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GALOIS DESCENT FOR MOTIVIC THEORIES

BRUNO KAHN

Abstract. We give necessary conditions for a category �bred in pseudo-abelian ad-
ditive categories over the classifying topos of a pro�nite group to be a stack; these
conditions are su�cient when the coe�cients are Q-linear. This applies to pure motives
over a �eld in the sense of Grothendieck, Deligne-Milne and André, to mixed motives
in the sense of Nori and to several motivic categories considered in [13]. We also give a
simple proof of the exactness of a sequence of motivic Galois groups under a Galois ex-
tension of the base �eld, which applies to all the above (Tannakian) situations. Finally,
we clarify the construction of the categories of Chow-Lefschetz motives given in [14] and
simplify the computation of their motivic Galois group in the numerical case.

Du blanc! Verse tout, verse de par le diable! Verse deça tout plein, la langue me pelle.
� Lans. tringue.

� A toy, compaing! De hayt! de hayt!
� La! là! là! C'est mor�aillé, cela.

� O lachryma Christi!
� C'est de la Deviniere, c'est vin pineau!

� O le gentil vin blanc!
� Et par mon ame, ce n'est que vin de tafetas.

� Hen, hen, il est à une aureille, bien drappé et de bonne laine.

Rabelais, Gargantua, ch. V.

1. Introduction

The �rst main result of this article is

1.1. Theorem. Let k be a �eld, ∼ an adequate equivalence relation on algebraic cycles
with rational coe�cients and Mot∼(k) the category of pure motives over k modulo ∼, in
the sense of Grothendieck. Then the assignment

l 7→Mot∼(l)

de�nes a stack of rigid ⊗-categories over the small étale site of Spec k.

Theorem 1.1 is so easy to prove that it ought to be part of the folklore. Here is a sketch:
for l/k a �nite Galois extension with group Γ, writeMot∼(l)[Γ] for the category of descent

Received by the editors 2024-05-30 and, in �nal form, 2025-05-29.
Transmitted by Ezra Getzler. Published on 2025-06-25.
2020 Mathematics Subject Classi�cation: 18F20, 18M25, 14C15.
Key words and phrases: Stacks, motives, Tannakian categories.
© Bruno Kahn, 2025. Permission to copy for private use granted.

588



GALOIS DESCENT FOR MOTIVIC THEORIES 589

data on Mot∼(l) relative to Γ. We have to prove that the canonical functor Mot∼(k)→
Mot∼(l)[Γ] is an equivalence of categories. Full faithfulness follows from a standard
transfer argument, using the facts that the base change functor f ∗ : Mot∼(k)→Mot∼(l)
has a right adjoint f∗ and that the coe�cients are Q. For the essential surjectivity, if
(C, (bg)g∈Γ) ∈Mot∼(l)[Γ] is a descent datum, with C ∈Mot∼(l), the natural action of Γ
on f∗C gives a projector whose image yields the e�ectivity of the descent datum.

In fact, such a result and sketch of proof hold in much greater generality, which led
me to give them an abstract formulation: this is the purpose of Section 2. In Theorem
2.17, we get necessary conditions for a �bered category in additive categories over the
classifying topos of a pro�nite group to be a stack; they are su�cient when the categories
are pseudo-abelian and Q-linear. These conditions use a baby �2 functor formalism� (for
Galois étale coverings!), see De�nition 2.14. In Corollary 3.8, we show how to weaken
some hypotheses of this formalism in the presence of a monoidal structure: this allows us
to easily prove the stack property for all motivic theories appearing in [13, Th. 4.3 a)],
not just for pure motives (Theorem 7.1). It also applies to the related theories of [6] and
[1] and to Nori motives [11].

What started me on this work was the desire to clarify and simplify a construction
and a reasoning in [14], and descent arguments in its sequel [15]. In [14, �4], I construct
a category of Chow-Lefschetz motives over a (possibly non separably closed) �eld in two
steps: �rst a �crude� category and then a better-behaved one. By hindsight, it became
likely that the second step was just the process of creating the associated stack, and this
is what is checked in Proposition 8.3. The reasoning I wanted to simplify was the rather
ugly recourse to continuous descent data in the proof of [14, Th. 5]: this is done here
in Theorem 5.10, which also clari�es the proof of [6, Prop. 6.23 (a)]1 (quoted without
comment in [1, 4.6, exemples]). A semisimplicity assumption which appeared in the
�rst version of this paper has now been dropped from this theorem, which makes it also
applicable to [12, Th. 4.7] and [11, Th. 9.1.16]. Concerning [15], the reasonings of ��4
and 5 in its �rst version are greatly clari�ed by �5 of the present paper.

Note that Theorem 1.1 does not extend to motives over a base S in the sense, say,
of Deninger-Murre [7]; indeed, for X,Y smooth projective over S, the presheaf U 7→
CH∗(XU×UYU)Q for U → S étale is already not a sheaf in the Zariski topology! Similarly,
Theorem 1.1 is obviously false if the coe�cients are notQ-linear (think of the Néron-Severi
group of an anisotropic conic). If one wanted to extend it to these two cases, one would
probably have to consider (stable?) ∞-categories. Hopefully, the results of this paper
will give an insight on what to do in that situation. Indeed, one may wonder if a suitable
subset of a six functors formalism can be used to imply descent in the present spirit.

1What is not clear in this proof is why the map of motives Hom(M̄, N̄) ↪→ Hom(M,N) on p. 215
exists. For simplicity, take M = 1, so that the purported inclusion reads Hom(1, N̄) ↪→ N . If we think
in terms of representations of the motivic Galois groups, the left hand side is the invariants of the right
hand side under the action of the geometric Galois group G0(σ). It is a subrepresentation of N provided
G0(σ) is normal in the arithmetic Galois group G(σ).
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Structure of the paper. It is divided in two parts, plus an appendix. Part I contains
foundational material: it deals with Galois descent theory from the most general (additive
categories) to the most particular (Tannakian categories). Part II concerns applications
to various motivic theories: some of those considered in [13], Lefschetz motives à la Milne
from [14], 1-motives and Nori motives [11].

Section 2 concerns additive categories without extra structure; actually, the additivity
hypothesis only appears from Subsection 2.13 onwards. The main result, Theorem 2.17,
says that descent is basically equivalent to a two functors formalism: right adjoints, a
base change isomorphism and a trace structure (see Proposition 2.16 for a more precise
statement). Two other important ingredients are the construction of a retraction (Lemma
2.11 b)) and a monadic approach (��2.20 and 2.22): both play a key rôle later. Section
3 adds ⊗-structures to the situation; this allows us to simplify the two functors axioms,
yielding some conditions which are easy to verify in practice (Corollary 3.8).

In Section 4, we show that a diagram of ⊗-categories

A′

f∗
x
A γ−−−→ B,

(*)

where f ∗ is a descent functor in the sense outlined above, has a categorical push-out in a
fashion: see Propositions 4.4 and 4.8. This uses the monadic approach alluded to above.

Section 5 does two things. Suppose given a diagram (*) of Tannakian categories over
a �eld K, with γ faithful and exact, whence a push-out B′ as above. Consider the �bre
functor ωB : B → VecL, where L is an extension of K. Replacing γ by ω = ωB ◦ γ in
(*), we get a new diagram whose push-out turns out to be of the form VecR for an étale
L-algebra R, and the universal property provides a ��bre functor� ω′

B : B′ → VecR and
an L-homomorphism R → L if ω extends to A′. The �rst main result, Theorem 5.10, is
that when B = A and L = K the corresponding sequence of Tannakian groups is exact.
The second main result, Proposition 5.15, gives a su�cient condition for the composition

B′ ω′
B−→ VecR

−⊗RL−−−→ VecL to be faithful; this condition is also necessary when L = K.
(This will be used in a revised version of [15].)

We reap the fruits of our labour in Part II, showing in �7 that many motivic theories
from [13] are stacks, and extending this to 1-motives in �9 and to Nori motives in �10. As
indicated above, �8 shows that the construction of [14, �4] is a �stacki�cation�. Finally,
the appendix contains more foundational material, of a more abstract nature than the
one in Part I.

Acknowledgements. I wish to thank Joseph Ayoub, Kevin Coulembier and Annette
Huber for helpful exchanges.

Terminology. A ⊗-category is an additive symmetric monoidal category (the tensor
structure being biadditive). A ⊗-functor F between ⊗-categories A,B is an additive
symmetric monoidal functor; it is strong if the structural morphisms F (A) ⊗ F (B) →
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F (A ⊗ B) are isomorphisms, lax in general. If no adjective is used, it means by default
that F is strong; we use lax to emphasise the contrary. (See [17, Ch. XI].)

Part I

General theory

2. Stacks over a pro�nite group

2.1. The set up. Let E be a category; recall from [10, VI, ��7, 8] that there is a dictionary
between �bered categories over E and pseudo-functors E → Cat whose comparison 2-
cocycle consists of natural isomorphisms; we shall adopt here the latter viewpoint, which
is also the one of [13].

Take E = BΠ, where Π is a pro�nite group and BΠ is its classifying topos, i.e. the
category of �nite continuous Π-sets. We want to give conditions for a (contravariant)
pseudo-functor A from BΠ to the 2-category of categories to be a stack for the natural
topology on BΠ; this will be done in Theorem 2.17 when A takes values in pseudo-abelian
Q-linear categories. Recall what being a stack means ([9, Déf. II.1.2.1], [18, Def. 026F]);
given S ∈ BΠ:

1. For any A,B ∈ A(S), the presheaf (U
f−→ S) 7→ A(U)(f ∗A, f ∗B) on BΠ/S is a

sheaf;

2. Any descent datum relative to a cover f : T → S is e�ective.

Here is the special case where f is a Galois covering of connected (= transitive) Π-sets,
with Γ = Gal(f); setting A = A(S) and A′ = A(T ):

(1G) the map A(A,B)
f∗
−→ A′(f ∗A, f ∗B) induces an isomorphism α : A(A,B)

∼−→
A′(f ∗A, f ∗B)Γ for any A,B ∈ A;

(2G) any descent datum relative to f is e�ective.

In (1G), let us explain the action of Γ on the right hand side: for each g ∈ Γ, the
equality fg = f and the pseudo-functor structure of A yield a natural isomorphism
ig : g∗f ∗ ∼⇒ f ∗; these are compatible with the natural isomorphisms cg,h : h∗g∗

∼⇒ (gh)∗.
To φ : f ∗A → f ∗B, one associates φg = ig(B)(g∗φ)ig(A)

−1 (right action!). If φ is of the
form f ∗ψ, then φg = φ by the naturality of ig.

The meaning of (2G) is the following: let C ∈ A′, provided with isomorphisms bg :
g∗C

∼−→ C verifying the usual 1-coboundary condition

bh ◦ h∗bg = bgh ◦ cg,h
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with respect to the 2-cocycle cg,h (descent datum)2. Then there exists B ∈ A and an
isomorphism f ∗B

∼−→ C which induces an isomorphism of descent data, for the canonical
descent datum on f ∗B implicitly used in the previous paragraph. Moreover, B is unique
up to unique isomorphism.

To formalise this, we introduce the category A′[Γ] of descent data: an object is a
descent datum as above, and morphisms are the obvious ones.3 If (C, (bg)), (D, (b′g)) ∈
A′[Γ] and φ ∈ A′(C,D), one de�nes φg for g ∈ Γ as in the case of e�ective descent data,
generalising the previous construction.

In fact (1G) and (2G) are su�cient to encompass (1) and (2), as shown by the following
lemma. Let BgalΠ be the full subcategory of BΠ consisting of those (left) Π-sets Γ where
Γ is a �nite quotient of Π. We provide it with the topology induced by that of BΠ (any
morphism is a cover). Note that every morphism in BgalΠ is a Galois covering. For any
site S, let St(S) be the 2-category of stacks over S. Then

2.2. Lemma. The restriction 2-functor St(BΠ) → St(BgalΠ) is an equivalence of 2-
categories.

Proof sketch. This is a special case of the general fact that stacks over a site only
depend on the topos associated to the site [9, Th. II.3.5.1]. For the reader's convenience,
let us describe a 2-quasi-inverse:

Start from a stackA on BgalΠ. For S ∈ BΠ connected, let P be the stabiliser of a point
of S: this is an open subgroup of Π. Let N ⊂ Π be an open normal subgroup contained in
P : then Γ = Π/N is �nite, and P/N (pseudo-)acts on A(Γ) by restriction of the obvious
action of Γ. De�ne A(S) to be the category of descent data A(Γ)(P/N). The stack
property shows that it does not depend on the choice of N , up to canonical equivalence;
choosing another base point in S yields a conjugate of P and also an equivalent category;
this equivalence is unique up to a canonical isomorphism because the action of P/N on
A(S) is canonically isomorphic to the identity. In general, we set A(S) =

∏
iA(Si) where

the Si's are the connected components of S. We leave it to the reader to extend this
construction to morphisms in order to de�ne a pseudo-functor, and to check the stack
property.

Lemma 2.2 reduces the study of stacks over BΠ to that of stacks over BgalΠ. Moreover,
in much of the paper we shall only consider the functor f ∗ for a �xed Galois f : T → S,
so it is convenient to abstract things a little more: thus our setting will be

� two categories A and A′;

� a pseudo-action of a �nite group Γ on A′; we say that A′ is a Γ-category ;

� a functor f ∗ : A → A′ which pseudo-commutes with the action of Γ (for its trivial
action on A).

2In [14, �5], a di�erent convention is used.
3Note that A′[Γ] is none else than the Grothendieck construction [10, VI, �8] on the pseudo-functor

Γ→ A′ giving the g∗, where Γ is the category with one object representing Γ.
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As above we have the category of descent data A′[Γ], and there is a functor f̂ ∗ : A →
A′[Γ] sending A to (f ∗A, (ig(A))); Condition (1G) amounts to say that f̂ ∗ is fully faithful
and (2G) amounts to say that it is essentially surjective. When this happens, we say that
f ∗ has descent.

2.3. Introducing an adjoint. As a motivation, we start with

2.4. Lemma. The forgetful functor f̃ ∗ : A′[Γ] → A′ sending (C, (bg)) to C is faithful
and conservative. If A′ has �nite products, f̃ ∗ has the right adjoint f̃∗ : D 7→

∏
g∈Γ g

∗D

provided with the descent datum (bh) given by the isomorphisms cg,h(D) : h∗g∗D
∼−→

(gh)∗D of �2.1; the unit of this adjunction is given by the inverses of the bg's, and its
counit by the projection on the factor g = 1.

Proof. This is readily checked.

Thus, in the presence of �nite products in A′, the existence of a right adjoint to f ∗ is
necessary for descent to hold. We shall only assume A′ to have �nite products from �2.6
onwards; for now, we just suppose that f ∗ has a right adjoint f∗ with unit η and counit
ε, and draw some corresponding identities.

For a descent datum (C, (bg)) and g ∈ Γ, we get an endomorphism [g] of f∗C corre-
sponding to εgC by adjunction; in formula:

[g] = f∗ε
g
C ◦ ηf∗C .

2.5. Lemma. a) We have
εgC = εC ◦ f ∗[g].

b) Let A ∈ A, (C, (bg)) be a descent datum, and let g ∈ Γ. If φ : f ∗A → C and
ψ : A → f∗C correspond to each other by adjunction, then φg and [g] ◦ ψ correspond to
each other by adjunction. In particular (taking A = f∗C, ψ = 1A), we have [gh] = [g][h]
(sic) and [g] is an automorphism.
c) Suppose that C is an e�ective descent datum f ∗A. For any g ∈ Γ, we have εgf∗A◦f ∗ηA =
1f∗A and [g] ◦ ηA = ηA.

Proof. a) This is just the other adjunction identity relating [g] and εgC .
b) We have

φ = εC ◦ f ∗ψ, ψ = f∗φ ◦ ηA.
The �rst identity yields

φg = εgC ◦ (f
∗ψ)g = εgC ◦ f

∗ψ.

By the second identity, the morphism corresponding to φg is then

f∗φ
g ◦ ηA = f∗ε

g
C ◦ f∗f

∗ψ ◦ ηA = f∗ε
g
C ◦ ηf∗C ◦ ψ = [g] ◦ ψ

where we used the naturality of η. Hence also the last claim.
c) Indeed, for the �rst identity,

εgf∗A ◦ f
∗ηA = εgf∗A ◦ (f

∗ηA)
g = (εf∗A ◦ f ∗ηA)

g = 1gf∗A = 1f∗A

while the second one follows from b) applied to φ = 1f∗A.
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2.6. Cartesianity. Assume now that A′ has �nite products. Let C ∈ A′ and g ∈ Γ.
We de�ne a morphism f ∗f∗C → g∗C as the composition

f ∗f∗C
ig(f∗C)−−−−→ g∗f ∗f∗C

g∗εC−−−→ g∗C.

Collecting over g, we get a morphism

f ∗f∗C →
∏
g∈Γ

g∗C. (2.1)

2.7. Definition. The functor f ∗ is Cartesian if (f∗ exists and) (2.1) is a natural iso-
morphism.

(Suppose that we are in the �bred situation described at the beginning of �2.1. In view
of the isomorphism of Π-sets

∐
g∈Γ T

∼−→ T ×S T given by (g, y) 7→ (y, gy), De�nition 2.7
amounts to saying that the �base change morphism� f ∗f∗ ⇒ (f ×S 1)∗(1 ×S f)

∗ in the
diagram

A′ (1×Sf)
∗

−−−−−→ A(T ×S T )

f∗

y (f×S1)∗

y
A(S) f∗

−−−→ A(T )
is an isomorphism. One should not confuse De�nition 2.7 with the notion of a Cartesian
morphism in a �bred category.)

Assume f ∗ Cartesian, and let (C, (bg)) be a descent datum. Composing with the bg in
(2.1), we get an isomorphism

f ∗f∗C
uC−→

∏
g∈Γ

C (2.2)

whose g-component is given, by de�nition, by εgC .

2.8. Lemma. Let h ∈ Γ. Then the action of f ∗[h] on the left hand side of (2.2) amounts
to the action of h by right translation on the indexing set Γ of its right hand side.

Proof. Let g ∈ Γ. Using Lemma 2.5 a) and b), we �nd

εgC ◦ f
∗[h] = εC ◦ f ∗[g] ◦ f ∗[h] = εC ◦ f ∗[gh] = εghC .

2.9. Remark. Assume that A also has �nite products and that f ∗ commutes with prod-
ucts. In (2.2), take C = f ∗A for some A ∈ A. Then εf∗A = f ∗πA for

πA :
∏
g∈Γ

A→ A

the projection on the factor g = 1.

Here are important consequences of cartesianity. First, a de�nition:
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2.10. Definition. a) (cf. [4, Def. 2.3.7]). A functor F : C → D is dense if any object
of D is isomorphic to a retract of F (C) for some C ∈ C.
b) A category is pointed if it has an object which is initial and �nal.

Suppose that A′ is pointed. Then any Hom set of A′ has a null element 0; in particular,
for C ∈ C the projection

∏
g∈Γ g

∗C → C on the g = 1 factor has a section which is the
identity on this factor and 0 elsewhere. If f ∗ is Cartesian, composing with the isomorphism
(2.1) we get a section

σC : C → f ∗f∗C (2.3)

of εC , which is natural in C.

2.11. Lemma. If A′ is pointed and f ∗ is Cartesian,
a) f ∗ is dense;
b) for any category B and two functors a, b : A′ ⇒ B, the natural map

f! : Hom(a, b)→ Hom(af ∗, bf ∗)

between sets of natural transformations has a canonical retraction ρ; in particular, f! is
injective. Moreover, v ∈ Hom(af ∗, bf ∗) is in the image of f! if and only if it commutes
with the εf∗A for all A ∈ A.

Proof. a) Let C ∈ A′. Then C is a retract of f ∗f∗C via the pair (εC , σC), where σC is
the section of (2.3).

b) For v ∈ Hom(af ∗, bf ∗), de�ne

ρ(v)C = b(εC)vf∗Ca(σC) : a(C)→ b(C).

If ψ : C → D is a morphism, we have

b(ψ)ρ(v)C = b(ψ)b(εC)vf∗Ca(σC) = b(εD)b(f
∗f∗ψ)vf∗Ca(σC)

= b(εD)vf∗Da(f
∗f∗ψ)a(σC) = b(εD)vf∗Da(σD)a(ψ) = ρ(v)Da(ψ)

so that ρ(v) is a natural transformation. If v = f!(u) for some u ∈ Hom(a, b), then

ρ(v)C = b(εC)uf∗f∗Ca(σC) = uCa(εC)a(σC) = uC ,

thus ρ is indeed a retraction of f!.
For the image of f!, the condition is obviously necessary. Suppose that it holds. Then

we have, for A ∈ A,

f!ρ(v)A = ρ(v)f∗A = b(εf∗A)vf∗f∗Aa(σf∗A) = vAa(εf∗A)a(σf∗A) = vA,

so v = f!ρ(v).



596 BRUNO KAHN

2.12. Remarks. a) In Lemma 2.11 b), we could have used σ instead of ε for the condition
to be in the image of f!.
b) ρ does not de�ne a retraction of the functor f! : Funct(A′,B) → Funct(A,B) in
general (it need not respect composition). However, it is compatible with composition with
a further functor B → C.

2.13. Traces. From now on, we assume A, A′ and f ∗ (hence also f∗) additive. We write⊕
instead of

∏
. To formulate the result, we need a further de�nition:

2.14. Definition. Suppose f ∗ Cartesian. A trace structure on f ∗ is a natural transfor-
mation tr : f∗f

∗ ⇒ IdA such that, for any A ∈ A:

1. the composition

A
ηA−→ f∗f

∗A
trA−−→ A (2.4)

is multiplication by |Γ|;

2. the isomorphism (2.2) for C = f ∗A converts f ∗ trA into the sum map.

2.15. Main result.

2.16. Proposition. a) If f ∗ has descent, then it is Cartesian and has a trace structure.
b) The converse is true if A is pseudo-abelian4 and Z[1/|Γ|]-linear.

Proof. a) Recall Lemma 2.4. Cartesianity is tautologically true, and the trace morphism

is given by
⊕

g∈Γ g
∗C

(bg)−−→ C for (C, (bg)) ∈ A′[Γ]. Condition (1) of De�nition 2.14 is
immediate and Condition (2) is also tautological.

b) We check Conditions (1G) and (2G) of �2.1:
(1G) By adjunction, the map A(A,B)→ A′(f ∗A, f ∗B) may be rewritten as the map

A(A,B)
a−→ A(A, f∗f ∗B)

induced by the unit morphism ηB. Using (2.4), we get a map b in the opposite direction
such that ba is multiplication by |Γ|; hence a is injective by hypothesis (for this it would
su�ce that A(A,B) has no |Γ|-torsion).

I now claim that ab =
∑

g∈Γ g for the action of Γ on A′(f ∗A, f ∗B) explained in �2.1.
By Lemma 2.5 b), it su�ces to prove that the composition

f∗f
∗B

trB−−→ B
ηB−→ f∗f

∗B

is
∑

g∈Γ[g]. By the faithfulness of f ∗ which has just been established, it su�ces to do this
after applying f ∗. By Condition (2) of the trace structure, this translates as a composition⊕

g∈Γ

f ∗B
Σ−→ f ∗B

∆−→
⊕
g∈Γ

f ∗B

4Also sometimes called Karoubian or idempotent complete.
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in which Σ is the sum map and ∆ is the diagonal map by Lemma 2.5 c); the claim now
follows from Lemma 2.8.

Coming back to the proof of (1G), we �nd that the composition

A′(f ∗A, f ∗B)Γ ↪→ A′(f ∗A, f ∗B)
ab−→ A′(f ∗A, f ∗B)Γ

is also multiplication by |Γ|, hence the desired bijectivity of α in (1G).
(2G) Let (C, (bg)) be a descent datum. Consider the idempotent eΓ = 1

|Γ|
∑

g∈Γ[g] in
End f∗C, and let A = Im eΓ. The adjoint of the inclusion ι : A ↪→ f∗C yields a morphism
ι̃ : f ∗A→ C. Let us check that this is a morphism of descent data, and an isomorphism.

The �rst point amounts to say that ι̃g = ι̃ for all g which, by Lemma 2.5 b), amounts
to [g] ◦ ι = ι for all g: this is true by de�nition of ι.

For the second point, we de�ne a morphism j : C → f ∗A as follows. Let π : f∗C → A
be the projection associated to the idempotent eΓ. Then j is the composition

C
∆−→

⊕
g∈Γ

C
∼−→ f ∗f∗C

f∗π−−→ f ∗A

where the �rst morphism is the diagonal map and the second one is the inverse of the
isomorphism (2.2). It remains to show that j is inverse to ι̃.

By the �rst point, we have f ∗[g] ◦ f ∗ι = f ∗ι which means, by Lemma 2.8, that all the
components of f ∗ι on (2.2) are equal, i.e. that ∆εCf ∗ι = f ∗ι. Therefore, with an abuse
of notation,

jι̃ = f ∗π∆εCf
∗ι = f ∗πf ∗ι = 1f∗A.

Finally, we have f ∗ιf ∗π = f ∗e = 1
|Γ|

∑
g∈Γ f

∗[g], hence

ι̃j = εCf
∗ιf ∗π∆ =

1

|Γ|
∑
g∈Γ

εCf
∗[g]∆ = 1C

as desired.

2.17. Theorem. a) If A is a stack over BΠ, then

(i) A commutes with coproducts;

(ii) for any Galois covering f : T → S in BΠ, with S, T connected, f ∗ is Cartesian and
has a trace structure.

b) Suppose that A(S) is pseudo-abelian for all S. Then the converse is true if A is
Z[1/|Gal(f)|]-linear for any f as in (ii) with S = ∗ (the one-point Π-set), e.g. if A is
Q-linear.

Proof. (i) has already been seen. The rest follows from Proposition 2.16 and Lemma
2.2.
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2.18. A left adjoint structure on f∗. The following is worth noting, but will not
be used in the sequel.

Suppose that f ∗ is Cartesian and has a trace structure. For any A ∈ A, de�ne
ε′A = trA : f∗f

∗A → A; for any C ∈ A′, de�ne η′C : C → f ∗f∗C as the inclusion of the
g = 1 summand in the right hand side of (2.1).

2.19. Proposition. The natural transformations ε′ and η′ verify the (left) adjunction
identities, provided A(A,B) has no |Γ|-torsion for any A,B ∈ A.

Proof. Let A,C ∈ A×A′. We must show that the compositions

f ∗A
η′
f∗A−−−→ f ∗f∗f

∗A
f∗ε′A−−−→ f ∗A (2.5)

and

f∗C
f∗η′C−−−→ f∗f

∗f∗C
ε′f∗C−−→ f∗C (2.6)

are equal to the identity. For (2.5), this follows from Property (2) of De�nition 2.14.
By Proposition 2.16 b) and its proof, f ∗ is faithful, hence it su�ces to prove (2.6) after
applying this functor; using (2.2), this reduces to the previous case.

2.20. Algebras on a monad. Here we study the special case where A′ is the category
AM of algebras over a additive monad M in A

AM = {(A,φ) | A ∈ A,MA
φ−→ A)}

where φ veri�es certain identities [17, VI.2, de�nition]. The functor f∗ sends (A,φ) to A,
while f ∗ sends A to the free algebra with underlying objectMA, and the counit εA is given
by the commutative square expressing the associativity of φ (in particular, f∗εA = φ).
The following lemma is trivial:

2.21. Lemma. The forgetful functor f∗ is faithful and conservative. ■

A homomorphism [ ] : Γ → End(M) (see De�nition A.4) yields a (strict) Γ-action on
A′ (g∗(A,φ) = (A,φ ◦ [g]), and then we are in a special case of the situation above; in
particular, the category A′[Γ] of descent data is de�ned:

A′[Γ] = AM [Γ] = {(A,φ, bg) | (A,φ) ∈ AM , bg : A→ A }

where (bg) veri�es the identities bg ◦ φ ◦ [g] = φ ◦M(bg) plus the cocycle condition; since
the action of Γ is strict, g 7→ b−1

g is a group homomorphism.

2.22. Codescent. The adjunction (f ∗, f∗) gives rise to a factorisation of f∗ into

A′ K−→ AM U−→ A (2.7)

for M = f∗f
∗: the �comparison� functor K is given by K(C) = (f∗C, f∗εC) (loc. cit.,

VI.3, Th. 1), and U maps (A,φ) to A. It is Γ-equivariant.
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2.23. Proposition. If f ∗ is Cartesian and A′ is pseudo-abelian, then K is an isomor-
phism of categories.

Curiously, this proposition will only be used for a going up result in Theorem 4.6.

Proof. Let (∂0, ∂1) : C ⇒ D be a pair of morphisms in A′. Assume that (f∗∂0, f∗∂1) has a
universal coequaliser in the sense of [17, VI.6]. Let Â′ be the additive dual of A′, y : A′ →
Â′ the additive Yoneda embedding, and let E be the coequaliser of (y(∂0), y(∂1)). Then⊕

g∈Γ g
∗E is the coequaliser of (

⊕
g∈Γ g

∗y(∂0),
⊕

g∈Γ g
∗y(∂1)), where g∗ is the extension of

g∗ : A′ → A′ to Â′ via y. By the cartesianity of f ∗ and by the hypothesis on (f∗∂0, f∗∂1)
applied to f ∗ and y,

⊕
g∈Γ g

∗E is representable, hence so is its direct summand E since
A′ is assumed to be pseudo-abelian. The conclusion now follows from Beck's theorem [17,
VI.7, Th. 1].

2.24. A stability property. Suppose that we have naturally commutative diagrams
of additive categories and functors

A′ γ′
−−−→ B′

f∗
x f∗

B

x
A γ−−−→ B

(2.8)

A′ γ′
−−−→ B′

f∗

y fB
∗

y
A γ−−−→ B

(2.9)

where fB
∗ is right adjoint to f ∗

B. The following proposition is trivial but very useful.

2.25. Proposition. a) Assume that γ′ is conservative. If f ∗
B is Cartesian, so is f ∗.

b) (see also Theorem 4.6). If moreover γ is fully faithful, a trace structure on f ∗
B induces

a unique trace structure on f ∗. ■

3. The monoidal case

In this section, we assume that the additive categories A and A′ are ⊗-categories and that
the base change functor f ∗ is a ⊗-functor: see Terminology at the end of the introduction.
We write 1 for the unit object of both A and A′; this will not cause confusion (note that
f ∗1 = 1).

3.1. Weak properties. We have a �projection morphism�

A⊗ f∗C → f∗(f
∗A⊗ C)

for (A,C) ∈ A×A′, constructed as the adjoint of

f ∗(A⊗ f∗C)
∼−→ f ∗A⊗ f ∗f∗C

1⊗εC−−−→ f ∗A⊗ C
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where the �rst isomorphism is the inverse of the monoidal structure of f ∗. For C = 1, we
thus get a morphism

wA : A⊗ f∗1→ f∗f
∗A. (3.1)

By de�nition of wA, we have

3.2. Lemma. Modulo the monoidal structure of f ∗, one has the identity εf∗A ◦ f ∗wA =
εf∗1 ⊗ 1f∗A. ■

3.3. Definition. We say that f ∗ veri�es the weak projection formula if wA is an iso-
morphism for any A ∈ A, and is weakly Cartesian if (2.2) is an isomorphism for C = 1.

3.4. Lemma. Suppose that f ∗ veri�es the weak projection formula and is weakly Carte-
sian. Then f ∗ is Cartesian if and only if, moreover, it is dense (De�nition 2.10 a)).

Proof. �Only if� follows from Lemma 2.11 a). If: for A ∈ A, consider the diagram

f ∗A⊗ f ∗f∗1
f∗wA−−−→ f ∗f∗f

∗A

1⊗u1

y uf∗A

y
f ∗A⊗

⊕
g∈Γ

1

⊕
g∈Γ ef∗A−−−−−−→

⊕
g∈Γ

f ∗A

(3.2)

where ef∗A is the unit constraint: it commutes by Lemma 3.2. The bottom horizontal
map is an isomorphism; so are the top and left vertical ones by assumption. Therefore
uf∗A is also an isomorphism. By the denseness hypothesis, uC is then an isomorphism for
every C ∈ A′.

Suppose that f ∗ is Cartesian and admits a trace structure in the sense of De�nition
2.14. Then there is a morphism tr : f∗1→ 1 such that

(1u) the composition

1
η1−→ f∗1

tr−→ 1

is multiplication by |Γ|;

(2u) the isomorphism (2.2) (for C = 1) converts f ∗ tr into the sum map.

3.5. Definition. We call this a weak trace structure.

Conversely:

3.6. Proposition. Suppose that f ∗ veri�es the weak projection formula and is weakly
Cartesian. Then a weak trace structure yields a trace structure on f ∗ by the formula
trA = (1A ⊗ tr) ◦ w−1

A for A ∈ A.

Proof. The �rst identity of De�nition 2.7 is clear from (1u), and the second one follows
from (2u) by using Diagram (3.2) again.
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3.7. Example. A = RepK(G), A′ = RepK(H) for two a�ne group schemes G ⊇
H over a �eld K such that H ◁ G and G/H ≃ Γ. Then f ∗ identi�es with restriction
ResGH , whose right adjoint is induction IndG

H . Cartesianity and weak trace structure follow
respectively from the Mackey formula and Frobenius reciprocity.

3.8. Corollary. If f ∗ has descent, it veri�es the weak projection formula, is Cartesian
and has a weak trace structure; the converse is true if A is pseudo-abelian and Z[1/|Γ|]-
linear.

Proof. Collect Proposition 2.16 and Proposition 3.6.

3.9. A monoidal retraction.We come back to the situation of Lemma 2.11 b), where
we now assume that B is a ⊗-category and that a, b are ⊗-functors; hence so are also af ∗

and bf ∗. We write Hom⊗(af ∗, bf ∗) and Hom⊗(a, b) for the sets of not necessarily unital
⊗-natural transformations, so that f! carries the latter to the former.

3.10. Proposition. The retraction ρ of Lemma 2.11 b) carries Hom⊗(af ∗, bf ∗) to
Hom⊗(a, b). If moreover f ∗ veri�es the weak projection formula, then v ∈ Hom(af ∗, bf ∗)
is in the image of f! if and only if it commutes with εf∗1.

Proof. Let u ∈ Hom⊗(af ∗, bf ∗), and let C,D ∈ A′. We have to show that

ρ(u)C⊗D = ρ(u)C ⊗ ρ(u)D.

Using the ⊗-structures of f ∗, a and b, this amounts to the equality

b(εC ⊗ εD) ◦ uf∗C⊗f∗D ◦ a(σC ⊗ σD) = b(εC⊗D) ◦ uf∗(C⊗D) ◦ a(σC⊗D).

For C,D ∈ A′, the morphism

f ∗(f∗C ⊗ f∗D)
∼−→ f ∗f∗C ⊗ f ∗f∗D

εC⊗εD−−−−→ C ⊗D,

where the �rst map is the inverse of the (strong) monoidal structure on f ∗, yields by
adjunction a morphism

f∗C ⊗ f∗D → f∗(C ⊗D) (3.3)

(lax monoidal structure on f∗). This yields a lax monoidal structure µ rendering the
diagram

f ∗f∗C ⊗ f ∗f∗D

εC⊗εD ''

µ // f ∗f∗(C ⊗D)

εC⊗Dww
C ⊗D

commutative. Using the isomorphisms (2.1), this translates to the following diagram:⊕
g,h

g∗C ⊗ h∗D

εC⊗εD
&&

µ //
⊕
g

g∗C ⊗ g∗D

εC⊗D
xx

C ⊗D
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where µ identi�es to the obvious projection. We have a dual commutative diagram⊕
g,h

g∗C ⊗ h∗D
⊕
g

g∗C ⊗ g∗Dλoo

C ⊗D
σC⊗σD

ff
σC⊗D

88

where λ is the obvious inclusion. Therefore, it su�ces to prove the identity

b(µ) ◦ uf∗C⊗f∗D ◦ a(λ) = uf∗(C⊗D)

which follows from the naturality of u and the identity µλ = 1.
The last point follows from Lemma 2.11 b), the weak projection formula and Lemma

3.2.

3.11. Remark. If u is unital, ρ(u) is not necessarily unital. In the situation of Example
3.7, f∗1 = K[Γ] with its natural left action by G and u identi�es with an element of
G(K), while ε sends

∑
g∈Γ λg[g] to λ1 and σ(1) = [1]. Thus ρ(u)1 is 1 if u ∈ H(K) and

0 otherwise. It follows that ρ(u) = 0 in the latter case.

3.12. Monoidal codescent. This is the pendant of Subsection 2.22. Here we simply
remark that, if f ∗ veri�es the weak projection formula., the monad M of � 2.22 is

MA = f∗1⊗ A
and AM is the category of modules in A over the monoid f∗1 [17, VII.4], see Lemma A.6.
This monoid is commutative because the monoidal structures are symmetric.

3.13. Artin objects.

3.14. Definition. An Artin object for f ∗ is an object A ∈ A such that f ∗A ≃ n1 for
some n ≥ 0. Artin objects form a (full) rigid ⊗-subcategory of A, denoted by A0(f ∗).

Let A ∈ A0(f ∗) be an Artin object. Then Γ acts on Hom(1, f ∗A) ≃ Hom(f ∗1, f ∗A)
as in �2.1. This de�nes a Z-linear ⊗-functor

A0(f ∗)→ RepZ(Γ) (3.4)

A 7→ A′(1, f ∗A)

where Z = EndA(S)(1) = EndA0(f∗)(1), and the right hand side is the category of repre-
sentations of Γ on free �nitely generated Z-modules.

3.15. Lemma. Under the hypotheses of Corollary 3.8, this functor is an equivalence of
categories.

Proof. Let A′[Γ]0 be the full subcategory of A′[Γ] consisting of those objects (C, (bg))
such that C is isomorphic to n1 for some n ≥ 0. Then (3.4) factors as a composition

A0(f ∗)
f̂∗
−→ A′[Γ]0

V−→ RepZ(Γ)

with V (C) = A′(1, C) as before. By de�nition of Z, V is an equivalence of categories and
so is f̂ ∗ by Corollary 3.8.
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3.16. An exactness result. We go back to the situation of �3.9. For u ∈ Hom⊗(af ∗,
bf ∗), we write u|A0(f∗) = 1 if uA : af ∗A→ bf ∗A is the identity for any A ∈ A0(f ∗) modulo
the isomorphisms

af ∗A ≃ a(n1) ≃ n1B, bf ∗A ≃ b(n1) ≃ n1B.

3.17. Theorem. Let Hom⊗,1(a, b) be the subset of Hom⊗(a, b) formed of unital ⊗-natural
transformations. Suppose that f ∗ veri�es the weak projection formula. Then u ∈
Hom⊗(af ∗, bf ∗) is of the form f!v for a (unique) v ∈ Hom⊗,1(a, b) if and only u|A0(f∗) = 1.

Proof. Uniqueness follows from the existence of the retraction ρ of Lemma 2.11 b). The
condition is obviously necessary, and its su�ciency follows from Proposition 3.10 plus the
hypothesis on u, since f∗1 ∈ A0(f ∗) by the isomorphism (2.1).

4. Morphisms of stacks

4.1. A trivial lemma. The following is obvious:

4.2. Lemma. Let F : A → B be a morphism of stacks over a site. If F is faithful (resp.
fully faithful, an equivalence of categories) locally, it is so globally. ■

4.3. Universal extension. Let A,A′, f ∗ be as in Section 3. Let B be a ⊗-category
and γ : A → B be a ⊗-functor. We are going to do a reverse construction to that of �2.22.

Recall from �3.12 that (3.3) provides f∗1 with a commutative monoid structure. Then
R = γ(f∗1) is a commutative monoid of B, and γ induces a functor

Af∗1 → BR =: B′

hence a functor
γ′ : A′ → B′ (4.1)

obtained by composing with the comparison functor K of (2.7): explicitly,

γ′C = (γf∗C, γf∗εC). (4.2)

It comes with a naturally commutative diagram (2.9) in which fB
∗ is the forgetful

functor.
Recall that fB

∗ has the left adjoint f ∗
B : X 7→ (R ⊗ X,µ ⊗ 1X) where µ is the multi-

plication of R: this is a special case of [17, VI.2, Th. 1]. Therefore we get a base change
morphism

f ∗
Bγ ⇒ γ′f ∗ (4.3)

�tting in Diagram (2.8) (so far it is not necessarily invertible).
Suppose that B has coequalisers (e.g that it is abelian). Since f∗1 is commutative, so

is R; by Proposition A.7, B′ acquires a ⊗-structure with unit R, and f ∗
B is a ⊗-functor.

The action of Γ on f∗1 (�2.3) carries over to R via γ and de�nes a pseudo-action of
Γ on B′ such that γ′ is Γ-equivariant. In particular, the category of descent data B′[Γ] is
de�ned (see �2.20).
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4.4. Proposition. Assume that f ∗ veri�es the weak projection formula. Then
a) The natural transformation (4.3) is invertible.
b) If moreover f ∗ is Cartesian and B has cokernels, γ′ is a ⊗-functor.
c) If moreover A is Z[1/|Γ|]-linear and γ′ is dense, f ∗

B has descent.

Proof. a) After composition with fB
∗ , the value of (4.3) on A ∈ A becomes

R⊗ γ(A)→ γ(f∗f
∗A)

which, via the weak projection formula, is the strong monoidality isomorphism of γ; since
fB
∗ is conservative (Lemma 2.21), we are done.
b) We �rst provide γ′ with an (a priori lax) symmetric monoidal structure. Let C,D ∈

A′. The lax monoidal structure (3.3) yields a 0-sequence

f∗C ⊗ f∗1⊗ f∗D → f∗C ⊗ f∗D → f∗(C ⊗D)

where the �rst map is the di�erence of the f∗1 actions on f∗C and f∗D. Applying γ and
using its strong monoidality, we get another 0-sequence

γf∗C ⊗R⊗ γf∗D → γf∗C ⊗ γf∗D → γf∗(C ⊗D)

which induces the desired natural transformation (compare (4.2) and (A.1)):

γ′C ⊗ γ′D → γ′(C ⊗D). (4.4)

By a) and the strong monoidality of f ∗
B, γ

′ ◦ f ∗ is strongly monoidal: in other terms,
(4.4) is an isomorphism when C and D are of the form f ∗A and f ∗B, hence in general by
Lemma 2.11 a).

c) If A is Z[1/|Γ|]-linear, so is B; it is also pseudo-abelian since it has cokernels. By
Corollary 3.8, it su�ces to see that f ∗

B veri�es the weak projection formula, has a weak
trace structure and is Cartesian. The �rst fact is a tautology, the second follows from the
same property for f∗1, as does the weak cartesianity of f ∗

B. But since γ
′ and f ∗ are dense,

so is their composition and thus so is f ∗
B as well; hence f ∗

B is Cartesian by Lemma 3.4.

4.5. Remark. The density hypothesis on γ′ in c) seems arti�cial, even though it is easy
to verify in practice. I don't know how to avoid it.

We now have a going-down and going-up theorem:

4.6. Theorem. Under all the hypotheses of Proposition 4.4, (i.e. assuming that A is
Z[1/|Γ|]-linear, that f ∗ veri�es the weak projection formula and is Cartesian, and that γ′

is dense), γ is fully faithful if and only if γ′ is fully faithful.

Proof. �If� follows from Lemma 4.2 and Proposition 4.4. For �only if�, the full faithfulness
of γ implies that of Af∗1 → BR. The conclusion then follows from Proposition 2.23.
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4.7. �Universal� property of the universal extension.

4.8. Proposition. Consider Diagram (2.8). Let C be a ⊗-category and let a : A′ → C,
b : B → C be two ⊗-functors, provided with a natural ⊗-transformation v : bγ ⇒ af ∗.
Suppose that, as in Theorem 4.6, all the hypotheses of Proposition 4.4 are veri�ed and
that, moreover, C has cokernels. Then there exists a unique ⊗-functor b′ : B′ → C such
that b = b′f ∗

B; it comes with a canonical natural ⊗-transformation u : b′γ′ ⇒ a.

Proof. Applying a to the counit of the adjunction (f ∗, f∗) yields a morphism

a∗f ∗f∗1→ a∗1 = 1.

Composing it with v gives another morphism

b(R) = bγf∗1→ 1

which is a homomorphism of monoids by construction. By Corollary A.8, this yields the
�rst claim. By Proposition 4.4 a), we then get a natural ⊗-transformation b′γ′f ∗ ⇒ af ∗,
and Proposition 3.10 provides u.

5. Tannakian categories

5.1. The set-up. Let A,A′, f ∗ be again as in Section 3. We add some assumptions:
A,A′ are abelian and rigid, and Z(A) ∼−→ Z(A′) = K, where K is a �eld of characteristic
0. Throughout, we suppose that f ∗ satis�es the hypotheses of Theorem 2.17 b), hence
satis�es descent.

5.2. Going up. Let ω : A → VecL be a �bre functor, where L is an extension of K (thus
A is a Tannakian category over K). Write E = ω(f∗1).

5.3. Lemma. E is an étale L-algebra of dimension |Γ|.

Proof. By Cartesianity and the projection formula, we have

f∗1⊗ f∗1 = f∗f
∗f∗1 = f∗

∏
Γ

1 =
∏
Γ

f∗1

hence
E ⊗L E

∼−→
∏
Γ

E

where the homomorphism is given by r ⊗ s 7→ (rg(s))g∈Γ. Here the action of Γ on E is
induced by its action on f∗1. The claims follow.
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5.4. Remark. Thus E is a Galois Γ-algebra over L in the sense of [2, 1.3].

As in (4.1), we get a ⊗-functor
ω̃′ : A′ → (VecL)

E = VecE

where the right hand side denotes the⊗-category of E-modules which are �nite-dimensional
over L (i.e. of �nite type over E).

5.5. Lemma. The functor ω̃′ is exact and faithful.

Proof. Let U : VecE → VecL be the forgetful functor. We have Uω̃′ = ωf∗. The
right hand side is exact and faithful as a composition of two such functors. But U is also
faithful and exact, hence faithfully exact, hence the conclusion.

5.6. The neutral case. Here we assume L = K. Let G = Aut⊗(ω) be the Tannakian
group of ω and H = Aut⊗(ω′) that of ω′ (recall that every ⊗-endomorphism of ω or ω′

is an automorphism, hence unital, by rigidity [6, Rk. 2.18]). By Tannakian duality, we
may then write A = RepK(G) and A′ = RepK(H).

The ⊗-functor f ∗ induces a homomorphism i : H → G. The equivalence of Lemma
3.15 is induced by ω′ since ω = ω′ ◦ f ∗ (indeed, A′(1, B) is functorially isomorphic to
ω′(B) for any split B ∈ A′). Whence a homomorphism p : G→ Γ.

5.7. Theorem. The sequence 1→ H
i−→ G

p−→ Γ→ 1 is exact.

Proof. By Theorem 3.17, it su�ces to show that p is epi. By [6, Prop. 2.21 (a)], we
must show that every subobject B ∈ A of an object A ∈ A0(f ∗) belongs to A0(f ∗); but
this is obvious since 1 is simple in A′ by [6, Prop. 1.17].

5.8. Globalisation. Let K be a �eld of characteristic 0, and let A be a pseudo-functor
from BgalΠ to the 2-category Exrig(K) of rigid abelian ⊗-categories C with EndC(1) = K,
⊗-functors and ⊗-natural transformations. Let A = A(∗), where ∗ is the terminal object.
De�ne A∞ as 2- lim−→T∈Bgal(Π)

A(T ): it belongs to Exrig(K).

Let ω∞ : A∞ → VecK be a �bre functor to the category of �nite-dimensional K-vector
spaces: by restriction, it de�nes a �bre functor ωT on A(T ) for every T . For T = ∗, we
write ωT = ω. Let G = Aut⊗(ω) be the Tannakian group of ω and H = Aut⊗(ω∞) the
one of ω∞.

5.9. Lemma. The natural morphism H → lim←−T
Aut⊗(ωT ) is an isomorphism.

Proof. It su�ces to verify this on R-points for any K-algebra R. Then it follows from
the de�nition of A∞.

5.10. Theorem. Suppose that suppose that f ∗ satis�es the hypotheses of Theorem 2.17
b) for any Galois f : T → ∗ . Then the sequence

1→ H
i−→ G

p−→ Π→ 1

is exact.

Proof. In view of Lemma 5.9, this follows from Theorem 5.7.
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5.11. Remark. Even if it is not obvious, this proof is inspired by Ayoub's proof of the
corresponding theorem in [3, Prop. 5.7], using Hopf algebras. He explained me a version
using ind-Tannakian categories, which inspired the retraction of Lemma 2.11 b). Here is
this argument, translated from French:

One has a morphism of ind-Tannakian categories e∗ : T → T ′, a �bre functor w′∗ :
T ′ → VectK [the category of all small K-vector spaces] and one sets w∗ = w′∗◦e∗. Assume
that for every object M ∈ T ′, the morphism e∗e∗M ⊗e∗e∗K K → M is an isomorphism.
Since w∗w∗K = w′∗e∗e∗w

′
∗K we get that w∗w∗K ⊗w∗e∗e∗K K ≃ w′∗w′

∗K as desired.

5.12. Remark.There is an obvious extension of Theorem 5.10 to the case of ⊗-morphisms
between two �bre functors, as in Theorem 3.17. Formulating it is left to the reader. Sim-
ilarly for another extension to Tannakian monoids for �bre functors on not necessarily
rigid ⊗-categories.

5.13. Enrichments. Consider now a factorisation of ω

A γ−→ B ωB−→ VecL (5.1)

where B is another Tannakian category overK and γ, ωB are exact and faithful⊗-functors.
Let B′ be the universal extension of �4.3, and take the notation of (2.8) and (2.9).

Since B is rigid, its tensor structure is exact. By Lemmas A.2 d) and A.6, B′ is abelian
and the forgetful functor fB

∗ is exact.
Suppose that ω is the restriction to A of a �bre functor ω′ : A′ → VecL. By Propo-

sition 4.8, applied with (C, a, b, β) ≡ (VecL, ω, ωB, 1), there exists a unique ⊗-functor
ω′
B : B′ → VecL such that ω′ = ω′

Bf
∗
B. It is provided with a natural transformation

v : ω′
Bγ

′f ∗ ⇒ ω′f ∗ such that v1 is the morphism ω(ε1) : E = ω(f∗1)→ ω(1) = L.

5.14. Lemma. The functor ω′
B is the composition of ω̃′ and the functor L⊗R− : VecR →

VecL. It is exact.

Proof. The �rst claim follows by the functoriality of the construction of Proposition
4.8. In the composition, the �rst functor is exact by Lemma 5.5, and the second is exact
because the homomorphism R→ L is �at, thanks to Lemma 5.3.

Contrary to Lemma 5.5, ω′
B is not faithful in general, for example if B = VecL! The

following proposition gives a case where it is. Recall that a rigid ⊗-category C is connected
if Z(C) := EndC(1) is a �eld.

5.15. Proposition. In the above situation, the functor ω′
B is faithful if and only if B′ is

connected. A su�cient condition is that the restriction of γ to A0(f ∗) is full.

Proof. Since VecL is connected, the condition is necessary; the converse follows from [6,
Prop. 1.19]. If the restriction of γ to Artin objects is full, then the map

K = EndA′(1) = A(1, f∗f ∗1)
γ−→ B(1, γsf∗f ∗1) ≃ B(1, fB

∗ f
∗
B1)) = EndB′(1)

is bijective, where we used Proposition 4.4 a) for the isomorphism.
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We come back to the neutral case, write B = RepK(G
′) and let γ∗ : G′ → G be the

homomorphism dual to γ. Let H ′ = Ker(G′ → G→ Γ).

5.16. Proposition. The functor ω′
B factors as a composition

B′ π−→ RepK(H
′)

ω̄′
B−→ VecK (5.2)

where π is a Serre localisation and ω̄′
B is faithful. Moreover, π is an equivalence of cate-

gories if and only if G′ → Γ is epi. In particular, the fullness condition is also necessary
in Proposition 5.15.

Proof. (5.2) is the canonical factorisation of the exact functor ω′
B into a Serre localisation

followed by a faithful functor. To identify the middle category with RepK(H
′), we apply

Corollary A.8 to the restriction functor RepK(G
′)→ RepK(H

′) to factor it through B′.
In the last statement, su�ciency follows from Proposition 5.15. For necessity, suppose
that π is an equivalence. Then Z = Z(B′) is a �eld, and we have a factorisation of the
identity

K = Z(RepK(H))
γ′
−→ Z

ω′
B−→ Z(VecK) = K

hence Z = K and γ′ is surjective. As in the proof of Proposition 5.15, this gives that
A(1, f∗1)

γ−→ B(1, R) is bijective, from which the fullness of γ|A0(f∗) easily follows; in turn,
this is equivalent to the surjectivity of G′ → Π.

Part II

Applications

6. The general layout

Let k be a base �eld. The idea of the applications which follow is to start from the
basic functoriality of schemes (or pairs of schemes) over a �nite Galois extension l/k, and
to transport it to categories of motives through the motive functor. This leads to the
following caveat:

In the said categories of schemes, naïve restriction of scalars is left adjoint to restriction
of scalars. If the motive functor is contravariant, it will convert this functor into a right
adjoint, and we can directly apply the framework of ��2 and 3. This is the case for Chow-
Lefschetz motives (�8) and Nori motives (�10), but not for the theories of [13] studied in
�7, where the choice was that of a covariant motive functor. This means that in the latter
case one must replace these categories by their opposites; of course, this does not a�ect
the stack property. Thus cartesianity will follow from cartesianity for l-schemes X:∐

g∈Γ

g∗X
∼−→ X(k) ⊗k l (6.1)
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where Γ = Gal(l/k) and g∗ is the base change given by g : Spec l → Spec l for g ∈ Γ;
(6.1) is itself induced by the special case X = Spec l (Galois theory). Similarly, the weak
projection formula will follow from the equality for k-schemes Y :

(Y ⊗k l)(k) = Y ×Spec k Spec l. (6.2)

Here we write (−) ⊗k l for extension of scalars from k to l, and (−)(k) for the naïve
restriction of scalars from l to k (i.e., composing with the morphism Spec l→ Spec k).

7. Motivic theories

The following generalises Theorem 1.1 of the introduction:

7.1. Theorem. All motivic theories A of [13, Th. 4.3 a)] are stacks for the étale topology
on Spec k provided they are Q-linear. In particular, this is the case for pure motives à la
Grothendieck for any adequate equivalence relation.

Proof. By Lemma 2.2 and Corollary 3.8, it su�ces to check that, for any �nite Galois
extension f : T = Spec l → S = Spec k, f ∗ veri�es the weak projection formula, is
Cartesian and has a weak trace structure. Use M generically to denote the �motive�
functor Sm(−) → A(−). As explained in �6, we replace A(−) by Aop(−) to make
M contravariant. By [13, Th. 4.1] and its proof, f∗ exists and commutes with naïve
restriction of scalars on Sm(−) via M .

That (2.1) is a natural isomorphism is checked on pseudo-abelian generators of A.
Also, f ∗ commutes with Tate twists when they are present in the theory A. We thus may
take A =M(X) for X ∈ Sm(k) or Smproj(k), and we are reduced to (6.1). Similarly, (3.1)
reduces to (6.2) by the monoidality ofM . Finally, we de�ne the weak trace tr by using the
(�nite) correspondence given by the transpose of graph of the projection Spec l→ Spec k.
The axioms of a weak trace structure follow readily.

7.2. Remark. The same result holds for the motivic theories of Deligne [6] and André
[1], with the same proof.

8. Chow-Lefschetz motives

8.1. The associated stack. Let A0 be a �bred category over a site Σ. Recall [9, Th.
II.2.1.3] that there is an �associated stack� A together with a �bred functor A0 → A
which is 2-universal for �bred functors from A0 to stacks. The stack A is constructed
from A0 in two steps:

Associated prestack (cf. [9, Lemma II.2.2.2]) A1: same objects as A0; for S ∈ Σ
and X, Y ∈ A0(S), A1(S)(X, Y ) is the sheaf associated to the presheaf (T → S) 7→
A0(T )(XT , YT ).



610 BRUNO KAHN

Associated stack (cf. [16, Lemma 3.2]) starting from A1, for S ∈ Σ an object of
A(S) is a descent datum of A1 for a suitable cover (Ui)i∈I → S; morphisms are
given by re�ning covers. This operation is fully faithful (loc. cit., Remark 3.2.1).

In the case Σ = BΠ, these two constructions translate as follows, with the notation of
Section 2: in Step 1, one replaces the groups A0(S)(A,B) by lim−→T

A0(T )(f
∗A, f ∗B)Gal(f),

where f : T → S runs through the (�nite) Galois coverings of S; for Step 2, we take the
2-colimit of the categories of descent data on A1. One could do both constructions in one
gulp, but this would not be convenient for the next subsection.

8.2. The case of Chow-Lefschetz motives. In [14] we introduced categories of
�Chow-Lefschetz motives� LMot∼(k) over a �eld k (modulo an adequate equivalence
relation ∼) in two steps: a) by de�ning �crude� categories LMot∼(k)0 [14, �4.1]; b) by
re�ning this construction [14, �4.2].

8.3. Proposition. LMot∼ is the stack associated to (LMot∼)0.

Proof. Here we use implicitly Lemma 2.2 to consider only �nite Galois extensions l/k.
We �rst prove that LMot∼ is a stack. This is essentially done in [14]: the descent
property for morphisms is loc. cit., (4.4) and the e�ectivity of descent data is shown in
the proof of Theorem 5 in loc. cit., �5.5 in the same way as here (we were inspired here
by this argument). Alternately we may apply Corollary 3.8 of the present paper just as
in the proof of Theorem 7.1, using the right adjoint of [14, Lemma 4.5] (note that the
isomorphism (2.1) is explicitly proven in this lemma).

In remains to show that the canonical �bred functor (LMot∼)0 → LMot∼ induces an
equivalence on the associated stacks; it su�ces to do it for the �bred functor (LCorr∼)0 →
LCorr∼ on categories of correspondences. After forming the associated prestack (LCorr∼)1
as in �8.1, this functor becomes fully faithful. Let l/k be �nite Galois, with group Γ; the
Γ-equivariant fully faithful functor LCorr∼(l)1 → LCorr∼(l) induces a fully faithful func-
tor on the categories of descent data, hence LCorr∼(k)1 → LCorr∼(k) factors through
a fully faithful functor LCorr∼(l)1[Γ] → LCorr∼(k), and then through a fully faithful
functor 2- lim−→l

LCorr∼(l)1[Γ]→ LCorr∼(k).
For its essential surjectivity, let A be an object of LCorr∼(k): by de�nition, it is an

abelian scheme over an étale k-algebra E. Choose l/k and Γ as above such that l splits
E. Then the l-scheme B =

∐
σ∈Mork(E,l) σ

∗A is provided with a canonical descent datum
(bg)g ∈ Γ, given by the action of Γ on Mork(E, l), and the object (B, (bg)) ∈ LCorr∼(l)1[Γ]
maps to A.

9. 1-motives

Let Mot1(k) be the category of Deligne 1-motives over a �eld k. Here there is no need
to use the present theory:

9.1. Theorem. The assignment l 7→ Mot1(l), where l runs through all �nite Galois
extensions of k, is a stack (compare Lemma 2.2).
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Proof. This is trivial: we may view Mot1(k) as a full subcategory of the category of
arrows of the category of locally quasi-projective group schemes. When k varies, the latter
is a Galois stack by [10, VIII, Cor. 7.6], hence so is Mot1 as well.

10. Nori motives

We refer to [11, Ch. 9] for a construction of Nori's category of mixed motives over a
sub�eld k of C. We shall denote it here by NMot(k) (it is denoted byMM(k) in loc.
cit.).

Let l/k be a �nite extension, corresponding to f : Spec l → Spec k. We write f ∗ :
NMot(k)→ NMot(l) for the base change functor denoted by resl/k in [11, Lemma 9.5.1].

10.1. Proposition. The functor f ∗ has a right adjoint f∗. If l/k is Galois, f ∗ satis�es
the weak projection formula, is Cartesian and has a weak trace structure in the sense of
De�nition 3.5.

The proof will show that f∗ coincides with the functor coresl/k of [11, Prop. 9.5.3].

Proof. It is variant of that of Theorem 7.1. The full subcategory C of NMot(l) formed
of those M 's such that f∗ is de�ned at M is closed under kernels; more precisely, if
0 → M ′ → M → M ′′ is an exact sequence in NMot(l) such that M,M ′′ ∈ C, then f∗M
is given by Ker(f∗M → f∗M

′′). By a result of Fresán and Jossen [8, Th. 6.3], any object
of NMot(l) is a subobject of an object of the form H i

Nori(X, Y )(n) for a triple (X, Y, i),
hence has a copresentation by objects of this form. Therefore it su�ces to check that f∗
is de�ned at such objects.

Recall that f ∗H i
Nori(X, Y )(n) = H i

Nori(Xl, Yl)(n), where Xl = X ⊗k l for a k-scheme
X [11, Lemma 9.5.1]. For a l-triple (X, Y, i), write M = H i

Nori(X, Y )(n) and de�ne
f∗M = H i

Nori(X(k), Y(k))(n) where (−)(k) denotes the (naïve) restriction of scalars. De�ne
a counit morphism ε : f ∗f∗M →M by the canonical morphism of triples

(X, Y, i)→ ((X(k))l, (Y(k))l, i).

We must show that the composition

NMot(k)(N, f∗M)
f∗
−→ NMot(l)(f ∗N, f ∗f∗M)

ε∗−→ NMot(l)(f ∗N,M) (10.1)

is an isomorphism for any N ∈ NMot(k). Since f ∗ is exact [11, Lemma 9.5.1], we reduce
to the case where N is of the form Hj

Nori(X
′, Y ′)(m) by [8, Th. 6.1] (dual to the previous

theorem). Since twisting is invertible and commutes with f ∗, playing with powers of Gm

or P1 (see [11, 9.3.7 and 9.3.8]) we may even assume n = m = 0.
For N as above, de�ne a unit morphism η : N → f∗f

∗N by the canonical morphism
of triples ((X ′

l)(k), (Y
′
l )(k), j)→ (X ′, Y ′, j). We get another composition

NMot(l)(f ∗N,M)
f∗−→ NMot(k)(f∗f

∗N, f∗M)
η∗−→ NMot(k)(N, f∗M) (10.2)
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and it su�ces to show that it is inverse to (10.1). Since ε and η are the counit and unit of
an adjunction between categories of triples, this is true by the functoriality of H i

Nori(−)(n).
Checking that (2.1) and (3.1) are isomorphisms is done in exactly the same way: note

that since f ∗ is exact, f∗ and hence f ∗f∗, f∗f
∗ are left exact. Thus we may reduce to the

case of objects of the form H i
Nori(Xl, Yl)(n) by diagram chase, using [8, Th. 6.3] again.

The isomorphism (2.1) follows from the same in the categories of triples (Galois descent).
For (3.1), same reasoning by using the partial monoidality of H∗

Nori [11, Prop. 9.3.1], for
which we remark that (Spec l, ∅, i) is a good pair.

This proves everything, except the existence of a weak trace structure. For this we
need to de�ne a morphism

trl/k : H
0
Nori(Spec l, ∅) = f∗1NMot(l) → 1NMot(k) = H0

Nori(Spec k, ∅)

with the properties (1u) and (2u) stated before De�nition 3.5. We do as in the proof of
Proposition 8.3. The two properties are proven in the same way (or deduced from the
existence of a functor from Chow motives to NMot).

Proposition 10.1 holds for Nori motives NMot(−, A) with coe�cients in any commu-
tative ring A (same proof). Along with Lemma 2.2 and Corollary 3.8, this yields:

10.2. Theorem. If A is a Q-algebra, the assignment l 7→ NMot(l, A) de�nes a stack
over (Spec k)ét. ■

10.3. Remarks. Theorem 5.10 provides a proof of [11, Th. 9.1.16].

A. Monads and monoids

I put here things I didn't �nd in [17].

A.1. Lemma. Let (T, η, µ) be a monad in a category C [17, VI.1]. Then the sequence

T 3 ⇒ T 2 µ−→ T

is a split coequaliser in the sense of [17, VI.6], where the �rst pair of arrows is (Tµ, µT ).
More precisely, applying this sequence to any object of C yields a split coequaliser.

Proof. De�ne s : T → T 2 and t : T 2 → T 3 by s = ηT and t = ηT 2, and check the
identities.

A.2. Lemma. With the notation of Lemma A.1, let CT be the category of T -algebras [17,
VI.2]. Then
a) The forgetful functor U : CT → C is faithful, conservative and re�ects equalisers. In
particular, if C has equalisers then so has CT .
b) If T preserves coequalisers, then U re�ects coequalisers; hence CT has coequalisers if C
does.
c) If C and T are additive, CT is additive.
d) If C is abelian and T is right exact, then CT is abelian and U is exact.
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Proof. a) The �rst two properties are obvious. For the third, let (a; b) : (C1, φ1) ⇒
(C2, φ2) be two parallel arrows in CT , and suppose that (Ua, Ub) has an equaliser c : C →
C1. The composition

TC
Tc−→ TC1

φ1−→ C1

is equalised by Ua and Ub, hence factors uniquely through C; one checks that the resulting
morphism φ : TC → C de�nes a T -algebra, and then that this T -algebra is an equaliser.

b) For (a, b) as in a), suppose that (Ua, Ub) has a coequaliser d : C2 → D. By
hypothesis, Td is a coequaliser of (TUa, TUb), hence dφ2 factors uniquely through a
ψ : TD → D. One sees that this is a T -algebra by observing that T 2 also respects
coequalisers, and then that it is a coequaliser.

c) is easy and left to the reader. For d), the characterisation of an abelian category by
the isomorphism of coimages onto images yields that CT is abelian via a), b) and c). Since
U is a right adjoint, it is left exact, and it remains to show that it preserves epimorphisms,
which follows from b) by viewing 0 as the cokernel of an epimorphism.

A.3. Remark. If the conclusions of d) hold, then conversely T (assumed to be additive)
is right exact as the composition of U and its (right exact) left adjoint.

A.4. Definition. Let (T ′, η′, µ′) be another monad in C.
a) Let u, v : T ⇒ T ′ be two natural transformations. We write

u • v : T 2 → T ′2

for either of the compositions T 2 Tv−→ TT ′ uT ′
−−→ T ′2, T 2 uT−→ T ′T

T ′v−−→ T ′2.
b) A morphism from T to T ′ is a natural transformation u : T ⇒ T ′ such that

(i) uη = η′;

(ii) uµ = µ′(u • u).

A.5. Proposition. Let u : T → T ′ be a morphism of monads as in De�nition A.4 b).
Then there is a canonical functor u∗ : CT ′ → CT of �restriction of scalars�. If C has
coequalisers and T ′ is right exact� u∗ has a left adjoint u! (�extension of scalars�).

Proof. If (C,ψ) is a T ′-algebra, then (C,ψ◦uC) is a T -algebra. This de�nes u∗. Suppose
now that C has coequalisers. For (C,φ) ∈ CT ′

, let D is the coequaliser of (T ′(φ), µ′
C ◦

T ′(uC)) : T ′TC ⇒ T ′C. If π : T ′C → D is the associated morphsm, π ◦ µ′
C equalises

(T ′2(φ), T ′µ′
C ◦ T ′2(uC)) because the diagram

T ′2TC
T ′2(φ)

⇒
T ′(µ′

C)◦T ′2(uC)
T ′2C

T ′(π)−−−→ T ′D

µ′
TC

y µ′
C

y
T ′TC

T ′(φ)
⇒

µ′
C◦T ′(uC)

T ′C
π−−−→ D
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commutes thanks to the associativity axiom for µ′ and its naturality. The right exactness
assumption on T ′ implies that the top row is a coequaliser, hence the diagram can be
completed by a unique map ψ : T ′D → D, that one checks to be a T ′-algebra morphism.
The composition

C
η′C−→ T ′C

π−→ D

de�nes a morphism of T -algebras (C,φ)→ u∗(D,ψ) and one checks that it is universal.

A.6. Lemma. Let B be a monoidal category, and let (R, η, µ) be a monoid in B [17,
VII.3]. Then TX = R ⊗ X de�nes a monad in B provided with a natural isomorphism
TX⊗Y ∼−→ T (X⊗Y ). Conversely, any monad provided with such a natural isomorphism
is of this form.

Proof.The �rst claim is easy to check by comparing the axioms of a monad and a monoid.
For the converse, let R = T1. Then, for any X ∈ B, one has TX ∼−→ T (1⊗X)

∼−→ R⊗X.

A.7. Proposition. In the situation of Lemma A.6, suppose B symmetric and R com-
mutative ( i.e., µ ◦ σ = µ where σ is the switch of R⊗R).
a) (cf. [5, Prop. 4.1.10]). Let BR = R Lact be the category of left actions by R [17,
VII.4], and let mR : B → BR, X 7→ (R ⊗ X,µ ⊗ 1X) be the left adjoint to the forgetful
functor U (ibid.). Suppose also that B has coequalisers and that −⊗R is right exact (e.g.,
that ⊗ itself is right exact). Then there is a unique symmetric monoidal structure on BR

such that mR is a strong ⊗-functor.
b) The functor U re�ects dualisability. In particular, if B is rigid, so is BR.
c) (cf. loc. cit., Rem. 4.1.11). Let S be a second commutative monoid in B, and
let φ : R → S be a homomorphism of monoids. Then there is a unique ⊗-functor
φ∗ : BR → BS such that mS = φ∗ ◦mR.

Proof. a) Existence. By the hypotheses, to a left action ν of R on X ∈ B corresponds a
right action given by

X ⊗R σ−→ R⊗X ν−→ X

where σ is the symmetry of B, and conversely. We use this remark to switch sides without
mention.

For (X, νX), (Y, νY ) ∈ BR, de�ne

X ⊗R Y = Coker(X ⊗R⊗ Y ⇒ X ⊗ Y ) (A.1)

where Coker means coequaliser and the two maps are νX ⊗ 1Y , 1X ⊗ νY . De�ne ν :
X ⊗ R ⊗ Y → X ⊗R Y via either of these two maps; their associativity shows that ν
factors through a morphism νX⊗RY : R ⊗ X ⊗R Y → X ⊗R Y . One checks easily that
(X⊗R Y, νX⊗RY ) ∈ BR and that the axioms of a symmetric monoidal structure, with unit
R, are satis�ed.

Let X0, Y0 ∈ B. We must identify R⊗X0 ⊗ Y0 with the coequaliser of

(R⊗X0)⊗R⊗ (R⊗ Y0) ⇒ (R⊗X0)⊗ (R⊗ Y0)
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where, modulo the symmetric constraints, the two morphisms are respectively induced by
µ⊗ 1X0 and µ⊗ 1Y0 . By Lemmas A.6 and A.1, this is true when X0 = Y0 = 1, and then
it is even a split coequaliser. This coequaliser remains a split coequaliser after tensoring
it with X0 ⊗ Y0.

Uniqueness. Let • be another solution. Let (X, νX), (Y, νY ) be as above. By adjunc-
tion, we have a canonical morphism X ⊗ Y = U(X, νX)⊗ U(Y, νY )→ U(X • Y, νX•Y ) =:
X • Y ; since R must be the unit of •, this morphism must equalise the two morphisms of
(A.1), hence induce a morphism θ : (X ⊗R Y, νX⊗RY )→ (X, νX) • (Y, νY ), which must be
an isomorphism when (X, νX) and (Y, νY ) are in the image of mR. In general, the counits
mRU(X, νX) → (X, νX) and mRU(Y, νY ) → (Y, νY ) become split epis after applying U ;
therefore, U(θ) is an isomorphism and so is θ since U is conservative.

b) Let (X, νX) ∈ BR, where X has the dual X∗. De�ne νX∗ as the composition

R⊗X∗ 1⊗η−−→ R⊗X∗ ⊗X ⊗X∗ 1⊗σ⊗1−−−−→ R⊗X ⊗X∗ ⊗X∗

νX⊗1−−−→ X ⊗X∗ ⊗X∗ σ⊗1−−→ X∗ ⊗X ⊗X∗ ε⊗1−−→ X∗

where η, ε are the unit and counit of the duality structure for (X,X∗) and σ is the
symmetry. One veri�es that this makes (X∗, νX∗) dual to (X, νX).

c) By a), we may view S as a commutative monoid in C = BR via φ, and get a strong
⊗-structure on mS(C) : C → CS. It remains to observe that CS = BS.

This construction has a universal property [5, Prop. 5.3.1]5:

A.8. Corollary. In the situation of Proposition A.7, let C be another ⊗-category with
coequalisers. Then any strong ⊗-functor from F : B → C, provided with an algebra
homomorphism β : F (R) → 1C, induces a unique strong ⊗-functor F̃ : BR → C provided
with a natural ⊗-isomorphism F

∼−→ F̃ ◦mR, and conversely.

Proof. Apply Proposition A.7 c) to (B, R, S) ≡ (C, F (R),1C). In the other direction,
the counit of the adjunction (mR, U) yields a morphism

mR(R) = mRU(1BR)→ 1BR

to which we apply F̃ .
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