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ON EXTENSIVITY AND COEXTENSIVITY OF MORPHISMS

MICHAEL HOEFNAGEL AND EMMA THEART

Abstract. Extensivity of a category [3] may be described as a property of coproducts—
namely, that they are disjoint and universal. An alternative viewpoint is that it is a
property of morphisms. This paper explores this point of view through a natural notion
of extensive and coextensive morphism. Through these notions, topics in universal al-
gebra, such as the strict refinement and Fraser-Horn properties, take a categorical form
and thereby enjoy the benefits of categorical generalisation. On the other hand, the uni-
versal algebraic theory surrounding these topics leads to categorical results. One such
result we establish in this paper is that a Barr-exact category C is coextensive if and
only if every split monomorphism in C is coextensive.

1. Introduction

An extensive category [3] is, informally speaking, one in which finite coproducts (sums)
exist and behave in a manner similar to disjoint unions of sets. Formally, a category C
with finite coproducts is extensive if the canonical functor

(C ↓ X1)× (C ↓ X2)
+−→ (C ↓ (X1 +X2))

is an equivalence for any objects X1 and X2. Equivalently, extensivity may be formulated
internally: a category C with finite coproducts is extensive if C admits all pullbacks along
coproduct injections, and for any diagram

A1
//

��

A

f
��

A2
oo

��
X1

// X X2
oo

(1)

where the bottom row is a coproduct, the top row is a coproduct if and only if the
squares are pullbacks (see Proposition 2.2 in [3]). These two formulations suggest two
distinct points of view on the nature of extensivity: the first emphasises it as a property
of coproducts, while the second as a property of morphisms. This paper focuses on the
second viewpoint and, to that end, defines a morphism f : A→ X in a category C to be
extensive if every coproduct injection into X admits a pullback along f , and f satisfies
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the diagrammatic property described above for any diagram such as (1). A category with
finite coproducts is then extensive if and only if every morphism is extensive.

The prototypical example of an extensive category is the category Set of sets; yet the
category of pointed sets Set∗ is not extensive. For instance, if f : A→ X is an extensive
morphism in a pointed category, the left-hand square in

0 //

��

A

f
��

Aoo

��
0 // X Xoo

being a pullback forces ker(f) = 0, since both the top and bottom rows are coproducts.
This illustrates that not every morphism of pointed sets is extensive. In fact, in the
category of pointed sets, the morphisms f with ker(f) = 0 are precisely the extensive
morphisms. To see this, note that the coproduct X1 + X2 of two pointed sets X1 and
X2 is their wedge sum, i.e., the usual coproduct followed by the quotient identifying
their base points. Then by the dual of Corollary 3.12 it suffices to show that pulling
back any morphism f : A → X1 + X2 in Set∗ with trivial kernel along the inclusions of
X1 → X1 +X2 ← X2 gives a wedge sum (which is (E1) of Definition 2.1), which follows
straightforwardly since the preimages of X1 and X2 under f only overlap at the basepoint.

Dually, we say that a morphism f in a category C is coextensive if it is extensive in the
dual category Cop. The category Grp of groups is not coextensive; however, every product
projection p : G→ X in Grp where G is a centerless (or perfect) group is coextensive. As
will be shown in Section 3.14, this is a categorical formulation of the fact that centerless (or
perfect) groups have the strict refinement property in the sense of [4]. In the category Lat
of lattices (and lattice homomorphisms), every surjective homomorphism is coextensive,
which may be seen as a categorical formulation of the fact that lattices have the Fraser-
Horn property [6].

There is an interesting interplay between the universal algebraic and the categorical.
On the one hand, the theory of coextensive morphisms allows for generalisations of univer-
sal algebraic topics to the categorical level. Expressing these algebraic concepts categor-
ically yields natural consequences motivated from the theory of (co)extensive categories.
On the other hand, the universal algebraic theory surrounding these algebraic properties
suggests corresponding categorical results. For instance, Proposition 4.13 shows that ev-
ery Barr-exact [1] category C is coextensive if and only if every split monomorphism is
coextensive.

2. Extensive morphisms

For any category C, we will be concerned with two conditions on a morphism f : A→ X
in C:

(E1) f admits pullbacks along the injections of any coproduct diagram

X1 → X ← X2
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and the resulting two pullbacks

A1
//

��

A

f
��

A2
oo

��
X1

// X X2
oo

form a coproduct diagram A1 → A← A2.

(E2) for any commutative diagram

A1
//

��

A

f
��

A2
oo

��
X1

// X X2
oo

in C where the top and bottom rows are coproduct diagrams, both squares are
pullbacks.

Then we may restate the main definition of this paper.

2.1. Definition. A morphism f : A→ X in a category C said to be extensive in C if it
satisfies (E1) and (E2).

2.2. Proposition. In any category C, the composite of two extensive morphisms is ex-
tensive.

Proof. Let f : X → Y and g : Y → Z be extensive morphisms in C. Suppose we have
a coproduct diagram Z1

z1−→ Z
z2←− Z2. By extensivity of g, g admits pullbacks along z1

and z2, and these pullback squares together form a coproduct diagram Y1
y1−→ Y

y2←− Y2

in the top row. Since f is extensive it, in turn, admits pullbacks along y1 and y2. These
pullback diagrams are shown in (2).

X1
A

x1 //

��

X

f
��

X2
C

x2oo

��
Y1
A

y1 //

��

Y

g

��

Y2
C

y2oo

��
Z1 z1

// Z Z2z2
oo

(2)

By pullback pasting, it follows that these composite squares in (2) form pullback diagrams
of gf along z1 and z2, where the top row is a coproduct. Thus gf satisfies (E1). Next,
suppose we have a commutative diagram

X1
x1 //

j1
��

X

gf
��

X2
x2oo

j2
��

Z1 z1
// Z Z2z2
oo

(3)
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in C where the top and bottom rows are coproduct diagrams. We form the pullbacks of
g along z1 and z2, and these pullbacks induce the dotted morphisms in (4).

X1

j1

��

x1 //

��

X

f
��

X2

j2

��

x2oo

��
Y1
A

p1 //

��

Y

g

��

Y2
C

p2oo

��
Z1 z1

// Z Z2z2
oo

(4)

Since the top and middle rows of (4) are coproduct diagrams, it follows by extensivity of
f that the top two squares are pullbacks. By pasting the vertical pullbacks together we
have that (3) consists of a pair of pullback squares. Hence, gf satisfies (E2).

Given any morphism ι : A → X, we say that ι is a coproduct inclusion if there exists
a morphism ι′ : B → X such that ι and ι′ form a coproduct diagram. The morphism ι′

is then called a complementary coproduct inclusion of ι. Dually, a morphism π : X → A
is called a product projection if there is a morphism π′ : X → B such that π and π′ form
a product diagram, and the morphism π′ is called a complementary product projection of
π.

2.3. Corollary. If C is a category with binary coproducts, then C is extensive if and
only if every split epimorphism and every coproduct inclusion is extensive.

Proof. This follows from the fact that every morphism f : X → Y in such a category C
factors as X ι1

// X + Y
⟨f,1Y ⟩

// Y where ⟨f, 1Y ⟩ is the morphism induced by 1Y and f .

2.4. Lemma. For any morphisms f : X → Y and g : Y → Z in any category C, if gf is
extensive and for each coproduct diagram Y1

y1−→ Y
y2←− Y2 there exists a pair of pullback

squares

Y1
y1 //

g1
��

Y

g

��

Y2
y2oo

g2
��

Z1 z1
// Z Z2z2
oo

(5)

where the top and bottom rows are coproduct diagrams, then f is extensive.

Proof. We show that f satisfies (E1). Let Y1
y1−→ Y

y2←− Y2 be any coproduct diagram.
Then, the squares in (5) exist by assumption, and therefore, because gf is extensive, we
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may pull gf back along z1 and z2 to form the diagram of solid arrows below

X1

��

//

��

X

f
��

X2

��

oo

��
Y1

y1 //

g1
��

Y

g

��

Y2
y2oo

g2
��

Z z1
// Z Z2z2
oo

where the dotted arrows are the morphisms induced by these pullbacks, and the top row
is a coproduct diagram by extensivity of gf . It then follows that, since the outer and
bottom squares are pullbacks, the top two squares are also pullbacks. Hence, f satisfies
(E1).

To show that f satisfies (E2), suppose we have a commutative diagram

X1

f1
��

x1 // X

f
��

X2
x2oo

f2
��

Y1 y1
// Y Y2y2
oo

where the top and bottom rows are coproducts. Then, since gf is extensive, it follows
that the outer squares in

X1

f1
��

x1 // X

f
��

X2
x2oo

f2
��

Y1
y1 //

g1
��

Y

g

��

Y2
y2oo

g2
��

Z z1
// Z Z2z2
oo

are pullbacks. Hence, so are the top two squares. Therefore, f is extensive.

2.5. Lemma. In any category C with binary coproducts, if ι : Y → Z is a coproduct
inclusion which satisfies (E2), then for any coproduct diagram Y1

y1−→ Y
y2←− Y2, there

exists a pair of pullback squares

Y1
y1 //

ι1
��

Y

ι

��

Y2
y2oo

ι2
��

Z1 z1
// Z Z2z2
oo

where the top and bottom rows are coproduct diagrams.



622 MICHAEL HOEFNAGEL AND EMMA THEART

Proof. Since ι is a coproduct inclusion, it has a complementary inclusion ι′ : Y ′ → Z

making Y
ι−→ Z

ι′←− Y ′ a coproduct diagram. We may then form the coproduct diagram

Y2
j1 // Y2 + Y ′ Y ′j2oo .

Consider the commutative diagram:

Y1
y1 //

1Y1
��

Y

ι

��

Y2
y2oo

j1
��

Y1 ιy1
// Z Y2 + Y ′

⟨ιy2,ι′⟩
oo

(6)

It is routine to verify that the bottom row is a coproduct, and hence since ι satisfies (E2),
it now follows that both squares in (6) are pullbacks.

From the above two lemmas, we get the following proposition.

2.6. Proposition. Let C be a category with binary coproducts and f : A→ B any mor-
phism in C. Let ι : B → X be any coproduct inclusion in C. Then, if ιf is extensive and
ι satisfies (E2) it follows that f is extensive.

2.7. Corollary. Let C be any category with binary coproducts and ι : A → X any
coproduct inclusion in C. If every coproduct inclusion of X is extensive, then every
coproduct inclusion of A is extensive.

2.8. Categories where coproduct inclusions are extensive.

2.9. Definition. Let C be a category with finite coproducts which admits all pullbacks
along coproduct inclusions. Coproducts are said to be disjoint in C if for any coproduct
diagram, X1

ι1−→ X
ι2←− X2, the squares

X1

1X1

��

1X1 // X1

ι1
��

0

��

oo

X1 ι1
// X X2ι2
oo

are pullbacks. Note, the left-hand square being a pullback implies that coproduct inclusions
are monomorphisms.

2.10. Proposition. In a category C with finite coproducts where every coproduct in-
clusion satisfies (E2), coproducts are disjoint and every coproduct inclusion is a regular
monomorphism.
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Proof. It follows immediately that coproducts are disjoint. Consider a coproduct inclu-

sion X
ι−→ A, with complementary inclusion Y

ι′−→ A. Form also the coproduct diagram

A
i−→ A+ Y

i′←− Y . Then, the rows in the following diagram are coproducts

X ι //

ι
��

A

ι+1Y
��

Y

1Y
��

ι′oo

A
i
// A+ Y Y

i′
oo

so that both squares are pullbacks. Hence, ι is an equaliser of i and ι+ 1Y .

2.11. Proposition. [Coproduct complements are unique] Let C be a category with an
initial object with disjoint coproducts. Then coproduct complements are unique, i.e., if

X1
ι1 // X X2,

ι2oo X1
ι1 // X X ′

2

ι′2oo (7)

are both coproduct diagrams in C, then there is an isomorphism σ : X2 → X ′
2 such that

ι′2σ = ι2.

Proof. Suppose we have two coproduct diagrams as in (7). Then, each right-hand square
in

0 //

��

A

X2

ι2

��

X2
C

1X2oo

σ

��

0 //

��

A

X ′
2

ι′2
��

X ′
2

C

oo

��
X1 ι1

// X X ′
2ι′2

oo X1 ι1
// X X2ι2
oo

is a pullback. Thus, σ : X2 → X ′
2 is an isomorphism such that ι2 = ι′2σ.

2.12. Proposition. In a category C with an initial object and disjoint coproducts, if all
coproduct inclusions satisfy (E1) then any morphism satisfying (E1) is extensive.

Proof. It suffices to show that every identity morphism in C satisfies (E2) by Corol-
lary 3.5. Suppose that we are given any diagram

A1
a1 //

i1
��

A

1A
��

A2
a2oo

i2
��

B1 b1
// A B2b2
oo

(8)

where the top and bottom rows are coproduct diagrams. Note that since a1 and a2 are
monomorphisms, it follows that i1 and i2 are monomorphisms. Consider the commutative
diagram below.

A1
i1 //

1A1

��

B1

b1
��

0oo

��

0oo

��
A1 a1

// A B2b2
oo A2i2

oo
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The left square is a pullback (since b1 is a monomorphism). Further, the right square is a
pullback since i2 is a monomorphism, and the middle square is a pullback since coproducts
are disjoint. Therefore, by Proposition 2.11, i1 is an isomorphism. We can likewise show
that i2 is an isomorphism, so that the two squares in (8) are pullbacks.

2.13. Corollary. The following are equivalent for a category C with an initial object.

1. Every coproduct inclusion in C is extensive.

2. Coproducts are disjoint, and every coproduct inclusion satisfies (E1).

2.14. Proposition. Let C be a category with binary coproducts where every coproduct
inclusion is extensive. Then the pullback of an extensive morphism along a coproduct
inclusion exists and is extensive.

Proof. Let f : A → B be an extensive morphism in C, then f admits pullbacks along
coproduct inclusions by virtue of (E1). Now consider the diagram

A1
a1 //

f1
��

A

f
��

A2
a2oo

f2
��

B1 b1
// B B2b2
oo

where the squares are pullbacks. Since f is extensive, the top row is a coproduct and
hence a1 is extensive. Then by Proposition 2.2 it follows that fa1 is extensive, and hence
b1f1 is extensive. Since b1 is a coproduct inclusion, by Proposition 2.6 it follows that f1
is extensive.

3. Results on coextensive morphisms

From this point forward, we turn our attention exclusively to coextensive morphisms. A
morphism f in a category C is called coextensive if it is extensive in the dual category
Cop. In what follows we will refer to the category-theoretic duals of the conditions (E1)
and (E2), as (C1) and (C2), respectively. Thus, the morphism f is coextensive if and only
if f satisfies both of the following:

(C1) f admits pushouts along the projections of any product diagram

A1 ← A→ A2

and the resulting two pushouts

A1

��

A

f
��

//oo A2

��
X1 X //oo X2

form a product diagram X1 ← X → X2.
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(C2) for any commutative diagram

A1

��

A

f
��

//oo A2

��
X1 X //oo X2

in C where the top and bottom rows are product diagrams, both squares are
pushouts.

3.1. Coextensivity of identity morphisms. If f : A→ X is any isomorphism in C
then for any morphism g : A→ B, the square

A
g //

f
��

B

1B
��

X
gf−1

// B

is a pushout in C, and hence the proposition below is immediate.

3.2. Proposition. In any category C every isomorphism satisfies (C1).

If f : A→ X and g : B → Y are isomorphisms in C, then any commutative diagram

A //

f
��

B

g
��

X // Y

is a pushout, leading to the following proposition.

3.3. Proposition. In a category C with binary products every isomorphism satisfies
(C2) if and only if the following condition holds: for any pair of morphisms f1 and f2 in
C, if their product f1 × f2 is an isomorphism, then f1 and f2 are isomorphisms.

3.4. Proposition. For any morphism f : A→ B in C, if f satisfies (C1) and 1B satisfies
(C2) then f is coextensive.

Proof. Consider the following commutative diagram where the rows are products.

A1

f1
��

A
a1oo a2 //

f
��

A2

f2
��

B1 B
b1
oo

b2
// B2

Since f satisfies (C1), the pushouts of f along a1 and a2 exist. Suppose that the top two
squares in the following diagram are these pushouts of f
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A1

f1

��

��

A
a1oo

f
��

a2 // A2

f2

��

��
P1

G

p1
��

Boo

1B
��

// P2

I

p2
��

B1 B
b1
oo

b2
// B2

so that the middle row is a product diagram. Since the top two squares are pushouts,
there exist morphisms p1 and p2 such that the diagram is commutative. Since the middle
and bottom rows are products and 1B satisfies (C2), the bottom two squares are pushouts.
Pasting pushouts together, we have that the squares in the initial diagram are pushouts.
So f satisfies (C2), and is therefore coextensive.

Applying the above results we obtain the following.

3.5. Corollary. If every identity morphism in C is coextensive, a morphism f : X → Y
is coextensive if and only if it satisfies (C1).

3.6. Corollary. In any category C, every isomorphism is coextensive if and only if
every identity morphism in C coextensive.

Not every category has (co)extensive identity morphisms. To illustrate this, consider
the partially ordered set {0, 1} viewed as category. Then the left-hand square in the
diagram

0

��

0

��

//oo 0

��
1 0 //oo 0

is not a pushout. Consequently, the identity morphism on 0 does not satisfy (C2).
Recall that a morphism e : A → B in C is called an extremal epimorphism if for any

composable pair of morphisms i and m in C, if e = mi and m is a monomorphism, then
m is an isomorphism. Note that if C has equalisers, then every extremal epimorphism is
an epimorphism. The proof of the lemma below is routine and left to the reader.

3.7. Lemma. Given any commutative diagram

B1
��

m1

��

A
q1oo q2 //

1A
��

B2
��
m2

��
A1 Ap1
oo

p2
// A2

in C where m1 and m2 are monomorphisms, if the bottom row is a product diagram, then
so is the top row.
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3.8. Lemma. Let C be a finitely complete category where every product projection in C
is an epimorphism. Then, for any two morphisms f1 and f2 in C, if their product f1× f2
is a monomorphism then f1 and f2 are monomorphisms.

Proof. Let f1 : A1 → B1 and f2 : A2 → B2 be any two morphisms in C such that f1× f2
is a monomorphism. Form the kernel pairs of f1× f2, f1 and f2 as below, with α1 and α2

induced by K1 and K2 respectively.

K1

k2
��

k1
��

K
α1oo α2 //

ℓ2
��

ℓ1
��

K2

m2

��
m1

��
A1

f1
��

A1 × A2
π1oo

��
f1×f2
��

π2 // A2

f2
��

B1 B1 ×B2µ1

oo
µ2

// B2

Since f1×f2 is monic, ℓ1 = ℓ2. Furthermore, the top row is a product since limits commute
with limits. Then, from α1 and α2 being epimorphisms, we have k1 = k2 and m1 = m2 so
that f1 and f2 are monomorphisms.

3.9. Proposition. For any object A in C, if the identity morphism 1A is coextensive,
then every product projection of A is an extremal epimorphism. If C is finitely complete
then the converse holds.

Proof. Suppose that 1A is coextensive, and that A1
p1←− A

p2−→ A2 is a product diagram.
Let m1q1 = p1 be a factorisation of p1 where m1 is a monomorphism as in the diagram

I1
��

m1

��

A
q1oo p2 //

1A
��

A2
��
1A2
��

A1 Ap1
oo

p2
// A2

By Lemma 3.7, it follows that the top row is a product diagram and hence that the squares
are pushouts, so that m1 is an isomorphism.

Conversely, suppose that C is finitely complete and that product projections of A are
extremal epimorphims. Since all identity morphisms satisfy (C1) by Proposition 3.2, we
prove that identity morphisms satisfy (C2). Consider any commutative diagram

A1

f1
��

A
p1oo p2 //

1A
��

A2

f2
��

B1 Aq1
oo

q2
// B2

where the rows are product diagrams. By Lemma 3.8, it follows that f1 and f2 are
monomorphisms. Since q1 is an extremal epimorphism and f1p1 = q1, f1 is an extremal
epimorphism. Similarly, f2 is an extremal epimorphism. Consequently, f1 and f2 are
isomorphisms, so that both squares in the original diagram are pushouts.
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3.10. Corollary. If C is finitely complete, the product projections of C are extremal
epimorphisms if and only if every identity morphism in C is coextensive.

3.11. Remark. For a variety of universal algebras V the condition that identity mor-
phisms in V be coextensive, i.e., product projections in V be extremal, is equivalent to the
requirement that the algebraic theory of V admit at least one constant. This is because
in any variety the singleton algebra 1 is terminal, and the algebra of constants 0 is initial.
Thus, the morphism 0 → 1 is extremal (surjective) if and only if V admits at least one
constant.

3.12. Corollary. If C is a pointed finitely complete category, then every morphism in
C satisfying (C1) is coextensive.

Proof. Every product projection in a pointed category C is a split epimorphism and
therefore an extremal epimorphism. Thus, by Proposition 3.9, all identity morphisms in
C are coextensive. Therefore, the result follows from Corollary 3.5.

Coextensivity of a category with finite products may be expressed in terms of the
product functor ×. The following proposition provides a similar formulation for the
coextensivity of identity morphisms. Recall that a functor F : C→ D is conservative if it
reflects isomorphisms, that is, for any morphism f in C if F (f) is an isomorphism then f
is an isomorphism.

3.13. Proposition. Let C be a category with binary products. All identity morphisms
in C are coextensive if and only if the functor

× : (C ↓ X1)× (C ↓ X2) −→ (C ↓ (X1 ×X2))

is conservative for all objects X1 and X2 in C.

Proof. This result can be derived from the following series of equivalent statements:

(1) The functor × is conservative for all objects X1 and X2;

(2) Each pair of morphisms f1 and f2 are isomorphisms whenever f1 × f2 is an isomor-
phism;

(3) All isomorphisms satisfy (C2);

(4) All isomorphisms are coextensive;

(5) All identity morphisms are coextensive.

The equivalence (1)⇔ (2) follows readily, (2)⇔ (3) is given in Proposition 3.3, (3)⇔ (4)
follows from Proposition 3.2, while (4)⇔ (5) is established in Corollary 3.6.
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3.14. Coextensivity of product projections. The strict refinement property was
initially introduced in [4], and has a straightforward generalisation to categories given by
the following.

3.15. Definition. An object X in a category C is said to have the (finite) strict refine-

ment property if for any two (finite) product diagrams (X
ai−→ Ai)i∈I and (X

bj−→ Bj)j∈J ,

there exist families of morphisms (Ai
αi,j−−→ Ci,j)i∈I,j∈J and (Bj

βi,j−−→ Ci,j)i∈I,j∈J such that

αi,jai = βi,jbj and the diagrams (Ai
αi,s−−→ Ci,s)s∈J and (Bj

βt,j−−→ Ct,j)t∈I are product dia-
grams for any i ∈ I and j ∈ J . The category C satisfies the strict refinement property if
every object in C does.

The simplest non-trivial strict refinement for an object X is for binary product dia-
grams.

3.16. Definition. An object X in a category C is said to satisfy the binary strict re-
finement property if given any two binary product diagrams

A1
a1←− X

a2−→ A2, B1
b1←− X

b2−→ B2,

there exists a commutative diagram

C1,1 A1

α1,2 //α1,1oo C1,2

B1

β1,1

OO

β2,1

��

X
b1oo

a2
��

a1

OO

b2 // B2

β1,2

OO

β2,2

��
C2,1 A2α2,1

oo
α2,2

// C2,2

where each edge is a binary product diagram. The category C then satisfies the binary
strict refinement property if every object in C does.

The proof of the lemma below (which appears as Proposition 2.4 in [9] and also
Lemma 1.2 in [2]) is standard and left to the reader.

3.17. Lemma. Given any reasonably commutative diagram

C1

e
����

v1
//

u1 // X1

f

��

q1 // Q1

g

��
C2

v2
//

u2 // X2 q2
// Q2

in any category, where the top row is a coequaliser diagram and e is an epimorphism, the
right-hand square is a pushout if and only if the bottom row is a coequaliser.
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Note that in every category with finite products, every product projection admits a
kernel pair. Specifically, for every product diagram X1 ←−

p1
X1×X2 −→

p2
X2, the morphism

p1 has kernel pair

X1 × (X2 ×X2)
1X1

×π1//
1X1

×π2

// X1 ×X2

where π1 and π2 are the first and second projection morphisms of the product X2 × X2

respectively.

3.18. Proposition. Let C be a category with finite products where every product pro-
jection in C is a regular epimorphism. Then binary products in C are co-disjoint, i.e.,
coproducts are disjoint in Cop.

Proof. For any two objects X, Y in C we may apply Lemma 3.17 to the diagram

X × (Y × Y )

����

1X×π1

//
1X×π2// X × Y

��

// X

��
Y × Y

π1

//
π2 // Y // 1

to get that the right square is a pushout.

3.19. Lemma. Let C be a category with binary products, where each projection is a regular
epimorphism. For any two morphisms f1 and f2, if f1×f2 is a monomorphism, then both
f1 and f2 are monomorphisms. Consequently, every identity morphism in C is coextensive.

Proof. Let fi : Xi → Yi be any morphisms such that f1×f2 is monic and let a, b : A→ X1

with f1a = f1b. Then

(f1 × f2)(a× 1X2) = (f1a)× f2 = (f1b)× f2 = (f1 × f2)(b× 1X2),

so a × 1X2 = b × 1X2 . Applying the projection π1 : X1 × X2 → X1 gives a π = b π
where π is the projection π : A ×X2 → A, and since π is a regular epimorphism, a = b.
Thus f1 is monic; similarly for f2. Then to show that every identity morphism in C is
coextensive, it suffices to show that if f1×f2 is an isomorphism, then both f1 and f2 are by
Proposition 3.13. This follows easily, since f1× f2 being an isomorphism implies that the
fi is are extremal epimorphisms, which are isomorphisms since they are monomorphisms.

3.20. Proposition. Let C be a category with finite products where every product projec-
tion is a regular epimorphism. Given any object X in C, then every product projection of
X is coextensive if and only if X satisfies the binary strict refinement property.
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Proof. Suppose first that each product projection of X is coextensive. Let X have the
following two product diagrams:

A1
a1←− X

a2−→ A2, B1
b1←− X

b2−→ B2.

By coextensivity of these morphisms, we can form pushouts of each ai along each bj, ob-
taining the binary product diagrams along the edges of the outer square in the refinement
diagram.

Conversely, suppose X satisfies the binary strict refinement property. To show that
each product projection of X satisfies (C1), let π : X → A be any product projection, and
consider a product diagram

X1
x1←− X

x2−→ X2.

Using the binary strict refinement property, we construct the bottom two squares in the
diagram

K1

u2

��
u1

��

K
p1oooo p2 // //

k2
��

k1
��

K2

v2
��

v1
��

X1

π1
����

Xx1

oooo

π
����

x2

// // X2

π2
����

A1 Ay1
oo

y2
// A2

where π1 and π2 are product projections and the bottom row is a product diagram. The
parallel pairs in the top squares are constructed by taking the kernel pairs of π1, π, and
π2—which exist since these morphisms are product projections. Hence, each column in
this diagram forms a coequaliser diagram. Furthermore, the top row is a product diagram
(since the bottom row is), so that p1 and p2 are regular epimorphisms. Therefore, by
Lemma 3.17, the bottom two squares are pushouts. Thus, π satisfies (C1). Every identity
morphism in C is coextensive by Lemma 3.19, so that the result follows by Proposition 3.4.

The following theorem is an adaptation taken from [11]; we include its proof for the
sake of completeness.

3.21. Theorem. Let C be a category with (finite) products and let X be an object with
coextensive product projections. Then, X has the (finite) strict refinement property.

Proof. Suppose that (X
ai−→ Ai)i∈I and (X

bj−→ Bj)j∈J are any two (finite) product
diagrams for X. Let An be the product of the Ai’s where i ̸= n and let an : X → An

be the induced morphism (ai)i̸=n, and similarly let Bm be the product of the Bj’s where
j ̸= m. For each n ∈ I and m ∈ J there is a diagram

An

αn,m

��

X
an //

bm

��

anoo An

αn,m

��

Cn,m Bm
β′
n,m

//
βn,m

oo Cn,m
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where each square is a pushout, and the bottom row is a product diagram, since bm is a
product projection of X. In the diagram

An

(αn,j)j∈J

��

X
an //

(bj)j∈J

��

anoo An

(αn,j)j∈J

��∏
j∈J

Cn,j

∏
j∈J

Bj ∏
j∈J

β′
n,j

//∏
j∈J

βn,j

oo
∏
j∈J

Cn,j

the bottom row is a product diagram, and hence each square is a pushout. Since the
central vertical morphism in the diagram is an isomorphism, it follows that the morphism
(αn,j)j∈J is an isomorphism, and we can similarly obtain (βi,m)i∈I as an isomorphism.

As a result of Theorem 3.21 and Proposition 3.20, we have the following.

3.22. Corollary. Let X be an object in a category C with (finite) products, where
every product projection in C is a regular epimorphism. Then X has the (finite) strict
refinement property if and only if every product projection of X is coextensive.

3.22.1. Examples of coextensive product projections. As a consequence of
Hashimoto’s theorem [7] for partially ordered sets, every non-empty connected partially
ordered set satisfies the strict refinement property. Let Pos denote the category of non-
empty partially ordered sets. It is readily seen that every product projection in Pos is a
regular epimorphism. Thus, we have the following result.

3.23. Proposition. Every product projection of a connected partially ordered set is co-
extensive in Pos.

3.24. Remark. Consider the full subcategory CPos of connected partially ordered sets.
Note that CPos has finite products, but does not have equalisers. Moreover CPos has all
pushouts, and they are computed as in Pos. Consequently, every product projection in
CPos is coextensive.

Since product projections preserve meets and joins, a consequence of Hashimoto’s
theorem is that every non-empty semi-lattice satisfies the strict refinement property in
the category SLat of semi-lattices. This gives rise to the proposition below.

3.25. Proposition. Every product projection in the category SLat of semi-lattices is
coextensive.

Every monoid M admits a center Z(M), which is given by

Z(M) = {x ∈M | ∀y ∈M [xy = yx]}.

Then M is said to be centerless if Z(M) = {0}. As a consequence of [14] (see Corollary
2 in Section 5.6), every centerless monoid has the strict refinement property in Mon. For
this reason, we have the following result.
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3.26. Proposition. Every product projection of a centerless monoid is coextensive in
Mon.

As shown in [11], in a Barr-exact [1] Mal’tsev category, every centerless object has
coextensive product projections.

3.27. M-coextensivity. The main purpose of the paper [11] was to study categori-
cal aspects of the strict refinement property [4] for varieties of universal algebras. The
approach taken in that paper is object-wise, through a notion introduced there of an
M-coextensive object.

3.28. Definition. Let C be a category andM a class of morphisms from C. A commu-
tative square

X //

��

A

a
��

B
b
// P

in C is called an M-pushout if it is a pushout in C, and a, b are morphisms inM.

3.29. Definition. Let C be a category andM a class of morphisms in C. An object X is
said to beM-coextensive if every morphism inM with domain X admits anM-pushout
along every product projection of X, and in each commutative diagram

A1

��

X //

��

oo A2

��
B1 Y //oo B2

where the top row is a product diagram and the vertical morphisms belong to M, the
bottom row is a product diagram if and only if both squares areM-pushouts.

3.30. Proposition. Let M be a class of morphisms in a category C, containing all
product projections in C, and whereM is stable under pushouts along product projections
in C. Then an object A isM-coextensive if and only if every morphism inM with domain
A is coextensive.

Proof. If A isM-coextensive, then by definition every morphism inM with domain A
is coextensive. Supposing that every morphism inM with domain A is coextensive, then
in any diagram

A1

��

A

f
��

//oo A2

��
X1 X //oo X2

where the vertical morphisms belong toM, if the top row is a product, then the squares
are pushouts, which are in turn M-pushouts (since the product projections of X are in
M). Similarly, if the squares are pushouts, then they areM-pushouts (by the assumptions
on the classM), and by coextensivity of f the bottom row is a product.
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3.31. Remark. In any category C, we may takeM to be the class of monomorphisms in
C, in which caseM is closed under pullbacks. Then, as defined in [5], an object is called
mono-extensive if it isM-coextensive in Cop. In what is termed a unique-decomposition
category (UD-category) in that paper, every object is mono-extensive. Moreover, in a UD-
category, every coproduct inclusion is a monomorphism (see axiom UD5 in [5]). Hence,
by the dual of Proposition 3.30, every monomorphism in a UD-category is extensive.

3.32. Corollary. Let C be a category with finite products in which every product pro-
jection is coextensive. Then every object in C isM-coextensive, whereM is the class of
all product projections in C.

The notion of Boolean category introduced in [13] is equivalent to the following.

3.33. Definition. A category C with finite coproducts is Boolean if it satisfies the fol-
lowing:

1. C admits all pullbacks along coproduct inclusions, and the class of coproduct inclu-
sions is pullback stable;

2. Every coproduct inclusion satisfies (E1);

3. If Y
t−→ X

t←− Y is a coproduct diagram, then X is an initial object.

The only distinction between a Boolean category and a category with finite coproducts
in which every coproduct inclusion is extensive is that coproduct inclusions need not be
pullback stable in a category with finite coproducts in which every coproduct inclusion is
extensive.

3.34. Commutativity of finite products with coequalisers. Recall that for a
category with binary products, we say that binary products commute with coequalisers
in C if for any two coequaliser diagrams

C1
v1
//

u1 // X1
q1 // Q1 C2

v2
//

u2 // X2
q2 // Q2,

in C, the diagram

C1 × C2
v1×v2

//
u1×u2 // X1 ×X2

q1×q2 // Q1 ×Q2,

is a coequaliser diagram. In [8] the commutativity of finite products with coequalisers
was considered, and shown to hold in any coextensive category. We remark here that this
property is intimately connected to the topic of Huq-centrality of morphisms (see [12]).

3.35. Proposition. Let C be a category with binary products and coequalisers, where
product projections in C are epimorphisms, and where every regular epimorphism in C is
coextensive. Then finite products commute with coequalisers in C.
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Proof. Given the two coequaliser diagrams as in the paragraph preceding this propo-
sition, consider the coequaliser q : X1 × X2 → Q of u1 × u2 and v1 × v2. Then, in the
diagram

C1

u1

��
v1
��

C1 × C2

u1×u2

��
v1×v2
��

//oo C2

u2

��
v2
��

X1

q1
��

X1 ×X2

q

��

//oo X2

q2
��

Q1 Q //oo Q2

where the dotted arrows are induced by the coequaliser q (since product projections are
epimorphisms), the lower squares are pushouts by Lemma 3.17, and hence the bottom
row is a product.

3.36. Proposition. Let C be a finitely complete category that admits pushouts of regular
epimorphisms along product projections, and suppose that every terminal morphism X →
1 in C is a regular epimorphism. If finite products commute with coequalisers in C and
every split monomorphism in C is coextensive, then C is coextensive.

Proof. Suppose that binary products commute with coequalisers in C and that every split
monomorphism is coextensive. Note that regular epimorphisms are stable under binary
products in C, so that every product projectionX×Y → X is a regular epimorphism, since
every product projection is a product of a terminal morphism and an identity morphism.
It suffices to show that every product projection in C satisfies (C1) (by Proposition 3.5
and the dual of Corolary 2.3). Let X1

π1←− X
π2−→ X2 be any product diagram, and suppose

that q : X → Y is any product projection of X. Consider the diagram

X1

1X1

��

f1
��

X
π1oooo π2 // //

��
θ
��

X2

f2
��

1X2

��

P1

G

u2

��
u1

��

Kp1
oooo

p2
// //

k2
��

k1
��

P2

I

v2
��

v1
��

X1

q1
����

Xπ1

oooo

q
����

π2

// // X2

q2
����

Y1 Yα1

oo
α2

// Y2

where (K, k1, k2) is the kernel pair of q, θ is the diagonal inclusion and the bottom two
squares are the pushouts of q along π1 and π2. Since the morphism θ is split monomor-
phism, we may push out θ along π1 and π2, producing a product diagram for K, as well
the dotted arrows making the middle squares reasonably commute. Then, since p1 and
p2 are (regular) epimorphisms, it follows by Lemma 3.17 that q1 is a coequaliser of u1

and u2, and q2 is a coequaliser of v1 and v2. Then, since binary products commute with
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coequalisers, it follows that q1 × q2 is a coequaliser of k1 and k2, so that q is isomorphic
to q1 × q2 and hence the bottom row is a product diagram.

4. Preliminaries on regular categories

Recall that a morphism f : X → Y in a category C is called a regular epimorphism in C
if f is the coequaliser of some parallel pair of morphisms. Recall also that a category C
is regular [1] if it has finite limits and coequalisers of kernel pairs, and if the pullback of a
regular epimorphism along any morphism is again a regular epimorphism. Listed below
are some elementary facts about morphisms in a regular category C:

� Every morphism in C factors uniquely as a regular epimorphism followed by a
monomorphism.

� Regular epimorphisms in C are stable under finite products.

� Every extremal epimorphism in C is a regular epimorphism in C.

Given any object X in a regular category C, consider the preorder of all monomorphisms
with codomain X. The posetal reflection of this preorder is Sub(X)—the poset of subob-
jects of X. For any morphism f : X → Y in C there is an induced Galois connection

Sub(X)
))

⊥ Sub(Y )
ii

given by direct image and inverse image. This is defined as follows: given a subobject
A of X represented by a monomorphism a : A0 −→ X, the direct image f(A) of A along
f is defined to be the subobject represented by the monomorphism part of a (regular
epimorphism, monomorphism)-factorisation of fa. Given a subobject B of Y represented
by a monomorphism b : B0 −→ Y , we define the inverse image f−1(B) of B to be the
subobject of X represented by the monomorphism obtained from pulling back b along
f . A relation R from X to Y is a subobject of X × Y , i.e., an isomorphism class of
monomorphisms with codomain X × Y .

Given such a relation R represented by a monomorphism (r1, r2) : R0 → X × Y ,
we define the opposite relation Ro to be the relation represented by the monomorphism
(r2, r1) : R0 → Y × X. Given an object X in a category, we write ∆X for the diagonal
relation, that is, the relation represented by (1X , 1X) : X → X × X, and we write ∇X

for the relation on X represented by the identity morphism on X × X, so that for any
relation R on X we have R ⩽ ∇X .

Regular categories possess a well-behaved composition of relations, which is defined
as follows: given a relation R from X to Y and a relation S from Y to Z, and two
representatives (r1, r2) : R0 → X × Y and (s1, s2) : S0 → Y × Z of R and S respectively,
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form the pullback of s1 along r2 as below

P
A

p2 //

p1
��

S0

s1
��

R0 r2
// Y

so that SR is defined to be the relation represented by the monomorphism part of any
regular-image factorisation of (r1p1, s2p2) : P → X × Z. This composition of relations
is then associative by virtue of the category C being regular, and is compatible with
composition, i.e., if R ⩽ S and R′ ⩽ S ′, then RR′ ⩽ SS ′ whenever these composites are
defined. Any morphism f : X → Y defines a relation, which we shall also denote byf ,
represented by (1X , f) : X → X × Y . Given any relations R and S on objects X and Y
respectively, note that the image and inverse image under f may be presented as

f(R) = fRf o and f−1(S) = f oSf.

A relation R on an object X is called:

� reflexive whenever ∆X ⩽ R;

� symmetric whenever Ro ⩽ R;

� transitive whenever RR ⩽ R; an

� equivalence relation if R is reflexive, symmetric and transitive.

4.1. Notation. Given any morphism f : X → Y , the kernel pair (K, k1, k2) of f rep-
resents an equivalence relation, which we will denote by Eq(f) in what follows. Since
the pullback of any morphism f along itself gives its kernel pair, note that Eq(f) = f of .
Further, any equivalence relation E on an object X is called effective if it is the kernel
equivalence relation of some morphism, i.e., there is an f : X → Y such that E = Eq(f).

4.2. Definition. A regular category C is said to be Barr-exact if every equivalence re-
lation is effective.

4.3. Calculus of relations in regular categories. The calculus of relations in
regular categories is well known, and the formulae presented here are largely folklore,
however we were unable to find suitable references for each formula, and include their
proofs for this reason. Readers familiar with these formulae may wish to skip to the next
section.

Throughout this section, we fix a regular category C.

4.4. Lemma. Any relation R from X to Y in C satisfies ∆YR = R = R∆X .
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Proof. For any representative (r1, r2) : R0 → X × Y of R, the following square is a
pullback

R0
A

r2 //

1Y
��

Y

1Y
��

R0 r2
// Y

which implies that (r1, r2) is a representative of ∆YR. Hence, R = ∆YR. The second
equation follows by a similar argument.

4.5. Lemma. For any object X in C we have ∇XR = ∇X = R∇X for any reflexive
relation R on X.

Proof. The equation ∇X = ∇XR holds by the following argument: ∇X = ∆X∇X ⩽
R∇X ⩽ ∇X , where the equality follows by Lemma 4.4, the first inequality by the fact
that R is reflexive, and the last inequality by the fact that S ⩽ ∇X for any relation S on
X. The other equation follows similarly.

4.6. Lemma. A morphism f : X → Y in C is a regular epimorphism if and only if
ff o = ∆Y .

Proof. It is straightforward to see that f is a regular epimorphism if and only if f(∆X) =
∆Y , and hence

f(∆X) = ∆Y ⇔ f∆Xf
o = ∆Y ⇔ ff o = ∆Y .

4.7. Lemma. A reflexive relation R in C is transitive if and only if R = RR.

Proof. If R is both reflexive and transitive, then R = ∆XR ⩽ RR ⩽ R, so that R = RR.
The converse holds trivially.

4.8. Lemma. Let X1
π1←− X

π2−→ X2 be a product diagram in C. Then the kernel pairs of
the projections π1 and π2 are given by the relations Eq(π1) = ∆X1 × ∇X2 and Eq(π2) =
∇X1 ×∆X2.

Proof. We label the product projections of the following product diagram as indicated:

X2 X2
2

p1oo p2 // X2.

It follows readily that (1X1 × p1, 1X1 × p2) is the kernel pair of π1. Hence, Eq(π1) =
∆X1 ×∇X2 . Similarly, Eq(π2) = ∇X1 ×∆X2 .
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4.9. Lemma. Let E be any equivalence relation on an object X in C. Then for any product
diagram X1

π1←− X
π2−→ X2 where π1 and π2 are regular epimorphisms, E = π1(E)× π2(E)

implies that π1(E) and π2(E) are equivalence relations.

Proof. It is well-known that reflexivity of relations are preserved by any morphism, and
symmetry is preserved by regular epimorphisms. Since π1 and π2 are regular epimor-
phisms, it suffices to show that π1(E) and π2(E) are transitive. Note that

Eq(π1)E = (∆X1 ×∇X2)(π1(E)× π2(E)) (by Lemma 4.8)

= (∆X1 π1(E))× (∇X2 π2(E))

= (π1(E)∆X1)× (π2(E)∇X2) (by Lemmas 4.4 and 4.5)

= (π1(E)× π2(E))(∆X1 ×∇X2)

= E Eq(π1).

Hence,

(π1(E))(π1(E)) = π1E πo
1π1E πo

1 = π1E Eq(π1)E πo
1

= π1E Eq(π1) π
o
1 (by Lemma 4.7)

= π1E πo
1π1π

o
1 = π1E πo

1 = π1(E). (by Lemma 4.6)

Therefore, π1(E) is transitive by Lemma 4.7, and hence an equivalence relation. It follows
similarly that π2(E) is an equivalence relation.

4.10. Coextensivity of split monomorphisms.

4.11. Lemma. Let C be a regular category in which every split monomorphism is coex-
tensive. Then, given any product diagram X1

π1←− X
π2−→ X2 and any reflexive relation R

on X, we have R = π1(R)× π2(R).

Proof. Suppose that R is a reflexive relation on X represented by (R0, r1, r2), and that

X
d−→ R0 is the diagonal inclusion. Then we form the diagram

X1

1X1

$$

d1
��

X
π1oooo π2 // //

��

d
��

X2

d2
��

1X2

zz

R
(1)
0

G

r
(1)
2
��

r
(1)
1
��

R0p1
oooo

p2
// //

r2

��
r1

��

R
(2)
0

I

r
(2)
2
��

r
(2)
1
��

X1 Xπ1

oooo
π2

// // X2

where the top squares are pushouts, and hence the middle row is a product diagram.
Moreover, the dotted arrows are induced (reasonably) by the pushouts. By Lemma 3.8 it

follows that r
(1)
1 , r

(1)
2 and r

(2)
1 , r

(2)
2 are jointly monomorphic. Since every identity morphism

is coextensive, it follows that all product projections in C are extremal (and therefore
regular) epimorphisms by Proposition 3.9. Hence, p1 and p2 are regular epimorphisms.

From this it follows that (R
(1)
0 , r

(1)
1 , r

(1)
2 ) represents π1(R) and (R

(2)
0 , r

(2)
1 , r

(2)
2 ) represents

π2(R) so that R = π1(R)× π2(R).
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4.12. Remark. In the context of a regular majority category [10], given any product
diagram X1

π1←− X
π2−→ X2, and any reflexive relation R on X, we have R = π1(R)×π2(R).

However, it is not true that every split monomorphism in a regular majority category is
coextensive. For instance, the variety Lat of lattices is a regular majority category, which
does not have coextensive split monomorphisms (as a result of Proposition 4.13).

4.13. Proposition. Let C be a Barr-exact category. Then, every split monomorphism
in C is coextensive if and only if C is coextensive.

Proof. Suppose that every split monomorphism in C is coextensive. Note that each
product projection is a regular epimorphism by Proposition 3.9. We show that every
regular epimorphism is coextensive, and conclude the result by the dual of Corollary 2.3.
It suffices to show that every regular epimorphism satisfies (C1) by Proposition 3.5. To
this end, let q : X → Y be any regular epimorphism in C, and let E = Eq(q) be the
equivalence relation represented by the kernel pair (K, k1, k2) of q. Given any product
diagram X1 X π2

// //
π1

oooo X2 , consider the diagram

K1

u2

��
u1

��

K
p1oooo p2 // //

k2
��

k1
��

K2

v2
��

v1
��

X1

q1
����

Xπ1

oooo

q
����

π2

// // X2

q2
����

Y1 Yα1

oo
α2

// Y2

where (u1, u2) and (v1, v2) are obtained as representatives of π1(E) and π2(E). By
Lemma 4.9, it follows that π1(E) and π2(E) are equivalence relations, so that they are
effective. Hence, (K1, u1, u2) and (K2, v1, v2) are kernel pairs and therefore admit co-
equalisers q1 and q2 respectively. Then the morphisms α1 and α2 are induced by q being
the coequaliser of k1 and k2. Since p1 and p2 are regular epimorphisms, it follows that the
squares are pushouts by Lemma 3.17. Finally, since E = π1(E)× π2(E) by Lemma 4.11,
it follows that (K, k1, k2) is a kernel pair of q1×q2. Since q1×q2 is a regular epimorphism,
it is the coequaliser of k1 and k2. Therefore q and q1 × q2 are coequalisers of the same
parallel pair, so that the bottom row is a product diagram.
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