important tool in category theory itself and also in other areas
of mathematics such as model theory due to the connection between the argument and
ubiquitous notions of injectivity and orthogonality.

Enriched category theory is part of category theory that deals with “categories” in
which hom-sets are not necessarily simply sets anymore, but instead they are objects in
some monoidal category (a base of enrichment). It is the purpose of this paper to find
a variant of the small object argument in the context of enriched category theory. The
enrichment will be over a cofibrantly generated weak factorization system. As special cases
we obtain the classical 1-categorical small object argument for weak factorization systems,
the 1-categorical small object argument for orthogonal factorization systems, and certain
variants of the small object argument for 2-categories, (2,1)-categories, dg-categories and
simplicially enriched categories.

The basic idea of the construction is as follows. Recall that a morphism f : A // B
is said to have the left lifting property with respect to a morphism k : C //D, which we
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denote f ⋔ k, if for each commutative square

A C

B D

f

r

s

k

there exists a diagonal d : B // C making the two triangles below commute.

A C

B D

f

r

s

k
d

Given a V-enriched category K, there is an object Sq(f, k) in V (of “squares connecting f
to k”) for each pair of morphisms f : A //B, k : C //D from the underlying category K0,
and this makes the category of morphisms in the underlying category of K a V-category
with Sq(f, k) serving as a hom-object. The object Sq(f, k) can be viewed as a pullback of
K(f,D), K(A, k), which leads to an induced map ⟨f, k⟩ : K(B,C) // Sq(f, k). This map
is an isomorphism if and only if f has the left lifting property with respect to k in the
enriched sense (explicitly defined in [LW14], implicitly defined in [Day74]). Generalizing
this, given a class J of morphisms in V0, asking that each morphism from J has an
ordinary left lifting property with respect to ⟨f, k⟩ encodes a form of an enriched left
lifting property of f with respect to k that is relative to J . Our variant of the small
object argument then involves an enriched category K, a base of enrichment V , a class
J of morphisms in V0, and a class I of morphisms in K0. In order to perform the small
object argument, we find suitable conditions on K, V , J , and I, and show that the small
object argument can be performed under these conditions.

In the ordinary 1-categorical small object argument, one constructs the first morphism
in the factorization by taking a (nested) transfinite composite of pushouts of morphisms
from I, and the second morphism in the factorization by using the universal property of
a transfinite composite. In our enriched variant of the small object argument we replace
pushouts by “copowered pushouts”, which are relative to each morphism in J . As a
consequence of that, in each step of the transfinite construction we use |J |-many different
kinds of “pushouts” and this is done by cycling through J .

The paper is organized in the following way: In the second section we recall some
preliminaries, in the third section we mention an associativity of certain copowers that
we use in the small object argument, in the fourth section we apply the associativity
from the previous section to the enriched category of arrows, in the fifth section we define
the needed notions such as enriched liftings, in the sixth section we prove the required
stability properties, in the seventh section we prove a factorization lemma in the cate-
gory of morphisms, and in the eighth section we finally perform the small object argument.

Acknowledgements. I would like to thank my doctoral advisor John Bourke for sug-
gesting to me an interesting topic to investigate, for many fruitful discussions, for carefully
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reading drafts of the paper, and for many helpful suggestions on how to improve presenta-
tion. I am also grateful to the anonymous referee for many suggestions which substantially
improved the presentation. Furthermore, I would like to thank Simon Henry for a helpful
discussion on the broad picture of enriched small object arguments, and Nathanael Arkor
for telling me about locally graded categories.

2. Preliminaries

In this short section we recall some well-known preliminary notions.

2.1. Definition. For a class J of morphisms in a category, ⋔J denotes the class of all
morphisms that have the left lifting property with respect to all morphisms from J and
J ⋔ denotes the class of all morphisms that have the right lifting property with respect to
all morphisms from J . For the definition of J ⋔ recall that a morphism k is said to have
the right lifting property with respect to a morphism f if f ⋔ k.

2.2. Definition. A weak prefactorization system F = (L ,R) is a pair of classes of
morphisms in a category such that L ⋔ = R and L = ⋔R.

Furthermore, a weak prefactorization system F is called a weak factorization system
if for each morphism f there exists a pair of morphisms g ∈ L , h ∈ R such that f = h ·g.

Moreover, a weak factorization system F is said to be cofibrantly generated if there
exists a set J of morphisms such that R = J ⋔.

2.3. Definition. Suppose that λ is an ordinal and C is a category that has colimits that
are indexed by ordinals γ ≤ λ. Then a λ-sequence D : λ // C is a functor such that for
all limit ordinals α < λ the induced morphism colimβ<α Dβ // Dα is an isomorphism.
Furthermore, we call the colimit injection D0 // colimD the transfinite composition of
the λ-sequence D.

2.4. Remark. If (L ,R) is a weak prefactorization system, then it is well-known and
easy to see that R is stable under pullbacks, transfinite cocomposites, and isomorphisms,
and dually L is stable under pushouts, transfinite composites, and isomorphisms. In
particular, both classes are stable under binary composites.

2.5. Remark. If a functor F : C // D between categories is left adjoint to a functor
G : D // C, then the following equivalence holds for all morphisms f in C, g in D:

F (f) ⋔ g if and only if f ⋔ G(g).

3. Copowers in categories of V-functors
Throughout the paper we will assume that V = (V0,⊗, I) is a cosmos, i.e. a bicomplete
symmetric monoidal closed category, and that K is a V-category. Furthermore, in this
section we will assume that K is a copowered V-category admitting coends of the form
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(1). For objects V in V and K in K we will denote the copower by V ⊙K. Recall that V
is a copowered V-category in which copowers U ⊙ V are given by the monoidal product
U ⊗ V , and hence from now on we will use the copower notation instead of the monoidal
notation.

Let A be a small monoidal V-category. We are going to show that the underlying cate-
gory [A,K]0 of the V-category [A,K] of V-functors A //K is a copowered [A,V ]-category.
This is a quite straightforward consequence of the theory of enriched actegories, and it
is the purpose of this section to explain this. Given two V-categories L and L′ we will
denote by L⊗L′ their tensor product [Kel05, p. 12]. Given two V-functors F,G : A //V ,
denote by F ⊙G the composite

A⊗A V ⊗ V VF⊗G ⊙

and by m : A ⊗ A // A the monoidal product on A. Recall that the Day convolution
F ∗G : A // V is defined [Day70, (3.1)] by:

(F ∗G)(x) :=

∫ a,b∈A (
A(m(a, b), x)⊙ F (a)

)
⊙G(b),

and can be characterized [MMSS01, Definition 21.4] as the V-functor part of the left Kan
extension of F ⊙G along m. Furthermore, recall that the Day convolution is a monoidal
product on the V-category [A,V ], which follows from [Day70, Theorem 3.3]. Given a
V-functor X : A //K, we define the V-functor F ∗X : A //K by:

(F ∗X)(x) :=

∫ a,b∈A (
A(m(a, b), x)⊙ F (a)

)
⊙X(b), (1)

and again F ∗X can be equivalently characterized as the V-functor part of the left Kan
extension of

F ⊙X : A⊗A V ⊗K KF⊗X ⊙

along m. Note that this is a notion analogous to the Day convolution where we now use
copowers in K instead of the monoidal product in V .

3.1. Definition. Suppose that (M, ∗M, I) is a monoidal V-category. A left M-actegory
is a V-category L equipped with a V-functor ∗ : M ⊗ L // L together with V-natural
isomorphisms

αM,N,L : M ∗ (N ∗ L)
∼=−→ (M ∗M N) ∗ L,

λL : I ∗ L
∼=−→ L

satisfying coherence conditions [JK01, (1.1), (1.2), (1.3)].
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3.2. Proposition. Suppose that V is a cosmos and K is a copowered V-category admit-
ting coends of the form (1). Then

(i) the V-category [A,K] is a left [A,V ]-actegory such that the action on a fixed object
of [A,K] always has a right adjoint, and

(ii) the category [A,K]0 is a copowered [A,V ]-category.

Proof. In the proof we omit the verification of coherence conditions, since it is not needed
for the purposes of our small object argument. We begin by proving the first part of the
theorem, the second part will then be a corollary of the first part.

Let F,G : A //V , X : A //K be V-functors. The action on [A,K] that we are looking
for is ∗ from Definition (1). First we will show associativity of the action, i.e. that

(F ∗G) ∗X ∼= F ∗ (G ∗X). (2)

We will decorate isomorphisms that follow from the Yoneda Lemma by Y. We have the
following chain of isomorphisms:

(
(F ∗G) ∗X

)
(x) =

∫ a,b∈A (
A(m(a, b), x)⊙ (F ∗G)(a)

)
⊙X(b)

=

∫ a,b∈A (
A(m(a, b), x)⊙

(∫ c,d∈A (
A(m(c, d), a)⊙ F (c)

)
⊙G(d)

))
⊙X(b)

∼=
∫ a,b,c,d∈A (

A(m(a, b), x)⊙
(
(A(m(c, d), a)⊙ F (c))⊙G(d)

))
⊙X(b)

∼=
∫ a,b,c,d∈A ((

(A(m(a, b), x)⊙A(m(c, d), a))⊙ F (c)
)
⊙G(d)

)
⊙X(b)

Y∼=
∫ b,c,d∈A ((

A(m(m(c, d), b), x)⊙ F (c)
)
⊙G(d)

)
⊙X(b)

∼=
∫ b,c,d∈A ((

A(m(c,m(d, b)), x)⊙ F (c)
)
⊙G(d)

)
⊙X(b)

Y∼=
∫ a,b,c,d∈A ((

(A(m(c, a), x)⊙A(m(d, b), a))⊙ F (c)
)
⊙G(d)

)
⊙X(b)

∼=
∫ a,b,c,d∈A (

A(m(c, a), x)⊙ F (c)
)
⊙
((

A(m(d, b), a)⊙G(d)
)
⊙X(b)

)
∼=

∫ c,a∈A (
A(m(c, a), x)⊙ F (c)

)
⊙
(∫ d,b∈A (

A(m(d, b), a)⊙G(d)
)
⊙X(b)

)
=

∫ c,a∈A (
A(m(c, a), x)⊙ F (c)

)
⊙ (G ∗X)(a)

=
(
F ∗ (G ∗X)

)
(x).

Note that the eighth line in the chain above uses the symmetry of the monoidal product
in V .
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Denote by i the unit object of A. We will show that A(i,−) : A // V is the unit of
the action ∗. This can be done in an analogous way as showing associativity by using
the coend definition of the action ∗, however we will show it by using the Kan extension
characterization of the action ∗:

[A,K]
(
A(i,−) ∗X, Y

) ∼= [A⊗A,K]
(
A(i,−)⊙X, Y ·m

)
∼=

∫
a,b∈A

K
(
A(i, a)⊙X(b), Y (m(a, b))

)
∼=

∫
a,b∈A

V
(
A(i, a),K

(
X(b), Y (m(a, b))

))
Y∼=
∫
b∈A

K
(
X(b), Y (m(i, b))

)
∼=

∫
b∈A

K
(
X(b), Y (b)

)
∼= [A,K](X, Y ),

and thus A(i,−)∗X ∼= X by the Yoneda Lemma. If X,Y : A //K are V-functors, define

⟨X, Y ⟩ :=
∫
a∈A

K
(
X(a), Y (m(−, a))

)
. (3)

In order to finish the proof, we will show that ⟨X,−⟩ : [A,K] //[A,V ] is a right adjoint
to − ∗X : [A,V ] // [A,K]. Indeed,

[A,K](F ∗X,Y ) =

∫
c∈A

K
(
(F ∗X)(c), Y (c)

)
∼=

∫
c∈A

K
(∫ a,b∈A (

A(m(a, b), c)⊙ F (a)
)
⊙X(b), Y (c)

)
∼=

∫
a,b,c∈A

V
(
A(m(a, b), c)⊙ F (a),K(X(b), Y (c))

)
∼=

∫
a,b,c∈A

V
(
F (a),V

(
A(m(a, b), c),K(X(b), Y (c))

))
∼=

∫
a∈A

V
(
F (a),

∫
b,c∈A

V
(
A(m(a, b), c),K(X(b), Y (c))

))
Y∼=
∫
a∈A

V
(
F (a),

∫
b∈A

K
(
X(b), Y (m(a, b))

))
=

∫
a∈A

V
(
F (a), ⟨X, Y ⟩(a)

)
∼= [A,V ]

(
F, ⟨X, Y ⟩

)
.

By [JK01, 6. Appendix on tensored V-categories], the second part of the theorem follows
from the first part. We remark that copowers are given by the action ∗ from Definition
(1) and the hom-object for X, Y : A //K is given by ⟨X,Y ⟩ from Definition (3).
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3.3. Remark. When V = Set with the cartesian monoidal structure, the enrichment
of [A,K]0 over [A,Set] has been described by McDermott and Uustalu [MU22]. They
describe the enrichment directly in [MU22, Definition 10] using the language of locally
A-graded categories, which are an elementary formulation of [A,Set]-enriched categories
due to Wood [Woo76, Theorem 1.6]. For our purposes, the case of general V and the
copowers are essential.

4. The enriched category of arrows

We now specialise the results from the previous section to A = 2, where 2 is the free
V-category on the category with two objects 0, 1 and a single non-identity morphism
0 //1. Recall that this free V-category has as hom-objects the initial object and the unit
object if the corresponding hom-sets are the empty set and the singleton, respectively.
Furthermore, 2 can be equipped with the cartesian monoidal product m, which is given
on objects x, y ∈ 2 by the formula m(x, y) := min(x, y).

As usual, we identify V0 with the underlying category of the V-category V . Then [2,V ]
and [2,K] are the V-categories of morphisms in V0 and K0, respectively.

The fact that the category [2,K]0 is a copowered [2,V ]-category (i.e. part (ii) of Propo-
sition 3.2 for A = 2) and the explicit description of copowers and hom-objects appears in
[Sub21, 4.1.5] (note that this reference includes a local presentability assumption, which
we do not assume).

Hom-objects in [2,K] as a V-category are given by Sq(f, k) from the following defini-
tion.

4.1. Definition. For each pair of morphisms f : A //B, k : C //D in K0, define
Sq(f, k) to be the object of squares connecting f to k, i.e. the pullback-object in the
following pullback square.

Sq(f, k) K(A,C)

K(B,D) K(A,D)

p2

K(f,D)

p1

K(A,k)

Note that since [2,K] is a V-category, we have the associated V0-valued hom-functor
Sq(−,−) : [2,K]op0 × [2,K]0 // V0, and so in particular Sq(−, k) : [2,K]op0 // V0 for a
morphism k in K0. We will make heavy use of this in what follows, and so now record its
explicit description. If

A K

B L

g

g′

f f ′

is a commutative square, i.e. a morphism (g, g′) : f //f ′ in [2,K]0, then there is a unique
morphism Sq((g, g′), k) : Sq(f ′, k) // Sq(f, k) in V0 that makes the two top squares in the
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following diagram commute, since (p1, p2) is a pullback.

K(K,C) Sq(f ′, k) K(L,D)

K(A,C) Sq(f, k) K(B,D)

K(A,D)

Sq((g,g′),k)

p2p1

K(g,C)

p′1 p′2

K(g′,D)

K(A,k) K(f,D)

4.2. Examples.

(1) In the case V = Set, where Set is the monoidal category of sets in which the monoidal
structure is given by the cartesian product, we get that K is a category. The elements
of Sq(f, k) are commutative squares in K of the form:

A C

B D

f k

r

s

(4)

We will call each such square a commutative (f, k)-square.

(2) Suppose that V = Cat, where Cat is the monoidal category of categories in which
the monoidal structure is given by the cartesian product. This means that K is a
2-category. Then the objects of Sq(f, k) are commutative (f, k)-squares, and the
morphisms in Sq(f, k) are pairs θ : r ⇒ r′, θ′ : s ⇒ s′ of 2-cells such that k ∗ θ = θ′ ∗f .

(3) If V = Grpd, where Grpd is the monoidal category of groupoids in which the
monoidal structure is given by the cartesian product, then that means that K is
a (2,1)-category. The objects of Sq(f, k) are commutative (f, k)-squares, and the
morphisms in Sq(f, k) are pairs θ : r ⇒ r′, θ′ : s ⇒ s′ of invertible 2-cells such that
k ∗ θ = θ′ ∗ f .

(4) Suppose that V = Ch, where Ch is the monoidal category of chain complexes of
left R-modules over a ring R in which the monoidal structure is given by the tensor
product of chain complexes. This means that K is a dg-category and Sq(f, k) is a
chain complex

· · · Sq(f, k)n+1 Sq(f, k)n Sq(f, k)n−1 · · ·∂n+2 ∂n+1 ∂n ∂n−1

whose n-th degree elements are pairs (r, s) ∈ K(A,C)n × K(B,D)n that satisfy
k · r = s · f ∈ K(A,D)n. The equality ∂n(r, s) = (∂n(r), ∂n(s)) defines differentials on
Sq(f, k).



ENRICHED SMALL OBJECT ARGUMENT 447

(5) In the case V = SSet, where SSet is the monoidal category of simplicial sets
with monoidal structure given by the pointwise cartesian product, we get that K
is a simplicially enriched category and Sq(f, k) is a simplicial set whose n-simplices
are pairs (r, t) ∈ K(A,C)n × K(B,D)n such that k · r = t · f ∈ K(A,D)n. Face
maps and degeneracy maps on Sq(f, k) are defined by di(r, t) = (di(r), di(t)) and
si(r, t) = (si(r), si(t)), respectively.

In the remainder of this section we will assume that K is a copowered V-category
admitting pushouts of the form dom(u □ f) from the following definition.

4.3. Definition. Suppose that u : U // V is a morphism in V0 and f : A // B is a
morphism in K0. Then u □ f : dom(u □ f) // V ⊙ B is the induced morphism depicted
in the following diagram, where (i1, i2) is a pushout of U ⊙ f and u⊙ A.

U ⊙ A U ⊙B

dom(u □ f)

V ⊙ A V ⊙B

u□f

U⊙f

u⊙B

V⊙f

u⊙A

i2

i1

4.4. Remark. Proposition 3.2 gives us that the category [2,K]0 of morphisms in K0 is
a copowered [2,V ]-category whose copower action ∗ is given by □ from Definition 4.3.

4.5. Remark. The existence of coends of the form (1) is equivalent to the existence of
pushouts of the form dom(u □ f) from Definition 4.3, since for A = 2 these coends are
of the form (5). The fact that □ is the copower action ∗ follows from the formula

(u ∗ f)(x) =
∫ a,b∈2 (

2(m(a, b), x)⊙ u(a)
)
⊙ f(b). (5)

4.6. Remark. Since V is a copowered V-category, it makes sense to also consider Sq(u, v)
and u □ v for morphisms u, v in V0.

Now from Equation (2) we obtain

v □ (u □ f) ∼= (v □ u) □ f, (6)

which will be useful for the purposes of our small object argument. Moreover, the
hom-object ⟨f, k⟩ for [2,K] as a [2,V ]-enriched category becomes ⟨f, k⟩ from the following
definition, which will later be used to express enriched lifting properties.
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4.7. Definition. Suppose that f : A // B, k : C // D are morphisms in K0. Then
define ⟨f, k⟩ : K(B,C) // Sq(f, k) to be the induced morphism depicted below.

K(B,C)

Sq(f, k) K(A,C)

K(B,D) K(A,D)

p1

p2 K(A,k)

K(f,D)

K(B,k)

K(f,C)
⟨f,k⟩

(7)

4.8. Remark. We will denote by −∗ the bijective correspondence assigning to each mor-
phism U //K(A,B) in V0 a morphism U ⊙ A //B in K0, and by −∗ its inverse.

4.9. Remark. The fact that ⟨f, k⟩ is the hom-object for [2,K] as a [2,V ]-enriched cat-
egory follows from the functor − □ f : [2,V ]0 // [2,K]0 being left adjoint to the functor
⟨f,−⟩ : [2,K]0 // [2,V ]0 and the uniqueness of right adjoints. The adjunction is given as
follows, in both cases given a commutative square on the left we obtain the commutative
square on the right:

U K(B,C) dom(u □ f) C

V Sq(f, k) V ⊙B D

⟨f,k⟩

v

w

u u□f k

(p2·v)∗

(w∗,(p1·v)∗)

and

dom(u □ f) C U K(B,C)

V ⊙B D V Sq(f, k)

⟨f,k⟩

((g·i2)∗,h∗)

(g·i1)∗

uu□f k

h

g

5. Enriched lifting properties

From now on in the paper we will assume that the cosmos V is equipped with a weak
prefactorization system F = (L ,R) on V0. The purpose of this section is to define basic
notions needed for our small object argument: Enriched lifting properties, enriched weak
factorization systems, and the notion of a class of morphisms in V0 being stable under
corners.

5.1. Definition. Suppose that f : A // B, k : C //D are morphisms in K0. Then we

write f
F

⋔ k if ⟨f, k⟩ ∈ R, where ⟨f, k⟩ : K(B,C) // Sq(f, k) is the induced morphism
from Definition 4.7.
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Furthermore, if f
F

⋔ k, then we say that f has the left F -lifting property with respect
to k, or equivalently that k has the right F -lifting property with respect to f . Moreover,
if I is a class of morphisms in K0, then we define

I
F
⋔ := {k ∈ [2,K] | ∀f ∈ I : f

F

⋔ k},
F
⋔I := {f ∈ [2,K] | ∀k ∈ I : f

F

⋔ k}.

5.2. Examples.

(1) In the case V = Set, F = (injective, surjective), we capture the ordinary (weak)

lifting property, i.e. f
F

⋔ k iff f ⋔ k. Note that F is cofibrantly generated by
J = {u : ∅ // 1}.
If we instead choose the following J = {u : ∅ // 1, v : 2 // 1} we capture the strong
lifting property in which the diagonal is required to be unique because F becomes
(all functions, bijections).

(2) Suppose that V = Cat, F = (injective on objects, surjective equivalences). Then

f
F

⋔ k iff ⟨f, k⟩ is a surjective equivalence, which happens iff for each pair of 1-cells
r : A //C, s : B //D satisfying k · r = s · f there exists a diagonal d : B //C such
that d·f = r, k ·d = s, and furthermore if d, d′ : B //C are 1-cells, and θ : d·f ⇒ d′ ·f ,
θ′ : k · d ⇒ k · d′ are 2-cells such that k ∗ θ = θ′ ∗ f , then there exists a unique 2-cell
φ : d ⇒ d′ such that φ ∗ f = θ and k ∗ φ = θ′. Note that F is cofibrantly generated
by J = {u : ∅ // 1, v : 2 // 2, w : 2′ // 2}, where 2 is the discrete category with two
objects, 2 is the category with two objects 0, 1 and a single non-identity morphism
0 // 1, and 2′ is the two-object category with two objects 0, 1 and two non-identity
morphisms 0 // 1.

We remark that F -liftings offer a lot of flexibility in specification: For example if we
want to get rid of the uniqueness assumption on the 2-cell φ we can simply omit w
from J .

(3) If V = Grpd, F = (injective on objects, surjective equivalences), then the F -lifting
property is almost the same as in Example (2) with the only difference being that all
the 2-cells are invertible. Note that the weak factorization system F is cofibrantly
generated by the set J = {u : ∅ // 1, v : 2 // 2g, w : 2′

g
// 2g} that is almost the

same as in Example (2) with the only difference being that to each non-invertible mor-
phism in 2 and 2′ we freely add its inverse, and in this way we obtain the groupoidal
reflections 2g and 2′

g.

(4) If V = Ch, then we can choose J = {Sn−1 ↪→ Dn | n ∈ Z}, F = (⋔(J ⋔),J ⋔),

in which case f
F

⋔ k if and only if ⟨f, k⟩ is a surjective quasi-isomorphism. See
[Hov99, Proposition 2.3.4, Proposition 2.3.5].
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(5) Suppose that V = SSet and let J = {∂∆n ↪→ ∆n | n ≥ 0}, F = (⋔(J ⋔),J ⋔). Then

f
F

⋔ k iff ⟨f, k⟩ is both a Kan fibration and a weak homotopy equivalence.

(6) In this example we will show that the enriched lifting property in [LW14] can be
obtained as an F -lifting property. Consider F = (all maps, isomorphisms), which is

obviously a weak factorization system on V0. Then f
F

⋔ k iff ⟨f, k⟩ is an isomorphism.

Now we will show that under some assumptions on V0 we can cofibrantly generate
the weak factorization system F . Assume that λ is a regular cardinal and V0 is
a locally λ-presentable category with a set Vλ of λ-presentable objects that form a
strong generator. Consider

J = {uV : ∅ // V | V ∈ Vλ} ∪ {∇V : V + V // V | V ∈ Vλ},

where ∅ is the initial object and ∇V = (idV , idV ). Since Vλ is a strong generator, a
morphism v in V0 is an isomorphism iff V0(V, v) is an isomorphism in Set for each
V ∈ Vλ. Now it suffices to notice that uV ⋔ v iff V0(V, v) is surjective, and ∇V ⋔ v iff
V0(V, v) is injective.

(7) Suppose that R is the class of split epimorphisms in V0 and L is the class of retracts
of binary coproduct injections in V0. By [RT07, Proposition 2.6], F = (L ,R) is a
weak factorization system. Then the F -lifting property coincides with the V-enriched
lifting property in the sense of [Rie14, Definition 13.3.1]. Finally, we remark that
all the previous examples were cofibrantly generated, whereas this example is not
necessarily cofibrantly generated.

5.3. Definition. An enriched weak F -factorization system on K is a pair (L,R) of
classes of morphisms in K0 such that each morphism h : A //B in K0 has a factorization

h = g · f such that f ∈ L, g ∈ R, and furthermore L =
F
⋔R, R = L

F
⋔ .

5.4. Definition. We say that a class S of morphisms in V0 is stable under corners if
whenever u, v ∈ S , then u □ v ∈ S . (Recall Remark 4.6.)

In the remainder of this section we will assume that K is a copowered V-category
admitting pushouts of the form dom(u □ f) from Definition 4.3.

5.5. Remark. The following equivalence holds:

u ⋔ ⟨f, k⟩ if and only if u □ f ⋔ k,

where u is a morphism in V0 and f , k are morphisms in K0. Indeed, this follows from
Remark 2.5 and Remark 4.9.

5.6. Remark. From Remark 5.5 we immediately conclude that for all morphisms f , k
in K0 the following equivalence holds:

u □ f ⋔ k holds for all u ∈ L if and only if f
F

⋔ k.
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5.7. Lemma. Suppose that J is a class of morphisms in V0, and that the following im-
plication holds:

If u1, u2 ∈ J , then u1 □ u2 is in ⋔(J ⋔).

Then ⋔(J ⋔) is stable under corners.

Proof. Suppose that u1 ∈ ⋔(J ⋔), u2 ∈ J , v ∈ J ⋔. By assumption we know that for
each u ∈ J : u □ u2 ⋔ v, which is equivalent to u ⋔ ⟨u2, v⟩ by Remark 5.5. Since this
holds for all u ∈ J , we get that u1 ⋔ ⟨u2, v⟩, and thus u1 □ u2 ⋔ v.

Now suppose that u1 ∈ ⋔(J ⋔), u2 ∈ ⋔(J ⋔), v ∈ J ⋔. By the previous paragraph, we
know that for each u ∈ J : u1 □ u ⋔ v, which is equivalent to u ⋔ ⟨u1, v⟩ by Remark 5.5.
Since this holds for all u ∈ J , we get that u2 ⋔ ⟨u1, v⟩, and thus u1 □ u2 ⋔ v. Note that
we used the symmetry of the monoidal structure on V .

5.8. Remark. Stability under corners forms part of the definition of a monoidal model
category [Hov99, Definition 4.2.6], and thus cofibrations and trivial cofibrations in a
monoidal model category are stable under corners. The definition of a monoidal model
category also involves a unit condition, and for our purposes of the enriched small object
argument we do not need to assume any kind of a unit condition. However, the follow-
ing interesting proposition characterizing self-enrichment of weak factorization systems in
terms of a unit condition was suggested to the author by the anonymous referee.

5.9. Proposition. Suppose that L is stable under corners. Then F is an enriched
weak F -factorization system on V if and only if !I : ∅ // I belongs to L .

Proof. Suppose that !I ∈ L . We know that L ⋔ = R, L = ⋔R, and we want to show

that L =
F
⋔R, R = L

F
⋔ . We will show the first equality, the verification of the second

equality is analogous. Suppose that v ∈
F
⋔R, i.e. for all w ∈ R, u ∈ L : u □ v ⋔ w.

Thus in particular !I □ v ⋔ w. Now it suffices to notice that !I □ v ∼= v and we conclude
F
⋔R ⊆ L . Suppose that v ∈ L . We want to show that u □ v ⋔ w for all u ∈ L , w ∈ R.
This in fact follows immediately from stability of L under corners, and thus we conclude

that L ⊆
F
⋔R.

On the other hand, suppose that F is an enriched weak F -factorization system on V .
We will show that !I ∈ L . We know that u ⋔ w for all u ∈ L , w ∈ R. Since u □ !I ∼= u,

we obtain u □ !I ⋔ w for all u ∈ L , w ∈ R. Using L =
F
⋔R, we conclude !I ∈ L .

6. Stability properties

Here we establish the stability properties that are required in order to conclude that our
small object argument generates an enriched weak F -factorization system. Throughout
the section we will assume that I is a class of morphisms in K0. We will be considering
pushouts and transfinite composites in K as a V-category: This means colimits in K0 that
are sent by each representable functor K(−, K) : Kop

0
// V0 to a limit in V0.
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6.1. Proposition. The class
F
⋔I is stable under pushouts in K.

Proof. Suppose that the following square is a pushout in K.

A K

B L

f

g

f ′

g′

We will show that if f ∈
F
⋔I, then f ′ ∈

F
⋔I.

Let k : C // D be in I. We have induced morphisms ⟨f, k⟩, ⟨f ′, k⟩ in the notation
of Definition 4.7. By assumption, ⟨f, k⟩ ∈ R. We want to show that ⟨f ′, k⟩ ∈ R.
Recalling Definition 4.1, there exists a morphism Sq((g, g′), k) : Sq(f ′, k) //Sq(f, k) such
that p1 · Sq((g, g′), k) = K(g, C) · p′1 and p2 · Sq((g, g′), k) = K(g′, D) · p′2. Now we will
show that the square

K(L,C) K(B,C)

Sq(f ′, k) Sq(f, k)

⟨f ′,k⟩

K(g′,C)

⟨f,k⟩

Sq((g,g′),k)

is a pullback and this will finish the proof because R is stable under pullbacks.
Consider the following rectangle.

Sq(f ′, k) K(L,D) K(B,D)

K(K,C) K(K,D) K(A,D)

p′1

p′2

K(K,k)

K(f ′,D)

K(g,D)

K(g′,D)

K(f,D)

The left square is a pullback by definition of Sq(f ′, k). The right square is a pullback,
since K(−, D) : Kop

0
// V0 preserves limits in Kop. Thus, the rectangle is a pullback by

the pasting law for pullbacks.
Now consider the following rectangle.

Sq(f ′, k) Sq(f, k) K(B,D)

K(K,C) K(A,C) K(A,D)

p′1

Sq((g,g′),k)

K(g,C)

p1

K(A,k)

p2

K(f,D)

The right square is a pullback by definition of Sq(f, k), and the rectangle is a pullback,
since p2 · Sq((g, g′), k) = K(g′, D) · p′2 and K(A, k) · K(g, C) = K(g,D) · K(K, k). Hence,
by using the pasting law, we get that the left square in the rectangle is a pullback too.
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Finally, consider the following rectangle.

K(L,C) Sq(f ′, k) K(K,C)

K(B,C) Sq(f, k) K(A,C)

K(g′,C)

⟨f ′,k⟩

⟨f,k⟩

Sq((g,g′),k)

p1

p′1

K(g,C)

The right square was shown above to be a pullback. Moreover, the rectangle is a pullback
because by composing the horizontal sides we get the square

K(L,C) K(K,C)

K(B,C) K(A,C)

K(g′,C) K(g,C)

K(f ′,C)

K(f,C)

and this square is a pullback, since K(−, C) : Kop
0

//V0 preserves limits in Kop. Therefore,
from the pasting law, we conclude that the left square in the rectangle is a pullback.

6.2. Proposition. The class
F
⋔I is stable under transfinite compositions in K.

Proof. Suppose that α > 0 is an ordinal. We will show that if fβ,β+1 : Aβ
// Aβ+1,

β < α, are morphisms coming from a functor A− : α //K0 such that each fβ,β+1 belongs

to
F
⋔I, and for each limit ordinal γ < α the induced morphism iγ : colimδ<γ Aδ

// Aγ is
an isomorphism, then their transfinite composition f0,α : A0

// Aα := colimβ<α Aβ also

belongs to
F
⋔I.

The proof is by transfinite induction.

Base Case: If α = 1, then the statement clearly holds: f0,1 ∈
F
⋔I implies that f0,1 ∈

F
⋔I.

Successor Step: Suppose that α = ϵ + 1 > 1 and that the result holds for all non-
zero ordinals less than α. By inductive hypothesis we know that f0,ϵ : A0

// Aϵ belongs

to
F
⋔I. Let k : C // D be in I. To simplify notation, denote A := A0, A′ := Aϵ,

B := Aα, f := f0,ϵ, f
′ := fϵ,ϵ+1. Note that f0,α = f ′ · f . We have induced morphisms

⟨f, k⟩, ⟨f ′, k⟩, ⟨f ′ · f, k⟩ from Definition 4.7 whose respective pullback projections will
be denoted pi, p′i, p′′i , where i ∈ {1, 2}. We know that ⟨f, k⟩ ∈ R, ⟨f ′, k⟩ ∈ R, and
we want to show that ⟨f ′ · f, k⟩ ∈ R. Recalling Definition 4.1, we have a morphism
Sq((f, idB), k) : Sq(f

′, k) // Sq(f ′ · f, k) such that p′′1 · Sq((f, idB), k) = K(f, C) · p′1 and
p′′2 ·Sq((f, idB), k) = p′2, and also a morphism Sq((idA, f

′), k) : Sq(f ′ ·f, k) //Sq(f, k) such
that p2 · Sq((idA, f

′), k) = K(f ′, D) · p′′2 and p1 · Sq((idA, f
′), k) = p′′1. Now note that

p′′2 · Sq((f, idB), k) · ⟨f ′, k⟩ = p′2 · ⟨f ′, k⟩ = K(B, k) = p′′2 · ⟨f ′ · f, k⟩
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and

p′′1 · Sq((f, idB), k) · ⟨f ′, k⟩ = K(f, C) · p′1 · ⟨f ′, k⟩
= K(f, C) · K(f ′, C)

= K(f ′ · f, C)

= p′′1 · ⟨f ′ · f, k⟩.

Therefore ⟨f ′ · f, k⟩ = Sq((f, idB), k) · ⟨f ′, k⟩, since (p′′1, p
′′
2) is a pullback. We will show

that Sq((f, idB), k) ∈ R and this will finish the proof of the successor step, since R is
stable under compositions. In order to do that, we will show that the square

Sq(f ′, k) K(A′, C)

Sq(f ′ · f, k) Sq(f, k)

p′1

Sq((f,idB),k) ⟨f,k⟩

Sq((idA,f ′),k)

is a pullback and this will imply Sq((f, idB), k) ∈ R, since R is stable under pullbacks.
Indeed, the following diagram commutes.

Sq(f ′, k) K(A′, C)

Sq(f ′ · f, k) Sq(f, k) K(A,C)

K(B,D) K(A′, D) K(A,D)

p′1

Sq((f,idB),k) ⟨f,k⟩

Sq((idA,f ′),k)

p′′2

p1

p2 K(A,k)

K(f ′,D) K(f,D)

Moreover, the horizontal rectangle is a pullback and the right square in the horizontal
rectangle is a pullback, thus, by the pasting law, the left square in the horizontal rectangle
is a pullback. Finally, the vertical rectangle is a pullback and the bottom square in the
vertical rectangle is a pullback, hence, by the pasting law, the top square in the vertical
rectangle is a pullback.

Limit Step: Suppose that α > 0 is a limit ordinal such that the result holds for all
non-zero ordinals less than α. Let k : C //D be in I. We know that for each β < α the
induced morphism ⟨fβ,β+1, k⟩ from the following diagram belongs to R.

K(Aβ+1, C)

Sq(fβ,β+1, k) K(Aβ, C)

K(Aβ+1, D) K(Aβ, D)

pβ,β+1
1

pβ,β+1
2

K(Aβ ,k)

K(fβ,β+1,D)

K(Aβ+1,k)

K(fβ,β+1,C)
⟨fβ,β+1,k⟩
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Let (fβ,α : Aβ
//Aα)β<α be a colimit of the diagram {fβ,β+1 : Aβ

//Aβ+1 | β < α}. For
simplicity, we will write the diagram as follows.

A0 A1 A2 A3 · · ·f0,1 f1,2 f2,3 f3,4

Then ((fβ,α, idAα) : fβ,α // idAα)β<α is a colimit of the following diagram in [2,K], since
it is a colimit in each component.

A0 A1 A2 A3 · · ·

Aα Aα Aα Aα . . .

f0,1 f1,2 f2,3 f3,4

f0,α f1,α

idAα

f2,α f3,α

idAα idAα idAα

Recall from Definition 4.1 that [2,K] is a V-category with Sq(g, h) being the hom-object
for each pair g, h ∈ [2,K]. Thus,(

Sq((fβ,α, idAα), k) : Sq(idAα , k) // Sq(fβ,α, k)
)
β<α

is a limit of the diagram

Sq(f0,α, k) Sq(f1,α, k) Sq(f2,α, k) · · ·Sq((f0,1,idAα ),k) Sq((f1,2,idAα ),k) Sq((f2,3,idAα ),k)

in V0 because Sq(−, k) : [2,K]op0 // V0 preserves limits in [2,K]op. Also, note that there
exists an isomorphism ι : K(Aα, C) //Sq(idAα , k) that makes the following diagram com-
mute because the second component is uniquely determined by the first component via
composition with k.

K(Aα, C)

K(Aα, C) Sq(idAα , k) K(Aα, D)p1 p2

K(Aα,k)idK(Aα,C)
ι

Thus, the transfinite cocomposition Sq((f0,α, idAα), k) : Sq(idAα , k) // Sq(f0,α, k) is iso-
morphic to a morphism Sq((f0,α, idAα), k) · ι : K(Aα, C) //Sq(f0,α, k), and this morphism
is the induced map ⟨f0,α, k⟩ in the following diagram by the uniqueness of the induced
map.

K(Aα, C)

Sq(f0,α, k) K(A0, C)

K(Aα, D) K(A0, D)

p0,α1

p0,α2
K(A0,k)

K(f0,α,D)

K(Aα,k)

K(f0,α,C)
⟨f0,α,k⟩
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Indeed,

p0,α1 · Sq((f0,α, idAα), k) · ι = K(f0,α, C) · p1 · ι = K(f0,α, C) · idK(Aα,C) = K(f0,α, C)

and
p0,α2 · Sq((f0,α, idAα), k) · ι = idAα · p2 · ι = p2 · ι = K(Aα, k).

Therefore, Sq((f0,α, idAα), k) · ι = ⟨f0,α, k⟩. In order to finish the proof we need to show
that ⟨f0,α, k⟩ belongs to R. To achieve that, recall that R is stable under transfinite
cocompositions and isomorphisms, and thus it suffices to show that for each β < α the
morphism Sq((fβ,β+1, idAα), k) belongs to R. Let β < α. We will show that the square

Sq(fβ+1,α, k) K(Aβ+1, C)

Sq(fβ,α, k) Sq(fβ,β,+1, k)

pβ+1,α
1

Sq((fβ,β+1,idAα ),k) ⟨fβ,β+1,k⟩

Sq((idAβ
,fβ+1,α),k)

is a pullback and this will imply that Sq((fβ,β+1, idAα), k) belongs to R because R is
stable under pullbacks. Indeed, the following diagram commutes.

Sq(fβ+1,α, k) K(Aβ+1, C)

Sq(fβ,α, k) Sq(fβ,β+1, k) K(Aβ, C)

K(Aα, D) K(Aβ+1, D) K(Aβ, D)

pβ+1,α
1

Sq((fβ,β+1,idAα ),k) ⟨fβ,β+1,k⟩
Sq((idAβ

,fβ+1,α),k)

pβ,α2

pβ,β+1
1

pβ,β+1
2

K(Aβ ,k)

K(fβ+1,α,D) K(fβ,β+1,D)

Moreover, the horizontal rectangle is a pullback and the right square in the horizontal
rectangle is a pullback, thus, by the pasting law, the left square in the horizontal rectangle
is a pullback. Finally, the vertical rectangle is a pullback and the bottom square in the
vertical rectangle is a pullback, hence, by the pasting law, the top square in the vertical
rectangle is a pullback.

In the remainder of this section we will assume that K is a copowered V-category
admitting pushouts of the form dom(u □ f) from Definition 4.3.

6.3. Proposition. Suppose that L is stable under corners. Moreover, suppose that we

have u : U // V in L and f : A //B in K0 such that f ∈
F
⋔I. Then u □ f ∈

F
⋔I.

Proof. In order to show that u □ f ∈
F
⋔I it suffices to show that v □ (u □ f) ∈ ⋔I

for each v ∈ L , see Remark 5.6. From Equation (6) we know that v □ (u □ f) is
isomorphic to (v □ u) □ f . Note that v □ u is in L , since L is stable under corners.

Furthermore, f is in
F
⋔I. Hence, recalling Remark 5.6, we obtain (v □ u) □ f ∈ ⋔I, and

thus v □ (u □ f) ∈ ⋔I.
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6.4. Corollary. Suppose that L is stable under corners. Moreover, suppose that we
have a span

dom(u □ f) K

V ⊙B

u□f

(h,g)

in K0, where u : U // V is in L , f : A //B, g : V ⊙A //K, and h : U ⊙B //K are
morphisms in K0, and that the following square is a pushout in K.

dom(u □ f) K

V ⊙B L

u□f

(h,g)

f ′

g′

(8)

If f ∈
F
⋔I, then f ′ ∈

F
⋔I.

Proof. From Proposition 6.3 we get that u □ f ∈
F
⋔I. Now it suffices to recall that

F
⋔I

is stable under pushouts, see Proposition 6.1.

6.5. Definition. We call the pushout (8) a copowered pushout of f, g, h relative to u.
Furthermore, recall that that I is a class of morphisms in K0 and suppose that J is a

class of morphisms in V0. Then we say that a morphism f ′ in K0 is a copowered pushout
of a morphism from I relative to J if there exist morphisms u ∈ J , f ∈ I and morphisms
g, h, g′ in K0 such that the square (8) is a pushout in K.

6.6. Remark. Note that all of the information concerning the span from Corollary 6.4
is encoded in the following diagram

V ⊙ A

U ⊙ A V ⊙B K

U ⊙B h

U⊙f

V⊙f
g

u⊙A

u⊙B

whose colimit is the copowered pushout as displayed below.

V ⊙ A

U ⊙ A V ⊙B L K

U ⊙B
h

U⊙f

V⊙f
g

f ′g′

u⊙A

u⊙B
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The rephrasing, together with the bijective correspondence from Remark 4.8, is useful for
understanding Examples 6.7.

6.7. Examples. In the following examples we will describe the part of the universal
property of a copowered pushout that takes place in K0. In each example we assume that
F = (⋔(J ⋔),J ⋔).

(1) In the case V = Set, J = {u : ∅ // 1}, a copowered pushout of f, g, h relative to u
is the same as a pushout of f, g. Note that h is the unique morphism ∅ //K.

Moreover, in the case V = Set, J = {u : ∅ // 1, v : 2 // 1}, a copowered pushout of
f, g, h relative to v takes as input the following diagram

A K

B

g

f

h′

h

in which h·f = h′ ·f = g and returns a morphism c : K //L such that c·h = c·h′ with
the following universal property: For each morphism d : K //D satisfying d ·h = d ·h′

there exists a unique morphism p : L // D such that p · c = d. Note that c is the
coequalizer of h and h′.

(2) Suppose that V = Cat and J = {u : ∅ // 1, v : 2 // 2, w : 2′ // 2}.

(a) A copowered pushout of f, g, h relative to u is the same as a pushout of f, g.

(b) A copowered pushout of f, g, h relative to v takes as input cells in K depicted in
the diagram below

A K

B

g

g̃

f h

h̃

γ

in which h · f = g, h̃ · f = g̃, and returns a cocone j, j̃ : B // L, δ : j ⇒ j̃,
i : K //L such that j · f = i · g, j̃ · f = i · g̃, j = i · h, j̃ = i · h̃, and δ ∗ f = i ∗ γ
with the following universal property: For each other such compatible cocone
r : K //D, s, s̃ : B //D, ϵ : s ⇒ s̃ there exists a unique 1-cell p : L //D such
that p ∗ δ = ϵ and p · i = r.

(c) A copowered pushout of f, g, h relative to w takes as input cells in K depicted
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in the diagram below

A K

B

f

g

h

h̃

g̃

τ

τ ′

γ

in which h · f = g, h̃ · f = g̃, τ ∗ f = γ, τ ′ ∗ f = γ, and returns a 1-cell c : K //L
such that c ∗ τ = c ∗ τ ′ with the following universal property: For any 1-cell
d : K //D satisfying d ∗ τ = d ∗ τ ′ there exists a unique 1-cell p : L //D such
that p · c = d. Note that c is the coequifier of τ and τ ′.

(3) If V = Grpd, J = {u : ∅ // 1, v : 2 // 2g, w : 2′
g

// 2g}, then copowered pushouts
are almost the same as in Example (2) with the only difference being that all the
2-cells are invertible.

(4) In the case V = Ch, J = {un : S
n−1 ↪→ Dn | n ∈ Z}, a copowered pushout of f, g, h

relative to un takes as input an n-chain g ∈ K(A,K)n, a morphism f : A // B in
K0, and an (n − 1)-cycle h ∈ K(B,K)n−1 such that h · f = ∂n(g), and it returns a
morphism f ′ : K // L in K0 and an n-chain g′ ∈ K(B,L)n such that f ′ · h = ∂n(g

′)
and f ′ · g = g′ · f ∈ K(A,K)n with the following universal property: For each other
such compatible pair consisting of a morphism r : K // D in K0 and an n-chain
s ∈ K(B,D)n there exists a unique morphism p : L //D in K0 such that p · f ′ = r
and p · g′ = s.

(5) Suppose that V = SSet and J = {un : ∂∆
n ↪→ ∆n | n ≥ 0}. A copowered

pushout of f, g, h relative to un takes as input an n-simplex g ∈ K(A,K)n, a mor-
phism f : A //B in K0, and (n− 1)-simplices h0, h1, . . . , hn ∈ K(B,K)n−1 such that
hi ·f = di(g) for all i ∈ {0, 1, . . . , n}, and it returns a morphism f ′ : K //L in K0 and
an n-simplex g′ ∈ K(B,L)n such that f ′ · g = g′ ·f ∈ K(A,K)n and f ′ · hi = di(g

′) for
all i ∈ {0, 1, . . . , n} with the following universal property: For each other such com-
patible pair consisting of a morphism r : K //D in K0 and an n-simplex s ∈ K(B,D)n
there exists a unique morphism p : L //D in K0 such that p · f ′ = r and p · g′ = s.

7. Factorization lemma

In this section we prove a technical result (Lemma 7.1) about existence of a certain
factorization in the category of morphisms that will be used in our enriched small object
argument. The lemma has an easier proof under stronger assumptions, however, we do
not assume these in our enriched small object argument, and thus we first present the
more difficult proof of the lemma. Afterwards in the proof of Lemma 7.2 we illustrate the
easier proof under the stronger assumptions.
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7.1. Lemma. Suppose that V is a cosmos, K is a copowered V-category that has pushouts
and transfinite composites, g : X // Y is a morphism in K0, u : U // V is a morphism
in V0, λ is a regular cardinal, D : λ //K0 is a λ-sequence, (φα : Dα //L)α<λ is a cocone
in K0, the colimit of D in K is preserved by the following three functors:

V0

(
V,K(X,−)

)
,V0

(
U,K(X,−)

)
,V0

(
U,K(Y,−)

)
: K0

// Set, (9)

and m : colimα<λDα //L is the morphism in K0 induced by the universal property of the
colimit. Furthermore, suppose that we have the following commutative square.

dom(u □ g) colimα<λ Dα

V ⊙ Y L

ℓ

u□g m

h

(10)

Then there exists an ordinal ξ < λ and a morphism ℓ′ : dom(u □ g) //Dξ such that the
following diagram commutes.

dom(u □ g) colimα<λ Dα

Dξ

V ⊙ Y L

ℓ

ℓ′

u□g m

ιξ

φξ

h

(11)

Proof. Denote by p1 and p2 the following projections.

K(Y, colimα<λ Dα)

Sq(g,m) K(X, colimα<λ Dα)

K(Y, L) K(X,L)

p1

p2 K(X,m)

K(g,L)

K(Y,m)

K(g,colimα<λ Dα)
⟨g,m⟩

(12)

Let

U K(Y, colimα<λ Dα)

V Sq(g,m)

(ℓ·i1)∗

u ⟨g,m⟩

((ℓ·i2)∗,h∗)

(13)

be the adjoint transpose (recall Remark 4.9) of the commutative square (10). To simplify
notation, define w := (ℓ · i1)∗ and v := ((ℓ · i2)∗, h∗). By assumption, we know that(

V0

(
V,K(X, ιβ)

)
: V0

(
V,K(X,Dβ)

)
// V0

(
V,K(X, colimα<λ Dα)

))
β<λ
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is a colimit in Set, and thus, by the characterization of directed colimits in Set, there
exists ξ < λ and a morphism v′′ : V //K(X,Dξ) such that the following square commutes.

V K(X,Dξ)

Sq(g,m) K(X, colimα<λ Dα)

v′′

v K(X,ιξ)

p1

(14)

Furthermore, again by assumption, we know that(
V0

(
U,K(Y, ιβ)

)
: V0

(
U,K(Y,Dβ)

)
// V0

(
U,K(Y, colimα<λ Dα)

))
β<λ

is a colimit in Set, and thus, by the characterization of directed colimits in Set, there
exists an ordinal ξ′ < λ and a morphism w′ : U //K(Y,Dξ′) such that w = K(Y, ιξ′) ·w′.
By using min{ξ, ξ′} // max{ξ, ξ′} we can assume that ξ′ = ξ, and thus the following
triangle commutes.

K(Y,Dξ)

U K(Y, colimα<λ Dα)

K(Y,ιξ)w′

w

(15)

Using the fact that Sq(g, φξ) is a pullback we get a unique morphism v′ making the two
triangles in the following diagram commute.

V

Sq(g, φξ) K(X,Dξ)

K(Y, L) K(X,L)

π1

π2 K(X,φξ)

K(g,L)

p2·v

v′′
v′

(16)

Indeed,

K(g, L) · p2 · v
(12)
= K(X,m) · p1 · v

(14)
= K(X,m) · K(X, ιξ) · v′′ = K(X,φξ) · v′′,

where the last equality follows from the definition of m. We will now show that the
following square commutes.

U K(Y,Dξ)

V Sq(g, φξ)

w′

u ⟨g,φξ⟩

v′

(17)
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Indeed, note that

K(X, ιξ) · π1 · v′ · u
(16)
= K(X, ιξ) · v′′ · u
(14)
= p1 · v · u
(13)
= p1 · ⟨g,m⟩ · w
(12)
= K(g, colimα<λDα) · w
(15)
= K(g, colimα<λDα) · K(Y, ιξ) · w′

= K(X, ιξ) · K(g,Dξ) · w′

(7)
= K(X, ιξ) · π1 · ⟨g, φξ⟩ · w′.

Therefore, since by assumption(
V0

(
U,K(X, ιβ)

)
: V0

(
U,K(X,Dβ)

)
// V0

(
U,K(X, colimα<λ Dα)

))
β<λ

is a colimit in Set, using the characterization of directed colimits in Set, we get that
there exists ξ̃ such that λ > ξ̃ ≥ ξ,

K(X,D(ξ // ξ̃)) · π1 · v′ · u = K(X,D(ξ // ξ̃)) · π1 · ⟨g, φξ⟩ · w′, (18)

and morphisms v′′
ξ̃
= K(X,D(ξ // ξ̃)) ·v′′, w′

ξ̃
= K(Y,D(ξ // ξ̃)) ·w′, and v′

ξ̃
satisfying the

analogues of (14), (15), and (16) for ξ̃, respectively. Thus we obtain the following chain
of equalities:

π1,ξ̃ · v
′
ξ̃
· u(1̃6)

= v′′
ξ̃
· u

= K
(
X,D(ξ // ξ̃)

)
· v′′ · u

(16)
= K

(
X,D(ξ // ξ̃)

)
· π1 · v′ · u

(18)
= K

(
X,D(ξ // ξ̃)

)
· π1 · ⟨g, φξ⟩ · w′

(7)
= K

(
X,D(ξ // ξ̃)

)
· K(g,Dξ) · w′

= K(g,Dξ̃) · K
(
Y,D(ξ // ξ̃)

)
· w′

= K(g,Dξ̃) · w′
ξ̃

(7)
= π1,ξ̃ · ⟨g, φξ̃⟩ · w

′
ξ̃
.

Now we can replace the previous ξ by ξ̃ (while still denoting it ξ) and we obtain

π1 · v′ · u = π1 · ⟨g, φξ⟩ · w′.
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Furthermore,

π2 · v′ · u
(16)
= p2 · v · u
(13)
= p2 · ⟨g,m⟩ · w
(12)
= K(Y,m) · w
(15)
= K(Y,m) · K(Y, ιξ) · w′

= K(Y, φξ) · w′

(7)
= π2 · ⟨g, φξ⟩ · w′.

Since (π1, π2) is a pullback, we obtain that the square (17) commutes. Consider the
adjoint transpose of (17), which gives us the following commutative square.

dom(u □ g) Dξ

V ⊙ Y L

((w′)∗,(π1·v′)∗)

u□g φξ

(π2·v′)∗

(19)

Note that (π2 · v′)∗ = (p2 · v)∗ = (h∗)
∗ = h, and thus we can define ℓ′ := ((w′)∗, (π1 · v′)∗)

and then the commutative square (19) demonstrates that the bottom-left square in the
diagram (11) commutes. Furthermore,

ιξ · ℓ′ = ιξ · ((w′)∗, (π1 · v′)∗)
(16)
= ιξ · ((w′)∗, (v′′)∗)

(14)&(15)
= (w∗, (p1 · v)∗) = (ℓ · i1, ℓ · i2) = ℓ,

and hence the morphism ℓ′ makes the diagram (11) commute.

A simpler proof (which was suggested to the author by the anonymous referee) of
Lemma 7.1 can be given under the following additional assumption: On top of as-
suming preservation by the three functors (9), assume also preservation by the functor
V0

(
V,K(Y,−)

)
: K0

// Set. In fact, with this additional assumption one can obtain an
even stronger conclusion (which, however, is not needed for our small object argument).
For simplicity of phrasing, let us illustrate the simpler approach by proving the following
lemma that uses the language of presentability.

7.2. Lemma. Suppose that V is a cosmos, κ is a regular cardinal, K is a copowered
V-category that has pushouts and κ-directed colimits, g : X // Y is a morphism in K0,
u : U // V is a morphism in V0, the objects X and Y are κ-presentable in the enriched
sense [Kel82, 2.1], and the objects U and V are κ-presentable in the unenriched sense.
Then u □ g is κ-presentable in [2,K]0 in the unenriched sense.

Proof. Suppose that D : I // [2,K]0 is a κ-directed diagram. For each i ∈ I, we will
denote D(i) by fi : Ai

//Bi. We wish to show that

colimi∈I [2,K]0(u □ g, fi) ∼= [2,K]0(u □ g, colimi∈I fi)
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in Set. By Remark 4.9, this is equivalent to showing that

colimi∈I [2,V ]0
(
u, ⟨g, fi⟩

) ∼= [2,V ]0
(
u, ⟨g, colimi∈I fi⟩

)
in Set. By definition, a morphism u // ⟨g, colimi∈I fi⟩ consists of two components that
make the obvious square commute, and thus we obtain the following pullback in Set.

[2,V ]0
(
u, ⟨g, colimi∈I fi⟩

)
V0

(
U,K(Y, colimi∈I Ai)

)
V0

(
V, Sq(g, colimi∈I fi)

)
V0

(
U, Sq(g, colimi∈I fi)

)
π1

π2 V0(U,⟨g,colimi∈I fi⟩)

V0(u,Sq(g,colimi∈I fi))

Using the fact that κ-directed colimits commute with pullbacks in Set we see that it
suffices to show the corresponding isomorphisms in Set for the three other objects in
the pullback square. Let us begin with the object V0

(
U,K(Y, colimi∈I Ai)

)
, since that

case is the easiest. By assumption, Y is κ-presentable in the enriched sense and U is
κ-presentable in the unenriched sense. Therefore,

V0

(
U,K(Y, colimi∈I Ai)

) ∼= V0

(
U, colimi∈I K(Y,Ai)

) ∼= colimi∈I V0

(
U,K(Y,Ai)

)
.

The two remaining cases are analogous to each other, and thus we will describe only the
case of the object V0

(
V, Sq(g, colimi∈I fi)

)
. By definition of Sq(g, colimi∈I fi), we have the

following pullback

Sq(g, colimi∈I fi) K(X, colimi∈I Ai)

K(Y, colimi∈I Bi) K(X, colimi∈I Bi)

p1

p2 K(X,colimi∈I fi)

K(g,colimi∈I Bi)

and thus, since V0(V,−) : V0
// Set preserves limits, we obtain the following pullback in

Set.

V0

(
V, Sq(g, colimi∈I fi)

)
V0

(
V,K(X, colimi∈I Ai)

)
V0

(
V,K(Y, colimi∈I Bi)

)
V0

(
V,K(X, colimi∈I Bi)

)
V0(V,p1)

V0(V,p2) V0(V,K(X,colimi∈I fi))

V0(V,K(g,colimi∈I Bi))

Therefore, in order to conclude that colimi∈I V0

(
V, Sq(g, fi)

) ∼= V0

(
V, Sq(g, colimi∈I fi)

)
, it

suffices to show the corresponding isomorphisms for the three other objects in the pullback,
since κ-directed colimits commute with pullbacks in Set. Indeed, by the κ-presentability
assumptions on X, Y , V we obtain the following isomorphisms

V0

(
V,K(X, colimi∈I Ai)

) ∼= V0

(
V, colimi∈I K(X,Ai)

) ∼= colimi∈I V0

(
V,K(X,Ai)

)
,

V0

(
V,K(X, colimi∈I Bi)

) ∼= V0

(
V, colimi∈I K(X,Bi)

) ∼= colimi∈I V0

(
V,K(X,Bi)

)
,

V0

(
V,K(Y, colimi∈I Bi)

) ∼= V0

(
V, colimi∈I K(Y,Bi)

) ∼= colimi∈I V0

(
V,K(Y,Bi)

)
.
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Note that the last line corresponds to the aforementioned preservation assumption that’s
not assumed in Lemma 7.1.

8. Enriched small object argument

Here we finally state and prove the small object argument. We prove the small object
argument in the special case when F is a cofibrantly generated weak factorization system.
Thus, in this final section we assume that V is a cosmos, K is a copowered V-category
that has pushouts and transfinite composites, I is a set of morphisms in K0, J is a set of
morphisms in V0, and F = (L ,R) is a weak factorization system on V0 that’s cofibrantly
generated by J . Before stating and proving the theorem we give two definitions concerning
smallness and relative cell complexes.

8.1. Definition. Suppose that S is a class of morphisms in K0, U and V are objects in
V, X and Y are objects in K, and κ is a cardinal. We say that (U, V,X, Y ) is κ-small
relative to S if for all κ-filtered ordinals λ and all λ-sequences D : λ //K0 such that for
each β+1 < λ the morphism D(β //β+1): Dβ //D(β+1) belongs to S, it is the case
that the colimit of D in K is preserved by the following three functors:

V0

(
V,K(X,−)

)
,V0

(
U,K(X,−)

)
,V0

(
U,K(Y,−)

)
: K0

// Set.

Furthermore, we say that (U, V,X, Y ) is small relative to S if there exists a cardinal κ
such that (U, V,X, Y ) is κ-small relative to S.

8.2. Example. If V = Set, then smallness of (∅, 1, X, Y ) relative to S from Definition
8.1 is the same as the ordinary smallness of X relative to S [Hov99, Definition 2.1.3].
Subsequently, this means that the enriched small object argument (Theorem 8.5) that
we prove below includes the ordinary small object argument as a special case. We will
explain this later on in more detail in Example 8.9.(1).

8.3. Remark. Intuitively, the smallness condition on (U, V,X, Y ) in Definition 8.1 in-
volves an enriched smallness condition on X and Y and an unenriched smallness condition
on U and V . The presentable case (Remark 8.7) will be particularly illustrative for this
intuition.

8.4. Definition. By (I rel J )-cell we denote the class of all transfinite composites of
copowered pushouts of morphisms from I relative to J .

8.5. Theorem. Suppose that V is a cosmos, K is a copowered V-category that has
pushouts and transfinite composites, I is a set of morphisms in K0, J is a set of mor-
phisms in V0, F = (L ,R) is a weak factorization system on V0 that’s cofibrantly gener-
ated by J , L is stable under corners, and for each morphism u : U // V in J and each
morphism g : X //Y in I it is the case that (U, V,X, Y ) is small relative to (I rel J )-cell.

Then for each morphism f : K // L in K0 there exists a factorization f = m · e such

that e and m are morphisms in K0 satisfying e ∈ (I rel J )-cell and m ∈ I
F
⋔ .
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Proof. Let κ be a cardinal such that for each morphism u : U // V in J and each
morphism g : X // Y in I it is the case that (U, V,X, Y ) is κ-small relative to the class
(I rel J )-cell. Furthermore, let λ be a κ-filtered regular cardinal such that the cardinality
of J is less than λ.

We will transfinitely define a diagram D : λ //K0 such that D0 = K, the morphism
D(α // α + 1) is a transfinite composition of copowered pushouts of morphisms from
I relative to J for each ordinal α < λ, and Dα := colimζ<αDζ for each limit ordinal
α < λ. Then we will define e to be the injection ι0 : D0 // colimα<λDα. Furthermore,
we are going to construct a cocone (φα : Dα // L)α<λ in K0, and then we can define the
morphism m : colimα<λDα // L to be the induced morphism obtained from the universal
property of the colimit.
Base Case: Define D0 := K and φ0 := f .
Limit Step: Suppose that α < λ is a limit ordinal such that we’ve already performed the
construction for all ζ < α. Then define Dα := colimζ<αDζ and let φα : Dα // L be the
morphism induced by the cocone (φζ : Dζ // L)ζ<α.
Successor Step: Suppose that α < λ is an ordinal such that we’ve already performed the
construction for each ζ ≤ α. Enumerate the set J by its cardinality, which means that
J = {uα′ : Uα′ // Vα′ | α′ < αJ }, where αJ is the cardinality of J viewed as an ordinal
number. Let F : Ord //Ord be the ordinal function defined via transfinite induction as
follows: F (0) := 0, if F is defined on γ, then

F (γ + 1) :=

{
F (γ) + 1 ifF (γ) + 1 < αJ ,

0 ifF (γ) + 1 ≥ αJ ,

and finally if γ is a limit ordinal, then we consider two cases:

� if αJ is a finite ordinal, then F (γ) := 0, and

� if αJ is a limit ordinal, then

F (γ) :=

{
supδ<γ F (δ) if supδ<γ F (δ) < αJ ,

0 if supδ<γ F (δ) ≥ αJ .

Briefly, we can think of F as being defined via the modulo operator in the following way
F := − mod αJ . Consider the set Jα of all triples (g, v, w) of morphisms such that g ∈ I
and that make the following square commute.

dom(uF (α) □ g) Dα

VF (α) ⊙ cod g L

w

uF (α)□g φα

v

Now we are going to use transfinite induction again. Well-order the set Jα, which means
that Jα = {(gγ, vγ, wγ) | γ < γα}, where γα is an ordinal. We define D0(α + 1) := Dα
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and φα+1,0 := φα. If β ≤ γα is a limit ordinal such that we’ve already performed the
construction for all the ordinals less than β, then define Dβ(α+1) := colimδ<β Dδ(α+1)
and define φα+1,β : Dβ(α + 1) // L to be the morphism that’s induced by the cocone
(φα+1,δ : Dδ(α + 1) // L)δ<β. Finally, suppose that β < γα is an ordinal such that we’ve
already performed the construction for all the ordinals less or equal to β. Denote by
f ′
0,β : Dα //Dβ(α+1) the morphism coming from the construction in the previous steps.
Define Dβ+1(α + 1) to be following pushout in K.

dom(uF (α) □ gβ) Dβ(α + 1)

VF (α) ⊙ cod gβ Dβ+1(α + 1)

f ′
0,β ·wβ

uF (α)□gβ f ′
β,β+1

h′
β

Furthermore, define φα+1,β+1 : Dβ+1(α + 1) // L to be the morphism induced by the
following commutative square.

dom(uF (α) □ gβ) Dβ(α + 1)

VF (α) ⊙ cod gβ L

f ′
0,β ·wβ

uF (α)□gβ φα+1,β

vβ

The square indeed commutes, since φα+1,β · f ′
0,β · wβ = φα · wβ = vβ · (uF (α) □ gβ).

The “inner” transfinite construction is now finished. Define D(α // α + 1) to be the
transfinite composition of all the morphisms f ′

δ,δ+1, where δ < γα, and define the morphism
φα+1 : D(α+1) //L to be the map induced by the cocone (φα+1,β : Dβ(α + 1) // L)β<γα .

Now that we’ve finished the construction let us show that m ∈ I
F
⋔ . Suppose that

g : X // Y is in I. We want to verify that ⟨g,m⟩ ∈ J ⋔, where ⟨g,m⟩ is the induced
morphism below.

K(Y, colimα<λ Dα)

Sq(g,m) K(X, colimα<λ Dα)

K(Y, L) K(X,L)

p1

p2 K(X,m)

K(g,L)

K(Y,m)

K(g,colimα<λ Dα)
⟨g,m⟩

Suppose that we have a commutative square

Uα′ K(Y, colimα<λ Dα)

Vα′ Sq(g,m)

⟨g,m⟩

v

w

uα′
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in which uα′ ∈ J . We want to show that there exists a diagonal Vα′ //K(Y, colimα<λ Dα)
that makes both triangles commute. By Remark 4.9, this is equivalent to showing that
there exists a diagonal Vα′ ⊙ Y // colimα<λ Dα that makes the two triangles in the
following square commute.

dom(uα′ □ g) colimα<λ Dα

Vα′ ⊙ Y L

(w∗,(p1·v)∗)

uα′□g m

(p2·v)∗

Thus, let us show the existence of such a diagonal Vα′ ⊙ Y // colimα<λ Dα. By Lemma
7.1 we get that there exists ξ < α and w′ : dom(uα′ □ g) //Dξ such that the following
diagram commutes.

dom(uα′ □ g) colimα<λ Dα

Dξ

Vα′ ⊙ Y L

(w∗,(p1·v)∗)

w′

uα′□g m

ιξ

φξ

(p2·v)∗

Furthermore, since the cardinality of J is less than λ, there exists an ordinal ξ′ such that
λ > ξ′ ≥ ξ and F (ξ′) = α′, and thus we can assume that F (ξ) = α′. The commutative
square

dom(uα′ □ g) Dξ

Vα′ ⊙ Y L

w′

uα′□g φξ

(p2·v)∗

is one of the squares from the construction, and thus there exists β < γξ such that
(g, (p2 · v)∗, w′) = (gβ, vβ, wβ). Define the diagonal that we are looking for to be the
following composite.

Vα′ ⊙ Y Dβ+1(ξ + 1) D(ξ + 1) colimα<λ Dα
h′
β ι′β+1 ιξ+1

This diagonal indeed makes the two triangles commute, since

m · ιξ+1 · ι′β+1 · h′
β = φξ+1 · ι′β+1 · h′

β = φξ+1,β+1 · h′
β = vβ = (p2 · v)∗,
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and

ιξ+1 · ι′β+1 · h′
β · (uα′ □ g) = ιξ+1 · ι′β+1 · f ′

β,β+1 · f ′
0,β · wβ

= ιξ+1 · ι′β · f ′
0,β · wβ

= ιξ+1 · ι′0 · wβ

= ιξ · wβ

= (w∗, (p1 · v)∗).

Thus, the proof of m ∈ I
F
⋔ is finished.

8.6. Remark. Note that I ⊆
F
⋔ (I

F
⋔ ) and I ⊆ (

F
⋔I)

F
⋔ . In fact, this holds for any binary

relation and
F

⋔ is a binary relation. Therefore, from the stability properties in Section

6 and the fact that I ⊆
F
⋔ (I

F
⋔ ), we obtain an enriched weak F -factorization system

(
F
⋔ (I

F
⋔ ), I

F
⋔ ) by Theorem 8.5.

8.7. Remark. The smallness assumption in Theorem 8.5 holds in particular if

(i) the domains and codomains of morphisms in I are presentable in the enriched sense,
and

(ii) the domains and codomains of morphisms in J are presentable in the unenriched
sense.

8.8. Remark. By inspecting the construction in the proof of Theorem 8.5 we see that
instead of assuming the existence of all pushouts and transfinite composites in K it suffices
to assume that K has the following special types of pushouts and transfinite composites
in order to conclude that Theorem 8.5 holds:

(i) pushouts of the form dom(u □ g) from Definition 4.3, where u ∈ J , g ∈ I,

(ii) pushouts of morphisms of the form u □ g, where u ∈ J , g ∈ I, and

(iii) transfinite composites of morphisms from (I rel J )-cell.

8.9. Examples. In all of the following examples (see Examples 5.2.(1)-(6) for the cor-
responding F -lifting properties) Theorem 8.5 holds. In Examples (1)-(5), V is indeed a
cosmos, and in Example (6) it is assumed to be. In all examples we will assume that
F = (⋔(J ⋔),J ⋔).

(1) V = Set, J = {u : ∅ // 1}. The stability of L under corners follows from the fact
that u □ u = u and from Lemma 5.7. Thus, from Theorem 8.5 we obtain the classical
small object argument [Hov99, Theorem 2.1.14] for weak factorization systems, since
the domains of morphisms in I being small relative to I-cell [Hov99, Definition 2.1.9]
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corresponds precisely to the smallness assumption in Theorem 8.5. Note that instead
of assuming the existence of all colimits in K it suffices to assume that K has pushouts
of morphisms in I and transfinite composites of morphisms in I-cell, see Remark 8.8.

If we instead choose J = {u : ∅ // 1, v : 2 // 1}, then the stability of L under cor-
ners follows from the fact that L is the class of all functions, since R is the class
of all bijections. If K is locally presentable, then by Theorem 8.5 we obtain a vari-
ant of the small object argument that gives us an orthogonal factorization system
(⊥(I⊥), I⊥) (where ⊥ denotes the corresponding F -lifting property), which forms
part of [FR08, Theorem 2.2]. Note that in order to apply Theorem 8.5 to obtain such
an orthogonal factorization system it suffices to assume, instead of local presentabil-
ity of K, that K has certain special types of pushouts, coequalizers, and transfinite
composites (Remark 8.8), and that the domains and codomains of morphisms in I
are small relative to (I rel J )-cell.

(2) V = Cat, J = {u : ∅ // 1, v : 2 //2, w : 2′ //2}. Note that ∅, 1, 2, 2, 2′ are finitely
presentable as objects of Cat, J has cardinality less than ℵ0, and L is stable under
corners. The stability of L under corners follows from [Rez96, Theorem 5.1].

(3) V = Grpd, J = {u : ∅ // 1, v : 2 // 2g, w : 2′
g

// 2g}. Note that ∅, 1, 2, 2g, 2
′
g

are finitely presentable as objects of Grpd, J has cardinality less than ℵ0, and L
is stable under corners. The stability of L under corners can be shown completely
analogously as in Example (2).

The small object argument for (2,1)-categories that we obtain in this way differs
from the the small object argument for (2,1)-categories in [Kan21, Section 5], since
the F -lifting property that we are considering has a 2-dimensional aspect that’s not
present in the aforementioned paper. Even if we remove the previously mentioned
2-dimensional aspect by omitting v and w from J , then the arguments are still dif-
ferent, since the one in the aforementioned paper has homotopical aspects that are
not present in our argument.

(4) V = Ch, J = {Sn−1 ↪→ Dn | n ∈ Z}. Note that for each n ∈ Z, Sn−1 and
Dn are finitely presentable (and hence ℵ1-presentable) as objects of Ch, and J has
cardinality less than ℵ1. The stability of the class L under corners follows from
[Hov99, Proposition 4.2.13].

(5) V = SSet, J = {∂∆n ↪→ ∆n | n ≥ 0}. Note that for each n ≥ 0, ∂∆n and ∆n

are finitely presentable (and hence ℵ1-presentable) as objects of SSet, and J has
cardinality less than ℵ1. The stability of the class L under corners follows from
[Hov99, Proposition 4.2.8].

(6) V0 is a locally λ-presentable category with a set Vλ of λ-presentable objects that form
a strong generator, where λ is a regular cardinal. Consider

J = {uV : ∅ // V | V ∈ Vλ} ∪ {∇V : V + V // V | V ∈ Vλ}.
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Let µ be a regular cardinal greater than max{λ, |J |}. Then all the domains and
codomains of morphisms in J are µ-presentable and J has cardinality less than µ.
The stability under corners follows from the fact that L is the class of all morphisms
in V .

8.10. Example. In every example in Examples 8.9 the morphism !I : ∅ // I belongs
to L , which is the condition that appears in Proposition 5.9. However, Theorem 8.5
doesn’t require !I ∈ L to hold. We mention a simple example that demonstrates this:
Let V = Set and J = {v : 2 // 1}, i.e. F = (surjective, injective). Note that 2 and 1
are finitely presentable in Set and J has cardinality less than ℵ0. The stability of L
under corners follows from Lemma 5.7 and the fact that L is the class of all surjections.
Indeed, the codomain of v □ v is 1 and the domain of v □ v is non-empty, since it is a

pushout of non-empty sets. We also remark that f
F

⋔ k if and only if for each commutative
(f, k)-square (4) it is the case that if d, d′ : B //C are two diagonals making the triangles
inside the square commute, then d = d′. Note that existence of the diagonal is not
required.

8.11. Example. Every example in Examples 8.9 involves a locally presentable cosmos
V . In some cases it is also possible to apply the Theorem 8.5 when V is not locally
presentable. We illustrate this by the following example: Let V = Top be the cosmos
of compactly generated topological spaces with the standard cartesian closed monoidal
structure and let K = [2,Top] be the Top-category of arrows in Top. Furthermore, let
J = {in : Sn−1 ↪→ Dn | n ≥ 0} be the standard generating cofibrations on Top and
let I = {idi0 : i0 // i0, !i0 : id∅ // i0}. We now explain what I consists of in terms of
commutative squares. We denote the empty topological space by ∅ and the one-point
topological space by 1. Recall that S−1 = ∅ and D0 = 1, i.e. i0 is the unique morphism
∅ // 1. Thus I consists of the following two commutative squares.

∅ ∅ ∅ ∅

1 1 ∅ 1

id∅

i0 i0

id∅

id∅ i0

id1 i0

Then L is stable under corners [Hov99, Proposition 4.2.11]. Moreover, every topologi-
cal space is small relative to closed T1-inclusions [Hov99, Lemma 2.4.1], and thus every
object of [2,Top]0 is small relative to componentwise closed T1-inclusions. Note that
in □ idi0 = idin and in □ !i0 = !in . Therefore, each morphism in (I rel J )-cell is a com-
ponentwise closed T1-inclusion according to [Hov99, Lemma 2.4.5]. Thus, we can apply
Theorem 8.5 to obtain the small object argument for the projective model structure on
[2,Top] from [Hov14, Theorem 3.1].
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[FR08] L. Fajstrup and J. Rosický. A convenient category for directed homotopy. Theory Appl. Categ.,
21:No. 1, 7–20, 2008.

[Gar09] Richard Garner. Understanding the small object argument. Appl. Categ. Structures, 17(3):247–
285, 2009. doi:10.1007/s10485-008-9137-4.

[Hov99] Mark Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 1999. doi:10.1090/surv/063.

[Hov14] Mark Hovey. Smith ideals of structured ring spectra, 2014. arXiv:1401.2850.

[JK01] G. Janelidze and G. M. Kelly. A note on actions of a monoidal category. Theory Appl. Categ.,
9:61–91, 2001.
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