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HOMOLOGICAL LEMMAS IN A NON-POINTED CONTEXT

ANDREA CAPPELLETTI, ANDREA MONTOLI

Abstract. We show that non-pointed versions of the classical homological lemmas
hold in regular protomodular categories equipped with a suitable posetal monocoreflec-
tive subcategory. Examples of such categories are all protomodular varieties of universal
algebras having more than one constant, like the ones of unitary rings, Boolean algebras,
Heyting algebras and MV-algebras, their topological models, and the dual category of
every elementary topos.

1. Introduction

Homological categories, namely pointed regular protomodular categories, have been shown
to constitute the good context in which the non-abelian versions of the classical homolog-
ical lemmas, such as the short five lemma, the nine lemma, and the Noether isomorphism
theorems, hold (see [1] for a detailed description of homological categories and their prop-
erties). In particular, for pointed categories, protomodularity [3] is equivalent to the
validity of the split short five lemma and, for pointed regular categories, protomodular-
ity is equivalent to the validity of the short five lemma. A key fact in order to have a
good behaviour of (short) exact sequences is that, in a pointed protomodular category,
every regular epimorphism is a cokernel. Examples of homological categories are those
of groups, non-unitary rings, associative algebras, Lie algebras, topological groups and
many others.

Concerning the nine lemma, Bourn proved in [4] that it holds in every homological
category, and also in every regular protomodular quasi-pointed category (meaning that
the unique morphism from the initial object to the terminal one is a monomorphism).
Replacing short exact sequences with exact forks, he considered a denormalized version
of the nine lemma, proving in [5] that it holds in regular Mal’tsev [7] categories. Later,
Lack [15] showed that the denormalized nine lemma holds also in regular Goursat [7, 6]
categories. In [10] the authors proposed a framework for a common description of these
two versions of the nine lemma. Such a unified framework is the one of star-regular
categories [11], which is based on the notion of an ideal of morphisms in the sense of
[8]. Given an ideal N of morphisms in a category C, a star is a pair (k1, k2) of parallel
morphisms such that k1 ∈ N. The star-kernel of a morphism f is a universal star with
respect to the property that fk1 = fk2. A regular category equipped with an ideal N of
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morphisms is star-regular if every regular epimorphism is the coequalizer of its star-kernel.
In [10] it is shown that, in a star-regular category with “enough trivial objects” the upper
and the lower nine lemmas are equivalent. Moreover, under mild additional assumptions,
the middle version of the nine lemma is equivalent to a version of the short five lemma
relative to stars. These results cover the known ones concerning the homological lemmas
in the pointed and quasi-pointed contexts (where N is the class of morphisms that factor
through 0) as well as the denormalized versions of them (where N is the class of all
morphisms).

However, this context excludes several interesting examples in which some forms of the
nine lemma are valid, like unitary rings, Boolean algebras, Heyting algebras, MV-algebras
and, more generally, protomodular varieties of universal algebras having more than one
constant. The aim of the present paper is to introduce a categorical framework which
includes all the examples just mentioned, and in which suitable forms of the homologi-
cal lemmas hold. We consider regular protomodular categories C equipped with a full,
posetal, monocoreflective subcategory Z of “zero objects” such that the reflector inverts
monomorphisms.

Our context is related to the one considered in [13] in order to study radical theory
and closure operators in a non-pointed situation. However, in [13] the authors considered
subcategories that are both reflective and coreflective, and so their framework does not
include the main examples we are interested in. Pointed and quasi-pointed regular pro-
tomodular categories are examples of our situation. Another large class of examples is
given by regular protomodular categories with initial object in which the unique morphism
0 → 1 is a regular epimorphism. This includes, in particular, ideally exact categories in
the sense of [14] (that are, moreover, required to be Barr-exact), among which there are
the dual categories of all elementary toposes and all protomodular varieties of universal
algebras with more than one constant. Moreover, the topological models of protomod-
ular theories with more than one constant are examples of our situation (thanks to the
observation, made in [2], that such models are regular protomodular categories).

An apparently disappointing fact happening in our context is that, denoting with NZ

the ideal of morphisms in C that factor through Z, NZ-kernels always exist and are easy
to compute, while NZ-cokernels do not always exist and, moreover, regular epimorphisms
are not always NZ-cokernels. This creates a difference, with respect to the classical case
and to the one of star-regular categories, concerning the definition of short exact sequence.
We show that this difficulty can be encompassed by defining a short exact sequence as
a regular epimorphism with its NZ-kernel. Using this notion of short exact sequence, we
recover, in our wide context, the validity of the short five lemma and of the nine lemma.

2. The context

We work in a category C with a fixed full, posetal, monocoreflective subcategory Z. We
denote by Z : C → Z the coreflector (and, without loss of generality, we suppose that Z is
the identity on the subcategory Z). Moreover, we require that Z inverts monomorphisms,
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meaning that, if m is a monomorphism, then Z(m) is an isomorphism. We will call trivial
or zeros the objects in the class Z.

2.1. Proposition. Consider a category C and a full subcategory Z. The following con-
ditions are equivalent:

(a) Z is a posetal monocoreflective subcategory such that the coreflector inverts monomor-
phisms;

(b) (i) for every A ∈ C there exists a, unique up to isomorphisms, monomorphism
εA : Z ↣ A, with Z ∈ Z;

(ii) for every A ∈ C and Z ∈ Z, Hom(Z,A) has at most one element;

(iii) for every pair of arrows z : Z ↣ A and z′ : Z ′ → A, where z is a monomor-
phism and Z,Z ′ ∈ Z, there exists a unique morphism φ : Z ′ → Z such that
zφ = z′:

Z ′

∃!φ
��

z′ // A

Z.
9D z

>>

Proof. (b)⇒(a) For every A ∈ C we fix an object of Z, denoted by Z(A), such that
there is a monomorphism εA : Z(A) ↣ A (such an object is unique up to isomorphisms).
We want to define a functor Z : C → Z. Given an arrow f : A → B of C, we define Z(f)
thanks to Condition (iii):

Z(A)

∃!Z(f)
��

,2εA // A
f // B

Z(B).
3; εB

77

Clearly Z is a functor. We prove that Z is right adjoint to the inclusion i : Z ↪→ C. We do
this by showing that the collection of arrows given by εA for A ∈ C satisfies the universal
property of the counit. In fact, for every arrow z : Z → A (where Z ∈ Z), thanks to
Condition (iii), there exists a unique φ : Z → Z(A) such that the following diagram is
commutative:

Z
∃!φ

}}

z

��
Z(A) ,2 εA

// A.

Hence Z is a monocoreflective subcategory of C. Now, thanks to Condition (ii) we know
that Z is a posetal category. Finally, we need to show that Z inverts monomorphisms.
Consider a monomorphism m : A ↣ B; since εBZ(m) = mεA we deduce that Z(m) is a
monomorphism of C, too. Now, thanks to (iii) we conclude that Z(m) is an isomorphism,



HOMOLOGICAL LEMMAS IN A NON-POINTED CONTEXT 547

considering the commutative diagram

Z(B)

∃!θ
��

Z(B)

Z(A).
7A Z(m)

;;

(a)⇒(b)

(i) Since Z is a monocoreflector, we can take as monomorphism
εA : Z(A) ↣ A; this monomorphism is unique up to isomorphisms since Z inverts
monomorphisms.

(ii) Consider a pair of arrows f1, f2 : Z → A. Thanks to the universal property of the
counit, we observe that there exist φ1, φ2 : Z → Z(A) such that εAφ1 = f1 and
εAφ2 = f2. But Z is a posetal category, hence φ1 = φ2 and so f1 = f2.

(iii) Consider a pair of arrows z : Z ↣ A and z′ : Z ′ → A, where z is a monomorphism
and Z,Z ′ ∈ Z. Due to naturality, we observe that εAZ(z) = z. Finally, thanks to
the universal property of the counit ε, we deduce that there exists a unique ψ such
that εAψ = z′; hence, we define φ = Z(z)−1ψ and we observe that zφ = zZ(z)−1ψ =
εAψ = z′.

2.2. Remark. In a category C there is at most one subcategory Z satisfying the condi-
tions of Proposition 2.1. So, admitting such a subcategory is a property of the category
C.

Proof. Suppose C has two full, replete subcategories Z and Y satisfying the conditions
of Proposition 2.1, with coreflectors Z and Y, respectively. Let Y be an object of Y; then
we have a monomorphism εY : Z(Y ) → Y . Its image Y(εY ) : Y(Z(Y )) → Y(Y ) = Y under
the coreflector Y is an isomorphism. Since Y(Z(Y )) is a subobject of Z(Y ), we get that
Y ∼= Z(Y ) belongs to Z, so that Y ⊆ Z. The other inclusion can be proved similarly.

Given an object A of C, we will say that Z(A) is the zero part of A.

2.3. Proposition. Under the equivalent conditions of Proposition 2.1, we have:

(a) every morphism f : A→ Z, where Z ∈ Z, is a strong epimorphism;

(b) every monomorphism s : S ↣ Z, where Z ∈ Z, is an isomorphism.
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Proof.

(a) Consider the commutative square

A

g

��

f // Z

h
��

B ,2
m
// C,

where m is a monomorphism. We recall that Z(m) : Z(B) → Z(C) is an iso-
morphism. Moreover, since Z ∈ Z, there exists a morphism θ : Z → Z(C) such
that εCθ = h. Hence, we can define d = εBZ(m)−1θ and we observe that md =
mεBZ(m)−1θ = εCZ(m)Z(m)−1θ = εCθ = h; moreover, since m is a monomorphism,
we get df = g. Therefore, f is a strong epimorphism.

(b) follows immediately from (a).

We denote by NZ the class of arrows of C factorizing through an object of Z. NZ is
clearly an ideal of morphisms in the sense of [8]. Moreover:

2.4. Remark. If f ∈ NZ, then we can construct a factorization f = mχ of f through an
object of Z, with m a monomorphism. In fact, since f ∈ NZ, we have a factorization of
the form

A

a ��

f // B

Z,
b

??

where Z ∈ Z. Observing that b = εBZ(b), we obtain f = εBZ(b)a, and εB is a monomor-
phism.

2.5. Proposition. If f is a strong epimorphism and gf ∈ NZ, then g ∈ NZ.

Proof. Since gf ∈ NZ, we get gf = εCχ for some arrow χ, i.e. the diagram below is
commutative:

A

χ

��

f // B

g

��
Z(C) ,2εC

// C.

Therefore, recalling that f is a strong epimorphism, there exists a morphism d : B → Z(C)
such that εCd = g, and so g ∈ NZ.
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3. Examples

In this section we describe several examples of the situation considered in the previous
one. We first consider a general class of categories satisfying the conditions of Proposition
2.1, and then some concrete cases.

Let C be a regular category with initial object 0. We denote by Z the class of objects
of C that are regular quotients of 0, i.e. those objects Z such that the unique morphism
0 → Z is a regular epimorphism.

3.1. Proposition. The class Z defined above satisfies the equivalent conditions of Propo-
sition 2.1.

Proof. We prove that Z satisfies the conditions stated in (b).

(i) We define εA : Z(A) ↣ A by taking the monomorphic part of the regular epi-mono
factorization of iA : 0 → A. Suppose m : Z ↣ A and m′ : Z ′ ↣ A are subobjects of
A, with Z,Z ′ ∈ Z. Then we have the following commutative diagram:

Z
�%

m

  
0

>> >>

    

A

Z ′.
9C m′

>>

Thanks to the uniqueness, up to isomorphisms, of the regular epi-mono factorization,
we get that Z and Z ′ are isomorphic.

(ii) Given two morphisms f, g : Z → A, composing them with the unique morphism
iZ : 0 → Z we get fiZ = giZ , and then f = g because iZ is an epimorphism.

(iii) Given an arrow z′ : Z ′ → A we take its regular epi-mono factorization z′ = me and
we consider the commutative diagram

0
iA //

iZ′ �� ��

A

Z ′

z′
>>

e
// // Z,

LR
m

OO

where iZ′ is a regular epimorphism thanks to the definition of the class Z, and
Z ∈ Z since it is a quotient of Z ′. Due to the uniqueness of the regular epi-mono
factorization, we obtain that m is isomorphic to εA, and so the claim follows.
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Thanks to Remark 2.2, we can observe that, for a regular category with an initial object
0, the class of regular quotients of 0 is the only subcategory satisfying the conditions of
Proposition 2.1. Moreover, if a category C with products is equipped with a subcategory
Z as in Proposition 2.1 which is essentially small, then the initial object of C can be
constructed using Z (this was pointed out to us by the referees):

3.2. Proposition. Let C be a category with products, and Z a subcategory that meets
the conditions of Proposition 2.1. If Z is essentially small, then C has an initial object.

Proof. Since Z is essentially small, there is a set {Zi ∈ Z | i ∈ I} such that for every Z ∈ Z

there exists an element i ∈ I and an isomorphism φ : Zi → Z. We define A :=
∏

i∈I Zi

(the product is computed in C) and we prove that Z(A) is an initial object of C. To
show this, it suffices to prove that, for every X ∈ C, there exists an arrow Z(A) → X
(the uniqueness is guaranteed by Proposition 2.1). Given such an object X, we have
an isomorphism φ : Zi → Z(X), for an appropriate i ∈ I. Hence, we can consider the
composite

Z(A)
Z(πi) // Zi

φ // Z(X)
εX // X.

Regular pointed and quasi-pointed categories are examples of our situation. In these
cases, the only quotient of 0, up to isomorphisms, is 0 itself, so the ideal NZ is the class
of morphisms that factor through 0.

We will be particularly interested in the case of regular categories in which the unique
morphism 0 → 1 is a regular epimorphism and, again, Z is the subcategory whose objects
are the regular quotients of 0. In particular, every variety of universal algebras with at
least one constant is an example of such category. Important non-pointed cases are:

• the categories Boole of Boolean algebras, Heyt of Heyting algebras and MV of
MV-algebras: in these cases the initial object is the 2-element algebra, so the class
Z is given just by 0 and 1;

• the category Ring of unitary rings: in this case the class Z is given by the collection
of the quotients of Z. Two unitary rings have the same zero part if and only if they
have the same characteristic.

The concrete examples mentioned above are protomodular categories. Other exam-
ples of regular categories in which the morphism 0 → 1 is a regular epimorphism are
the topological models of protomodular algebraic theories with at least one constant (e.g.
topological unitary rings). Indeed, as shown in [2], these categories are regular and pro-
tomodular; moreover, since the terminal object is still the singleton, the morphism 0 → 1
is a regular epimorphism.

Another interesting class of examples is given by the categories of the form Eop, where
E is an elementary topos; in this case the class Z is {Z ∈ Eop | ∃Z ↣ 1 in E}. In this
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situation, two objects have the same zero part if and only if they determine the same truth
value in E (where an object A in E determines the truth value given by the monomorphic
part of the regular epi-mono factorization of A→ 1).

4. Z-kernels and Z-cokernels

Let C be a regular category equipped with a full subcategory Z satisfying the equivalent
conditions of Proposition 2.1. Since the class NZ of morphisms that factor through Z is
an ideal, we can consider kernels and cokernels with respect to it, as in [9]:

4.1. Definition. Let f : A → B be a morphism in C. We say that a morphism
k : K → A in C is a Z-kernel of f if the following properties are satisfied:

(a) fk ∈ NZ;

(b) whenever e : E → A is a morphism in C and fe ∈ NZ, then there exists a unique
morphism φ : E → K in C such that kφ = e.

The definition of a Z-cokernel is dual.

It is immediate to see (see e.g. [12]) that every Z-kernel is a monomorphism and that
the Z-kernel of any morphism f : A → B in C, if it exists, is unique up to a unique
isomorphism. This means that if k : K → A and k′ : K ′ → A are Z-kernels of the same
arrow f , then there exists a unique isomorphism φ : K ′ → K such that kφ = k′. The
duals of the previous observations hold for Z-cokernels.

Actually, in our context Z-kernels always exist, and they are obtained as pullbacks
along the zero part of the codomain (this result should be compared with Proposition 2.3
in [13], where the same fact is stated in a more restrictive context):

4.2. Proposition. Under our assumptions, for every arrow f : A→ B in C the Z-kernel
k : K → A of f exists and it is given by the pullback

K
χ //

k
��

Z(B)
��
εB
��

A
f
// B.

Proof. Clearly fk ∈ NZ. Consider a morphism l : L → A such that fl ∈ NZ. Then,
there exists a morphism χ′ making the following diagram commutative:

L
l //

χ′ ""

A
f // B

Z(B).
7B εB

<<
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Since fl = εBχ
′, thanks to the universal property of pullbacks there exists a unique

morphism φ such that kφ = l and χφ = χ′. Finally, consider a morphism θ such that
kθ = l; observing that k is a monomorphism (k is the pullback of the monomorphism εB),
we conclude φ = θ.

The situation concerning cokernels is different. Indeed, in our context, Z-cokernels do
not always exist. To illustrate this, let us consider the categoryRing of unitary rings. The
identity morphism 1Z×Z does not have a Z-cokernel. Indeed, let us suppose the existence
of a Z-cokernel q : Z × Z → Q of 1Z×Z. Therefore, considering the diagram below, there
would be two morphisms φ1, φ2 : Q→ Z such that φ1q = π1 and φ2q = π2, where π1 and
π2 are the product projections:

Z

Z× Z

π1
//

π2 //

1Z×Z // Z× Z
q //

π1

;;

π2
##

Q

φ1

OO

φ2

��
Z.

So, we would have ⟨φ1, φ2⟩q = 1Z×Z, which would imply that q is a split monomorphism.
However, in general, a Z-cokernel is an epimorphism, hence q would be an isomorphism.
Therefore, up to isomorphisms, we can assume q = 1Z×Z. But, if 1Z×Z were the Z-cokernel
of 1Z×Z, we would obtain a factorization of the form

Z× Z

p
""

1Z×Z=⟨π1,π2⟩ // Z× Z

Z,

g

<<

where Z is a quotient of Z. Thanks to the existence of the arrow g, we observe that the
characteristic of Z is 0, and so Z = Z (up to isomorphisms). Moreover, we get g = ∆.
To conclude, we observe ⟨p, p⟩ = ∆p = ⟨π1, π2⟩, which implies p = π1 = π2, which is a
contradiction.

Using the same example, we can exhibit a regular epimorphism which is not a Z-
cokernel, despite the fact that Ring is a protomodular category. Indeed, the first projec-
tion π1 : Z × Z → Z is not a Z-cokernel: if there was a morphism f : C → Z × Z whose
Z-cokernel is π1, then, observing that π2f ∈ NZ since the codomain of such morphism
is in Z, there would exist a unique morphism γ : Z → Z such that γπ1 = π2, but this is
impossible.

Going back to Z-kernels, we can observe that a classical property of pointed categories,
namely that parallel arrows in a pullback diagram have isomorphic kernels, does not hold
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in our context. A simple counterexample, in Ring, is the following:

Z

��

Z

��
Z/2 Z/2,

where the vertical morphisms are the canonical projections. However, we can recover the
same kind of result when the morphism on the right is inverted by Z:

4.3. Proposition. Consider a pullback

A
f //

h
��

B

l
��

C g
// D,

where Z(l) is an isomorphism. Then, Z-ker(f) and Z-ker(g) are isomorphic.

Proof. Consider the following commutative cube:

K(f)

∃!φ

��

k

""

χ // Z(B)
εB

""

Z(l)

��

A

h

��

f // B

l

��

K(g)

n
!!

χ′
// Z(D)

εD

""
C g

// D,

(1)

where k = Z-ker(f), n = Z-ker(g), and φ is induced by the universal property of the
pullback. By assumption, the top face, the front face and the bottom face are pullbacks.
Then the back face is a pullback. Therefore, φ is an isomorphism, as pullback of the
isomorphism Z(l).

If, moreover, C is a protomodular category, a partial converse holds:

4.4. Proposition. Consider a commutative diagram

A
f // //

h
��

B

l
��

C g
// D,
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where f is a regular epimorphism, Z(l) is an isomorphism, and Z-ker(g) is isomorphic to
Z-ker(f). Then the square is a pullback.

Proof. Consider the commutative cube (1), where again k = Z-ker(f), n = Z-ker(g),
and φ is induced by the universal property of the pullback. By assumption, the top face,
the bottom face, and the back face (since φ and Z(l) are isomorphisms) are pullbacks.
Therefore, we obtain the commutative diagram

K(f) ,2k //

χ

��
(1)

A
h //

f
����

(2)

C

g

��
Z(B) ,2εB

// B
l
// D

where both (1) and (1)+(2) are pullbacks and f is a regular epimorphism. By protomod-
ularity, we conclude that (2) is a pullback, too.

It is well known that, in a pointed, regular, protomodular category, a morphism f
is a monomorphism if and only if its kernel is 0. In our non-pointed case, however,
the analogue of this result does not always hold. For instance, consider the canonical
projection pn : Z→ Z/n in Ring. It is immediate to observe that Z-ker(pn) = 1Z, yet pn
is not a monomorphism. However, if we consider a morphism f : A → B inverted by the
functor Z, then it is true that f is a monomorphism if and only if Z-ker(f) = εA. In fact,
if the diagram

K(f)
χ // //

��
k
��

Z(B)
��
εB
��

A ,2
f

// B

is a pullback, then χ is an isomorphism (χ is a strong epimorphism being an arrow with
trivial codomain, and it is a monomorphism as pullback of a monomorphism), and so k
is isomorphic to εA. Conversely, if εA = Z-ker(f) the diagram

Z(A)
Z(f)

∼
//

��
εA
��

Z(B)
��
εB
��

A
f

// B

is a pullback, and so, by protomodularity, f is a monomorphism since its pullback Z(f)
is a monomorphism.
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5. Homological lemmas

Now we are ready to prove our non-pointed version of the classical homological lemmas
(the proofs will be adaptations of the ones known for homological categories, that can be
found e.g. in [1]). To do that, we first have to define short exact sequences in our context.
Let C be a regular protomodular category equipped with a full subcategory Z satisfying
the equivalent conditions of Proposition 2.1.

5.1. Definition. In the category C, the sequence

A k // B
f // C

of objects and morphisms is said to be a short Z-exact sequence if f is a regular epimor-
phism and k = Z-ker(f).

As we observed in the previous section, this request does not imply that f is the Z-
cokernel of k. This is the main difference between our context on one side, and, on the
other side, the classical homological one, the quasi-pointed one [4], and the non-pointed
ones considered in [12, 13, 10].

Let us begin with the short five lemma:

5.2. Proposition. Consider a commutative diagram

K k //

u
��

A
f //

a
��

B

b
��

K ′
k′
// A′

f ′
// B′

in which the rows are short Z-exact sequences. If u and b are isomorphisms, then a is an
isomorphism, too.

Proof. Consider the following commutative diagram:

K

u

��

k

  

// Z(B)

##

Z(b)

��

A

a

��

f // B

b

��

K ′

k′ ��

// Z(B′)

""
A′

f ′
// B′,
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where, by assumption, the top face, the bottom face, and the back face are pullbacks.
Then, the diagram defined by the top face and the front face is a pullback. Therefore, we
obtain the commutative diagram

K
k //

��
(1)

A
a //

f
����

(2)

A′

f ′

��
Z(B) εB

// B
b
// B′,

where both (1) and (1)+(2) are pullbacks and f is a regular epimorphism. By protomod-
ularity, we conclude that (2) is a pullback, too. We deduce that a is an isomorphism, as
pullback of the isomorphism b.

In order to split the lemma in the versions for monomorphisms and for regular epimor-
phisms, we need the following well-known lemma, which holds in every regular category:

5.3. Lemma. If, in the following diagram, (1) and (2) are commutative squares, such that
(1) and (1)+(2) are pullbacks and f ′ is a regular epimorphism, then (2) is a pullback:

A
f //

a
��

(1)

B
g //

b
��

(2)

C

c
��

A′
f ′
// // B′

g′
// C ′.

5.4. Lemma. Consider a commutative diagram

K k //

u
��

(1)

A
f //

a
��

B

b
��

K ′
k′
// A′

f ′
// B′

in which the top row is Z-exact, k′ = Z-ker(f ′), and Z(B) ∼= Z(B′). Then the square (1)
is a pullback if and only if b is a monomorphism.
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Proof. We consider the commutative cube

K

u

��

""

k // A
f

  

a

��

Z(B)

≃

��

// B

b

��

K ′

""

k′ // A′

f ′

  
Z(B′) // B′,

where the top face and the bottom face are pullbacks. If (1) is a pullback, then the
diagram formed by the top face and the front face is a pullback, too. Therefore, in the
commutative diagram

K //

k
��

(3)

Z(B) ≃ //

��
(4)

Z(B′)

��
A

f
// // B

b
// B′

we have that (3)+(4) is a pullback, (3) is a pullback and f is a regular epimorphism. Then,
thanks to Lemma 5.3, we obtain that (4) is a pullback, as well. Since in a protomodular
category pullbacks reflect monomorphisms, we can conclude that b is a monomorphism.
Conversely, if we assume that b is a monomorphism, we can deduce that the front face
in the cube above is a pullback. Therefore, the diagram defined by the back face and
the bottom face forms a pullback. Since the bottom face is already a pullback, we can
conclude that the back face is a pullback, too. In other words, (1) is a pullback.

We observe that the assumption Z(B) ∼= Z(B′) in the previous lemma is essential.
This can be seen considering the commutative diagram below, in the category of unitary
rings:

Z

(1)
��

Z

��

Z

b
��

1 1 1.

In fact, (1) is a pullback but b is not a monomorphism.

5.5. Proposition. Given the commutative diagram below, with Z-exact rows:

K
k //

u
��

A
f //

a
��

B

b
��

K ′
k′
// A′

f ′
// B′,

(2)
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(a) if u and b are regular epimorphisms, then a is a regular epimorphism, too;

(b) if u and b are monomorphisms, then a is a monomorphism, too.

Proof.

(a) Consider the factorization a = ip, where p is a regular epimorphism and i is a
monomorphism, and the following commutative diagram:

K k //

u
����

A
f //

p
����

B

b
����

K ′ j // Im(a)
f ′i //

��
i
��

B′

K ′
k′

// A′
f ′
// // B′,

where j is determined by the fact that u is a strong epimorphism and i is a monomor-
phism. Then j is the Z-kernel of f ′i: in fact, in the diagram below the two squares
are pullbacks:

K ′

j

��

K ′ //

k′

��

Z(B′)

��
Im(a) ,2

i
// A′

f ′
// B′,

and thus the whole rectangle is a pullback, too. Furthermore, we observe that f ′i is
a regular epimorphism, since f ′ip = bf is; also f ′ is a regular epimorphism, and so,
applying Proposition 5.2 to the bottom rectangle of the first diagram in this proof,
we can deduce that i is an isomorphism. Hence, a is a regular epimorphism.

(b) Being b a monomorphism, we have that Z(B) ∼= Z(B′). Then we can apply Lemma
5.4 to Diagram (2), obtaining that the left square in (2) is a pullback. Since in a
protomodular category pullbacks reflect monomorphisms, we conclude that a is a
monomorphism, too.

Now we study the nine lemma, starting with an auxiliary result:
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5.6. Lemma. Given a commutative diagram

A
f //

a
��

B

b
��

K ′

u
��

k′ // A′

a′

��

f ′
// B′

b′

��
K ′′

k′′
// A′′

f ′′
// B′′

with Z-exact rows and columns, if Z(B′) ∼= Z(B′′) ∼= Z(A′′) and u is a regular epimorphism,
then f is, too.

Proof. Consider the diagram

K ′

u
��

k′ // A′

⟨a′,f ′⟩
��

f ′
// B′

K ′′
⟨k′′,εB′α⟩

// A′′ ×B′′ B′
πB′
// B′

(3)

where α is the upper arrow in the following pullback square:

K ′′ α //

k′′

��

Z(B′′)

εB′′

��
A′′

f ′′
// B′′.

In order to prove the commutativity of (3), we have to show that f ′k′ = εB′αu. We know
that f ′k′ = εB′χ (where χ : K ′ → Z(B′)). We observe that b′f ′k′ = f ′′k′′u = εB′′αu;
moreover, we notice that b′f ′k′ = b′εB′χ = εB′′χ (with a slight abuse of notation, we are
identifying Z(B′) and Z(B′′)). Since εB′′ is a monomorphism, we deduce αu = χ, and so
εB′αu = εB′χ = f ′k′. We prove that ⟨k′′, εB′α⟩ is the Z-kernel of πB′ . To see this, we
notice that in the diagram

K ′′

k′′

$$

α //

⟨k′′,εB′α⟩
��

Z(B′)

εB′′

zz

εB′

��
A′′ ×B′′ B′

πA′′
��

πB′
// B′

b′

��
A′′

f ′′
// B′′
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the rectangle and the bottom square are pullbacks, hence the top square is a pullback,
too. If u is a regular epimorphism, then by Proposition 5.5 we can deduce that ⟨a′, f ′⟩ is
a regular epimorphism. We can then construct the commutative diagram:

A

f
��

a // A′

⟨a′,f ′⟩
��

a′ // A′′

B
⟨εA′′β,b⟩

// A′′ ×B′′ B′
πA′′
// A′′

(4)

where β is the upper arrow in the following pullback square (again, with a slight abuse of
notation, we are identifying Z(A′′) and Z(B′′)):

B
β //

b
��

Z(B′′)

εB′′

��
B′

b′
// B′′.

The commutativity of (4) can be proved using a similar argument as the one used for
(3). We observe that ⟨εA′′β, b⟩ is the Z-kernel of πA′′ . In fact, we have the commutative
rectangle

B

(1)

⟨εA′′β,b⟩ //

β
��

A′′ ×B′′ B′

(2)πA′′
����

πB′ // B′

b′

��
Z(A′′) εA′′

// A′′
f ′′

// B′′

where (2) and (1)+(2) are pullbacks, and so (1) is a pullback, too. Hence, applying
Lemma 5.4 to (4), we obtain that the left square of (4) is a pullback, since 1A′′ is a
monomorphism. So, by regularity, we conclude that f is a regular epimorphism.

5.7. Theorem. Consider the following commutative diagram:

K

k
��

u // K ′

k′

��

u′
// K ′′

k′′

��
A

f
��

a // A′

f ′

��

a′ // A′′

f ′′

��
B

b
// B′

b′
// B′′

(5)

with Z-exact columns and such that Z(B′) ∼= Z(B′′) ∼= Z(A′′). Then:

(a) if Z(B) ∼= Z(B′) and the first two rows are Z-exact, the third row also is;

(b) if the last two rows are Z-exact, the first row also is;
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(c) if a′a factors through Z and the first and the last row are Z-exact, the middle row
also is.

Proof.

(a) The fact that b′ is a regular epimorphism follows from the observation that b′f ′ =
f ′′a′ is. Being k′′ a monomorphism, we get Z(K ′′) ∼= Z(A′′) and we can apply Lemma
5.4 to the upper part of Diagram (5) to conclude that the upper left square is a
pullback. The assumption that Z(B) ∼= Z(B′) allows to apply Lemma 5.4 again to
the left part of Diagram (5), giving that b is a monomorphism. Let h : K(b′) → B′

be the Z-kernel of b′. Consider the commutative diagram

B

l||

b

��

K

u
��

k // A

a
��

g //

f
22

K(b′)

h
��

K ′
k′
// A′

f ′
// B′

b′

��
B′′,

where g is determined by the fact that b′f ′a = f ′′a′a factors through Z. Moreover,
observing that b′bf = f ′′a′a factors through Z and applying Lemma 2.5, we obtain
that b′b factors through Z. Hence, there exists a unique arrow l such that hl = b.
Recalling that hlf = bf = f ′a = hg and that h is a monomorphism, we show that
lf = g. Thanks to Lemma 5.6 we observe that g is a regular epimorphism, so l is a
regular epimorphism, too. Furthermore, since b is a monomorphism, we get that l
is a monomorphism. Thus, l is an isomorphism.

(b) By assumption b : B → B′ is a monomorphism, so Z(B) ∼= Z(B′) and, by Lemma 5.4,
the upper left square in Diagram (5) is a pullback. Consider then the commutative
cube

K

u

��

k

��

κ // Z(K ′′)
≃

$$

��

A

a

��

α // Z(A′′)

��

K ′

k′   

u′
// K ′′

k′′

%%
A′

a′
// A′′,
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where Z(K ′′) ∼= Z(A′′) because k′′ is a monomorphism, the existence of the arrow α
is guaranteed by the fact that a′a factors through Z(A′′), and similarly κ is given by
the fact that u′u factors through Z(K ′′). The left, right and front faces of the cube
are pullbacks, because a is the Z-kernel of a′. Hence the back face is a pullback,
proving that u is the Z-kernel of u′. Moreover, u′ is a regular epimorphism thanks
to Lemma 5.6, since Z(B′) ∼= Z(B′′) ∼= Z(A′′).

(c) Applying Proposition 5.5 to the right part of Diagram (5) we get that a′ is a regular
epimorphism. Let n′ : K(a′) → A′ be its Z-kernel. Consider the following diagram:

K
k // A

φ

��

f // B

K
φk
// K(a′)

n′

��

j
// B

b
��

A′

a′

��

f ′
// B′

b′

��
A′′

f ′′
// B′′,

where φ is induced by the fact that a′a factors through Z and, similarly, j is induced
by the fact that b′f ′n′ = f ′′a′n′ factors through Z and b is the Z-kernel of b′. The
upper right square commutes, since bjφ = f ′n′φ = f ′a = bf and b is a monomor-
phism. This implies, in particular, that j is a regular epimorphism. Moreover,
we can conclude that φk is the Z-kernel of j by applying point (b) of the present
theorem to the diagram

K

u
��

φk // K(a′)

n′

��

j // B

b
��

K ′

u′

��

k′ // A′

a′

��

f ′
// B′

b′

��
K ′′

k′′
// A′′

f ′′
// B′′.

Then we can apply Proposition 5.2 to the diagram

K k // A

φ

��

f // B

K
φk
// K(a′)

j
// B

to conclude that φ is an isomorphism.
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In the case of pointed or quasi-pointed regular protomodular categories, where the
subcategory Z is reduced to the initial object, every regular epimorphism is the Z-cokernel
of its Z-kernel (as observed in [4]). So the notion of short exact sequence considered in
[4] coincide with ours, and our previous theorem reduces to the nine lemma proved there.
However, our version applies to several examples that are not covered by the results in
[4] nor by the star-regular context with enough trivial objects considered in [10]. Among
these examples there are the duals of elementary toposes and the protomodular varieties
with more than one constant. Indeed, in this context there are not enough trivial objects
in the sense of [10], since it is not true that the subcategory Z is closed under squares.
For example, in Ring, Z× Z is not in Z.
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Saldini 50, 20133 Milano, Italia
Email: acappelletti@unisa.it

andrea.montoli@unimi.it

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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