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REPRESENTING THE LANGUAGE OF A TOPOS AS A QUOTIENT
OF THE CATEGORY OF SPANS

M. GOLSHANI AND A. SHIRALINASAB LANGARI

ABSTRACT. We use quotients of span categories to introduce the language of a topos.
We also introduce the notion of logical relation and study the quotients of span categories
derived from them. As an application we show that the category of Boolean toposes
is a reflective subcategory of the category of toposes, when the morphisms are logical
functors.

1. Introduction

The Mitchell-Bénabou language [Mac Lane, 1992] is a well-known form of the internal
language of an elementary topos. In this approach, types are interpreted as objects of the
topos, and variables are interpreted as identity morphisms 1 : A — A. More generally,
terms of type A in variables z; of types X; are interpreted as morphisms from the product
[ Xi — A. Formulas of the language are therefore identified with morphisms into the
subobject classifier 2.

A different but related approach is introduced in [Lambek, 1986], where variables are
treated as indeterminate morphisms. Given an object A in a topos 7T, a new category
T [z] is constructed by freely adjoining a morphism z : 1 — A to 7. This is achieved by
forming the free category generated by the graph obtained from the underlying graph of
T by adjoining such a morphism and closing under finite limits. Equivalently, this can
be described as the Kleisli category of a cotriple (S4,€4,4), where S4(X) = A x X,
ea(X) =myx, and 54(X) = (ma, Laxx)-

However, this construction deals with one indeterminate at a time, and lacks a uni-
fied environment for reasoning with multiple variables. In this paper, we extend this
framework by constructing a category where all indeterminate morphisms are adjoined
simultaneously. Our construction uses categories of spans and their quotients to provide
such a setting.

e We define, for each object A in a cartesian category C, a stable system A and form a
quotient category Span 4(C, .A), in which a canonical morphism « = [l4, 14]4 : 1—A
plays the role of the indeterminate morphism.
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e We present a quotient category of spans
SpanH (C7 H)u

which universally incorporates all indeterminate morphisms. Moreover, if C is carte-
sian closed, then Spany(C, 1) is cartesian closed as well.

The category Spany(C,II) provides a canonical setting for interpreting terms, formu-
las, and logical connectives in an internal manner. In this paper, we develop a formulation
of the internal language of a topos 7 within the structured environment of Spany (7, 1I),
where all variables are introduced simultaneously. This unified framework enables a co-
herent representation of the internal language in which variables and logical constructs
coexist as morphisms of a single category.

This paper also investigates conditions under which a quotient category of spans
Span_(7) forms a power allegory, ensuring that Map(Span_(7)) is a topos. Leverag-
ing this framework, we construct, in a universal manner, a Boolean topos associated to
each elementary topos. As a consequence, we show that the category of Boolean toposes
forms a reflective subcategory of the category of toposes, when morphisms are taken to
be logical functors.

2. Preliminaries

We recall some definitions and preliminaries about span categories. For more details, see
[Hosseini, 2020] and [Hosseini, 2022].

We consider categories equipped with a stable system of morphisms; that is, pairs (C,S)
where C is a category and S is a collection of morphisms in C satisfying the following
properties:

e S contains all isomorphisms in C and is closed under composition;

e pullbacks of S-morphisms along arbitrary morphisms exist in C and belong to S.
For objects A, B in C, a span (s, f) with domain A and codomain B consists of a
diagram
A<*-p-1.B
where s € § and f is a morphism in C.

Given another stable system F, we define a morphism z : (s, f)—(s, f') with z € F
if the following diagram commutes:
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If such a morphism x exists, we write (s, f) <z (¢, f). The equivalence relation
generated by <z is denoted by ~£.
We define the quotient category of spans Span~(C,S), where:

e Objects are the same as those of C;

e Morphisms are equivalence classes [s, f]., of spans under ~ .

Composition of morphisms [s, f]., : A— B and [t,¢]~, : B— C is defined as
[st', gf']~», as in the following diagram:

/\
/\/\

This composition is well-defined. For simplicity, we write [s, f]# instead of [s, f].

In the case where F = 7 is the class of isomorphisms, the category Span;(C,S) is the
ordinary category of spans. In this case, we simply write [s, f] for morphisms.

We now state a useful lemma about the equivalence relation ~ z:

2.1. LEMMA. [Hosseini, 2022] Let F be a stable system. Then (s, f) ~x (s, f') if and
only if there exist p,q € F such that the following diagram commutes:

A\ql /B

D/

To further generalize the relation ~z, we introduce the notion of a compatible relation
on Span(C,S), which is a relation on spans satisfying:

e only spans with the same domain and codomain may be related;
e vertically isomorphic spans are related;

e the equivalence relation defines a congruence on the category, that is, horizontal
composition from either side preserves the relation.

For such a compatible equivalence relation ~, we write the equivalence class of a span
(s, f) as [s, f]~, or simply [s, f] when the context makes it clear which relation is meant.
The corresponding quotient category is denoted by

Span_(C,S).
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3. Adding indeterminate arrows

Throughout this section, let C be a cartesian category. As in [Lambek, 1986], for an object
A € C, we aim to add an indeterminate morphism z : 1 — A to C in a universal way.
To achieve this, we define a stable system A associated with the object A and consider a
quotient category of A-spans as a setting where x : 1 — A naturally lives. For an object
A in C, define the following class:

A={r: A" x B— B | 7 is a projection}.
3.1. LEMMA. For every object A € C, the class

A={r: A" x B— B | 7 is a projection}
1S a stable system.

PRrROOF. For n = 0, we have A™ = 1, so A contains isomorphisms. Closure under compo-
sition and stability under pullbacks are straightforward. [

Using A, we define the quotient category of spans:
Span 4(C, A).

3.2. PROPOSITION. The map Q : C—Span4(C, A) sending a morphism f to [1, f]a is
a functor. Furthermore, if there exists a morphism 1 — A, then Q is faithful.

PROOF. It is clear that Q defines a functor. To prove faithfulness, suppose [1, fl4 = [1, 9]
for morphisms f,g : B—C'in C. By Lemma 2.1, there exist morphisms p,q € A such
that the following diagram commutes:

This implies p = q. Since there is a morphism 1— A, the morphism p is an epimorphism.
Therefore, f = g, and so Q is faithful. ]

3.3. THEOREM. The functor Q : C—Span 4(C,.A) preserves finite products.

PROOF. We show that B <724 gy o T4 o, product in Span 4(C, A),
[d1,fla D [d2,9].4

where g and mo are the projections in C. Let B C be a span,

where [dy, f]4 and [dg, g] 4 are represented by the diagrams in C:
A" x D A™ x D

T T
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Assuming m < n, there exists a projection w : A" x D — A™ x D. Then,
[d27 g]A = [d27T, g’ﬂ—]A'

Since both d; and dym are projections from A™ x D to D, we can assume n = m and
dy = dy. Let d=dy and h = (f, g). Then,

[Lmplac[d,hla=1[d, fla, [1,7clac[d,h]la=][d, gla.
To prove uniqueness, suppose e, k| 4 is another morphism such that:
[Lmplacle kla=[d, fla, [1,mclaole,kla=[d, gl

By Lemma 2.1, there exist morphisms a,b,a’,’ € A such that the following diagrams
commute:

A”xD A”XD

/ \ /

A’"><D

D An+r+s

\

As before, we may assume s = ', a = a’, and b = b'. Then the diagram:

A" x D
/ aT <
D AMTTES 5 D BxC
\ bl /
e k
A" x D
commutes, and thus [e, k| 4 = [d, h| 4. "

So far, we have constructed the category Span,(C,.A) as a quotient of spans. As
mentioned earlier, we will represent the desired indeterminate morphism as a morphism
in this category. The morphism [!4,14]4 : 1 — A is the indeterminate morphism we are
interested in. We denote this morphism by z, and we write the category Span 4(C,.A) as
Clx].

Morphisms in C[z] can be interpreted as polynomials in x. The central role of z
becomes clearer through a universal property presented in Theorem 3.5. To prove that
theorem, we first state the following proposition. Here, ™ denotes the unique morphism

X - Xzr:il=1x - x1—A"=Ax- .- x A.
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3.4. PROPOSITION.

(a) x™ = [lan, 1an].

(b) 2" X 1g = [m, Lanxp], where m : A" x B— B is the projection.
PROOF.

(a) For n = 2, the uniqueness of z? in the following commutative diagram implies

2?2 = [1p2, 1p2] 4
1 1 1
R A
A A? A
By induction on n, we obtain 2" = [!4n, 1 4n].

(b) The uniqueness of z™ x 1z in the following diagram implies 2™ X 1g = |7, Lanyg]:

1 B B
™ JC"XIB:[TnlAan]_A 1
A" A" x B B

The following theorem gives the universal property of Span 4(C,.A) as a category ob-
tained by freely adding an indeterminate morphism.

3.5. THEOREM. Let F : C—=C' be a functor that preserves finite products, and let a :
1—=F(A) be a morphism in C'. Then there exists a unique functor F' : Span 4(C, A)—=C’
such that ¥'(z) = a and the following triangle commutes:

C ———Span,(C, A)

|

C

PROOF. Using Proposition 3.4, a morphism [p, f] with B~ A"xBLl ~C inCcan
be written as [p, f] = [1, f][p, 1] = [1, f](z" x 1p). Based on this, we define:

F'lp, f]:=F(f) o (a" x 1p(m)-
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To show that F’ is well defined, suppose (p, f) < (p/, f') via the following diagram:

Then we compute:
F'lp, f] = F(f)o(a" x 1pm)) = F(f')oF(m)o(a" x 1pm)) = F(f')o(a™ x Lem)) = F'[p', f'].

By definition of F/, we obtain the commutativity of the triangle, as well as the unique-
ness. ]

The following theorem shows that the construction of indeterminate morphisms is
hereditary. This means that for objects A and B in C, one can first add an indeterminate
morphism = : 1 — A and then add another indeterminate morphism y : 1 — B, or add
both of them at once. Before stating the theorem, we define the following classes:

B={[l,m]4:B"xC—=C|[l,7]4is a projection in Span 4(C, A)}
AoB={A" x B" x C'—C'| 7 is a projection in C}
3.6. THEOREM. The category Spang(Span 4(C,.A), B) is isomorphic to Span 4,5(C, Ao B).
ProOOF. We define the map

HLpr]A? [ ) f].A]B — [pT'p: f]AoB'
To show that this map is well-defined, suppose

(L, pr]a, [ps fla] <5 [[1,p7] 4, (9, 9] 4]
as shown in the diagram, formed in Span 4(C, .A):

B"x C
C [1,7].4 D
B"x C

Then we compute:

= (¢, 9] aos[pr’, 1] 408

= [(L g]AOB[lv 7T-].AOB[W? 1]AOB[pT/> 1]AOB
= [p7 f]AoB[prv ]‘]AOB

= [pr'p7 f]AoB~

So the map is well defined. It is straightforward to check that this map defines an
isomorphism of categories. [

[pr'.q, g) 408
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3.7. COROLLARY. The functor C—=Span 4,5(C, AoB), defined by f + [1, f]aon, preserves
finite products.

ProOOF. This functor is the composition of the following functors, each of which preserves
finite products. Therefore, the composition also preserves finite products.

C —Span4(C, . A) — Spangz(Span 4(C, A), B) = Span 4,5(C, A o B)

As we have seen, adding indeterminate morphisms z : 1 — A and y : 1 — B to the
category C results in the category Span 4,5(C,.A o B), a quotient of spans. The definition
of the compatible system A o B suggests a natural way to define a quotient category of
spans that includes all such indeterminate morphisms by using a more general compatible
system. To achieve this, we use the class of all projections, denoted by II, as a general-
ization of A o B. It is straightforward to check that II is a stable system. Hence, we can
form the following quotient category:

Spany(C, II)

3.8. THEOREM. The functor Q : C — Spany(C,II), defined by f — [1, flu, preserves
finite products.
PrOOF. Let C n__CxD—= D be a product diagram in C. We will show

that C C x D™l

1,71

D is a product diagram in Spany(C,II). Suppose

[p,fln E (9,9l

we are given a diagram C D with (p, f) and (g, g) shown as:

AxXFE B x FE
FE C E D
in C. By Corollary 3.7, there exists a unique morphism [r, h] 405 : E— C X D such that

the triangles in the following diagram commute:

[1,71] 408 Cx D [1,m2] 408 D

r,h] A0

E

C

Since A o B C II, the same morphism [r, h]j; also makes the following diagram commute:

C [1,7{'1]1‘[ C % D [1,71'2]1‘[ D

r,h
MT[ In l2,9]n

E
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To prove uniqueness, suppose another morphism [s, k|j; also satisfies:

[Lmiuo s, kln = [p, fln and [1,ma)n o [s, kln = [g, g]u-

By Lemma 2.1, there exist projections such that the following diagrams commute:

X><E X><E
A//////ﬁ////// \\\\\\\\\\\\\s A///////////// \\\\\\Eﬁ\\\\\s
FE Y><X><A ><X><B><E D

Let II" = AoBoX o) o Z. An extension of Corollary 3.7 shows that [s, k]ir = [r, h]w,
and so [s, k| = [r, hln. Therefore, [r, k] is unique, and the diagram is indeed a product
in Span(C, IT). =

3.9. THEOREM. If C is a cartesian closed category, then so is Spany(C,1I).

PROOF. We want to show that the exponential object B4 in C is also an exponential
object in Spany(C,IT). We do this by showing that the evaluation map ev : B4 x A— B
in C induces an evaluation map [1, ev]y : B4 x A—= B in Spany(C, II).

Let [p, fln : C x A— B be a morphism in Spany;(C, IT), where (p, f) is depicted in C

as OCx A< DxCx AL ~B. There exists a unique morphism f : D x C' —= B4
in C such that the following diagram commutes:

BA x A = B
leT /////7(/////7
(DxC)x A

In the following diagrams, the first two (the left and middle ones) are formed in C using
product diagrams. In each of them, the left square is a pullback. This implies that the
right diagram, in Spany(C,II), also commutes.

BA BAx A A C Cx A A BA~—BAxA——= A

f{ fil 1T ﬂ] ﬂil 1] [W7T~]H [P,fil]n 1T
| | { |

DxC<~—DxOCOxA—sA DxC<~—DxCxA——A (OC<~—CxA—A

So we have [p, f x 1]n = [, fln x 1, and therefore

[1, ev]r o ([, flu x 1) = [p, fln.
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To prove uniqueness of [, f], suppose [, f']; is another morphism such that [1, ev]yo

([7', f'lnx1) = [p, flu. By Lemma 2.1, there exist r, s € II such that the following diagram
commutes:
DxCxA
f><1
X1 . BA XA
Cx A LxExDxCxA /B
s BA x A
7' x1
%
ExCxA

The projections r and s can be written as r = pr x 1 : (LXx Ex D x () x A —
DxCxAand s =pr'x1: (LXEXxDxC)xA— ExC x A. Then we have
ev(fpr x 1) = ev(f'pr’ x 1), which implies fpr = f'pr’. The commutativity of the
following diagram shows that [, f]n = [7', f']u, establishing the uniqueness of [, f]n
Therefore, Spany(C,II) is cartesian closed.

DxC

P

C LxExDxC B4

ExC

For each object A € C, there is a quotient functor Q : Span4(C,.A) — Spany;(C, II)
that maps the morphism x = [l4,14]4: 1 — A € Span,(C, A) to v = [l4,1aln: 1 > A €
Spang;(C, IT). This means that Spany(C,II) includes all such indeterminate morphisms.

In what follows, we show that Spany;(C, IT) has this property in a universal way: it is
the colimit of a natural diagram in the category Cat. We build this diagram by collecting
all quotient functors of the form

Q: SpanAloAQOmOAn_l(C’ AjoAyo---0d, 1) — SPanAloAQO...oAn(C, AjoAzo---0A,),

where each A; is the compatible system associated to the object A;, for 1 <i <n.

3.10. THEOREM. Spany(C,II) is the colimit of the above diagram.
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PRrROOF. We first observe that the following diagram forms a natural cocone:

Span_AloAgo---oAn_l (C7 Al o A2 ©---0 An—l) Span]_[(ca H)

|

SpanA1oA20-..o_An (C, Al o A2 O--+0 An)

Now suppose we are given another cocone to some category L:

FA10A2O~<O.A”_1

SpanA1OA20..-OAn_1 (C7 Al o ‘/4'2 ©---0 An_l)

SpanAloAzo...oAn (C, AjoAs0---0 An)

L

We define a functor U : Spany(C,II) — L by sending [m, f]n + Fa[r, f]a, where

B<T"AxBl -C isa span in C. To check that U is well defined, suppose we have
a commutative diagram where p is a projection:

Ax B

AxDxB
This implies [7, fl4op = [7, f'] 40D, SO by naturality:

U[ﬂ—a f]H = FA[T(’ f]A - FAoD[ﬂ-v f]AoD = FAoD[ﬂjv f,]AoD = U[ﬂ-,: f,]H'

Hence U is well defined. The uniqueness of U is straightforward. [

4. Language of a topos

So far, we have constructed a quotient of spans that contains all indeterminate mor-
phisms in a universal manner. In this section, we show that for a topos 7T, the category
Spang (7, 1I) can be regarded as a coherent system in which the internal language of the
topos T can be expressed. In our representation of this language, objects of T are inter-
preted as types, and morphisms of the form [!4, f]p : 1 — B are interpreted as terms of
type B € T.

We denote a term [!4, f]r: 1 — B by ¢(z) : 1 — B, where x represents [l4, 1a]n: 1 —
A. Thus, x is a term of type A, called a variable of type A. Terms of type () are referred
to as formulas.



816 M. GOLSHANI AND A. SHIRALINASAB LANGARI

4.1. DEFINITION. Let a(z) = ['a, flu : 1 — D, B(y) = ['B,9ju : 1 — D, and v(z) =
le,hln: 1 — PD. Then:

e a(x) = B(y) is the formula 1

(o)

e ey is the formula 1
For formulas ¢(x) = [1a, f] : 1 = Q and ¥(y) = ['5,9] : 1 — Q, define:

<¢>ﬂﬁ> [17/\]1_[

e pAY as 1 2 xQ Q

e 6Vias 1— 2V qxo T g
o — Yas 1— . gxolbT g
e not ¢ as 1 ¢ o retn o

V() = [1,Vaf]

dp(x) = [1,3af]
where ¥ 4 is the right adjoint and 34 is the left adjoint to P(l4) : Q@ — P(A), and f
is obtained from the diagram:

P(A) x A—= 0
fxlT f
1x A A

e For ¢(x) =1, f]['la,1] : 1 = A — Q, the expression {x € A : ¢(x)} is defined as the
unique morphism obtained from the diagram:

1,ev]rr

PAx A

rEA:p(x
{ze ¢()}XlT ////ﬁﬂ}i://7

1x A

Q

4.2. PROPOSITION. Y¢(x) and J¢(z) are well defined.
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PROOF. Let the left diagram below be given with 7 € II. We aim to show Vaf = VAX(;FT.
The right diagram implies fr = P(7)f.

AxC PAXxC)x (AxC(C)

Q

/ \ Tp(ﬂ)m {ev

1 ™ Q PA X (Ax () — PAx A |s
\ / fol [
1 x

X1
Ix(Ax(C) A

t

Ixm
The adjunction diagram below, together with !4y o =!a7, implies Vixc = VaAV,.
Vo Ya

P(A x O) PA Q

P(m) P(l4)

The following pullback and pullback-complement squares illustrate the external forms
of P and Vg, respectively. From the right square, we get 7 'd = d x 1, which implies
V.Pm = 1. Therefore, Vaxc fm = VAV, Prf =Vaf, so Vo(z) is well defined.

dx1

DxC dx1 AxC D xC AxC

l p.b. Lﬂ' IX!Cl p.b.c. llx!cw

D Ax1 D x1 Ax1

dx1

Using [Johnstone, 2002, Lemma 2.3.6], we obtain 3¢cP7 = 1. Hence, HAxc}\;T =
Ja3dePrf = 3af, so Jo(z) is also well defined. n

5. Logical relations on span categories

In [Hosseini, 2022], compatible relations on span categories, in which their quotients are
allegories, are studied, and it is shown that for a pullback stable factorization system
(€, M) in a finitely complete category C, Rel(C,E, M) = Spang(C) [Hosseini, 2022, The-
orem 2.3]. For a regular category C, with £ = RegEpi(C), M = Mono(C), it is well
known that Rel(C, £, M) = Spang(C) is a tabular allegory and Map(Spang(C)) = C. This
motivates us to investigate which quotients of Span(7), for a topos 7T, are toposes. In
[Johnstone, 2002], it is shown that maps of a power allegory form a topos. Inspired by
this, we investigate conditions on a compatible relation ~ to make Span_(7) a power
allegory.

Allegories were presented for the first time in [Freyd, 1990] as categories which reflect
properties that hold in the category of relations.
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5.1. DEFINITION. An allegory is a locally ordered 2-category A whose hom-posets have
binary intersections, equipped with an anti-involution ¢ — ¢° and satisfying the modular
law

o N x < (YN x9°)e,

whenever this makes sense.

5.2. DEFINITION. In an allegory, a morphism is called map if 1 < r°-r and r-r° < 1.
The subcategory of maps of an allegory A is denoted by MAP(A).

A power allegory is a division allegory with some extra properties. First, we give the
definition of a division allegory and then the definition of a power allegory. See [Johnstone,
2002] for more information.

5.3. DEFINITION. [Johnstone, 2002] An allegory A is called a division allegory if, for
each ¢ : A — B and object C, the order preserving map (—)¢ : A(B,C) — A(A,C) has
a right adjoint, which we call right division by ¢ and denote (—)/¢.

Of course, the anti-involution ensures that if we have right division we also have left

division ¢ \ (—) (right adjoint to ¢(—)). We write (¢|¢) for

(@\) N (N o).

5.4. DEFINITION. [Johnstone, 2002] A division allegory A is called a power allegory if
there is an operation assigning to each object A a morphism €,: PA — A satisfying
(EA | GA) =1pa and
1p < (¢\ €4)(€a \0)
for any ¢ : B — A.
Every topos has an (Epi, Mono) factorization. In the following, we denote a topos
as T and its epi-mono factorization as (£, M). Utilizing (£, M), we define a kind of

compatible relation such that the quotient arising from it will be shown to be a power
allegory.

5.5. DEFINITION. For a topos T, a compatible relation ~ on Span(T) is called logical if:

[ ] 8 gN
e for spans (f,g),(h,k): A — C and a morphism a : A — B
(f> 9) ~ (h, k’) = (leaxlm,ﬁzvaxlm) ~ ('ﬂ—lvaxlnaﬂ—Qvaxln)

where m and n are the M-parts of the morphisms (f,g) : D—= A x C' and (h, k) :
D'— A x C, respectively, where (f,g) and (h,k) denote the unique morphisms in
T induced by the universal property of the product, and D and D' are the domains
of f and h, respectively*.

'We use angle brackets to denote the unique morphism resulting from a product diagram. Note that
these morphisms are not spans.
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First, we show that Span_(7) is a division allegory, for a logical relation ~. Since
& Cr~, the mapping @ : Spang(7) — Span_(T), defined by Q([f,gle) = [f, gl~, is a
representation of allegories, meaning that () preserves © and N.

5.6. THEOREM. For a topos T, Spang(T) is a division allegory.

Proor. Utilizing [Johnstone, 2002, Theorem 3.4.2] and [Hosseini, 2022, Theorem 4.2],
Spang(7) is a division allegory, where [h, kl¢/[f, 9ls := [m1a, mea]e, in which a = V1 (f X
1)*(mnry), and m, gy is the mono part of (h, k). n

5.7. THEOREM. For a logical relation ~, Span_(T) is a division allegory and
QU(=)/1f gle) = (=)/1f, gl~-

PRrROOF. Let (—)/[f, g]~ := Q((—=)/[f, gle). It follows from the definition of logical relation
that this definition is well-defined. We have

[h, k] = Qlh, ke < Q(([h, Kle[f, gle) /1S, 9le) = ([h, K1~ [f, g]~)/1f5 91~

and
([r, s]~ /[, gl 9l = QUIr, sle /1S 9le) QLS gle
= Q(([T’ 3]5/[f7 g]z‘))[fa 9]5) < Q[T’ 3]5 = [T’ S]N'
Therefore, (—)/[f, g]~ is right adjoint to (—)[f, ]~ ]

5.8. THEOREM. Spang(T) is a power allegory.

PROOF. Since T is a topos, Rel(T,E, M) is a power allegory with €4: PA — A defined
as
€A

N

PA<—PAXxA——A

By [Hosseini, 2022, Theorem 2.3], we have Rel(7,E, M) = Spang(T), and €4: PA — A
in Spang(7) is defined as in Rel(T,&, M). u

5.9. THEOREM. For a logical relation ~, Span_(T) is a power allegory and Map(Span_(T))
18 a topos.

PROOF. Let €4: PA — A in Span_(T) be Q(€4: PA — A). Since Q((—)/[f,9ls) =
(—)/[f, 9]~ and @ is a representation, Span_(7) is a power allegory. Then by [Johnstone,
2002, Corollary 3.4.7], Map(Span_ (7)) is a topos. =
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Denoting Map(Q) by n:
5.10. COROLLARY. n: T — Map(Span_(T)) is a logical functor.

In the rest of this section, we present a different kind of compatible relation, generated
by a class of endospans, that can be considered as an extension of relations generated
by classes of morphisms. Utilizing them, we can generate some logical relations. An
endospan, as depicted below, is a span in which its domain and codomain are the same.

If in the above endospan p = ¢ and p is an isomorphism, it is called an endospan of an
1s0.

5.11. DEFINITION.
o A class of endospans is called saturated if it contains all endospans of isos.

e Suppose A is a saturated class of endospans. The compatible relation generated by
A, denoted by ~ 4, is defined to be the smallest compatible relation ~ on the category
Span(C) such that for all (a,b) in A, (a,b) ~ (1,1).

In the next proposition, we explain how this smallest relation is constructed and
provide a concrete representation of it.

5.12. PROPOSITION. For a saturated class of endospans, A, the compatible relation gen-
erated by A is described as follows:

(h,k) ~ (r,s) <= there are decompositions (h,k) = (hn, k) - (h1,k1) and (r,s) =
(T Sm) - -+ (11, 81), and endospans (ai,by), -, (an,by) € A and (c1,dy), -+, (Cm,dm) €
A such that:

(Tm> Sm)<cm7 dm) ce (7“1, 31)(017 dl) = (hn, kn)<an> bn) s (hh /ﬁ)(@b bl)
Proor. Obvious. |

5.13. EXAMPLE.

e Let 7 be the class of all endospans of isos. The compatible relation generated by
this class is defined as follows: (f, g) ~ (h, k) if there is an isomorphism ¢ such that
f=h¢ and g = k¢. So Span_(C) is the ordinary category of spans.

e For a stable system of morphisms B, we can form a saturated class of endospans
containing (b,b) for all b € B. The compatible relation generated by this class of
endospans is equivalent to ~pg.
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e For a morphism f : A — B, we can form a saturated endospan class by adding the
kernel pair of f to Z, the class of all endospans of isos.

e For a morphism f : A — B, a saturated class of endospans can be formed by adding
the kernel pair of f to the class of endospans containing (e, e) for epimorphisms e.

5.14. DEFINITION. For a morphism f : A — B, we define K(f) to be the saturated class
of endospans containing the kernel pairs of all morphisms h in which f = gh for some
morphism g, and (e, e) for all epimorphisms e.

The compatible relations generated by K (f) imply (p1,p2) ~k(s) (1,1), in which p;, ps
are obtained by the following pullback diagram, where f = gh for some morphism g:

e
S

5.15. LEMMA. Using the above definitions and notations, we have:
(a) For an epimorphism e, [1, €]k () is an isomorphism and its inverse is [e, 1]k (c).
(b) If | = gh, then K(h) € K(f).
PRroOOF. Obvious. m
The smallest logical relation containing K (f) is denoted by L(f).

5.16. LEMMA. The following diagram is formed by pullbacks, in which g is an epimor-
phism. Then Vg y(q1, ¢2) = (p1,p2)-

q2
Q@C
R
@ R r1 P p2 B
)

PROOF. Let (¢ x g)~Y(z,y) < {q1,¢2). Then there is an arrow i such that (g x g) " {z,y) =
(g1, q2)i. Set (g x g) Ha,y) = (z/,y') and (x,y) (g X g) = e. Since g is an epimorphism,
(g X g) is also an epimorphism, and since epimorphisms are stable under pullbacks in a
topos, it follows that e is an epimorphism as well.

We have the following equalizer diagrams:
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fm fom
p__mr _pop A pm® o o4
fm2 fgﬂé

Since e is an epimorphism, fz = fy. Hence (z,y) < (p1,p2). By the following
pullback diagrams we get (g x ¢)~'(p1,p2) = (q1,42). Then, (z,y) < (py,pz) implics
(9% 9) Mz, y) < (a1, 9)-

(Q V1 ‘R r1 P
(%qz)j <r,pzr1)l L<P17p2>
CxC CxB B x B
1xg gx1

5.17. COROLLARY. Suppose f = gh with h an epimorphism. Then L(g) C L(f).

PROOF. Let g = uv and consequently f = uvh. So the kernel pair of v is related to (1, 1)
by L(g) and the kernel pair of vh is related to (1,1) by L(f). Since the kernel pairs of h
and vh are related by L(f), by using Vj,«, and Lemma 5.16, the kernel pair of v is related
to (1,1) by L(f). n

6. Booleanization of a topos

In this section, we aim to associate a Boolean topos to each topos in a universal way. To
achieve this, we introduce a class of morphisms called logical classes, which support certain
logical operations. Using this, we construct a quotient of spans, yielding the associated
Boolean topos.

6.1. DEFINITION. Let T be a topos and let W be a class of morphisms in T. We call VW
a logical class if it satisfies the following conditions:

e W is closed under composition, pullbacks, and contains all isomorphisms,

e £EC W,
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o for each w € W, its M-part is also in W,

e for any monomorphism m € W, and for any monomorphism f and morphism g in
T, the morphism Yym is also in W:

—_—
Vgm  Vf

6.2. THEOREM. If W is a logical class, then ~yy is a logical relation.
PROOF. It can be easily verified. ]

In any topos, the morphism b : 1+1 —  is a monomorphism. Our goal is to make this
morphism an isomorphism. Let B(7) be the smallest logical class containing b : 141 — €.

6.3. THEOREM. Map(Spany (7)) is a Boolean topos.

PROOF. Since (b,b) ~g(r) (1,1), we have [b,blgr) = [1,1]p7). Thus, [1,b]p) is a retrac-
tion. Because b is mono, we get [b, 1]z7)[1, blgir) = 1. Hence, [1,b] is an isomorphism in
Spang(r)(T), and therefore also in Map(Span (7))

By Theorem 5.10, the functor n : 7 — Map(Spany (7)) is logical. By [Johnstone,
2002, Corollary 2.2.10], n is cocartesian. Thus,

nb:14+1—-Q)=[1,0:1+1— Q.

So Map(Spang (7)) is a Boolean topos, as required. n
We now show that this construction is universal.
6.4. LEMMA. For any logical functor F : T —T', we have F(B(T)) C B(T").

PROOF. Since F' preserves epis, monos, and V, one can easily check that F'~1(B(7")) is a
logical class. Because F(b) =¥/, we have b € F~1(B(T")), and thus B(T) C F~Y(B(T")).
Therefore, F(B(T)) C B(T"). n

6.5. THEOREM. Let F': T —="T" be a logical functor.

(a) The map PF : Spang(T) —=Spang(T") defined by [f, glsr) — [Ff, Fglser
is a representation of allegories.

(b) Map(PF) : Map(Spany (7)) —= Map(Spany - (T")) is a logical functor.

PROOF. For (a), Lemma 6.4 ensures the map is well-defined. The rest follows from the
fact that F' preserves pullbacks. For (b), the result follows from the definition of €, in
both allegories. n
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Let BoolTop denote the category whose objects are Boolean toposes and whose mor-
phisms are logical functors. This forms a subcategory of the category Top of toposes and
logical functors. Using Theorem 6.5, we define the functor

Bool : Top— BoolTop

where Bool(F') and Bool(7') denote Map(PF) and Map(Spany (7)), respectively.
6.6. THEOREM. BoolTop is a reflective subcategory of Top.

ProOOF. We show that the functor Bool is left adjoint to the inclusion functor ¢ :
BoolTop — Top. It suffices to show that

n: T —=Map(Spang(T)) = ¢ - Bool(T)

is universal.
Let FF : T—=T" = «(T") be a logical functor. Since F is cocartesian and 7 is
a Boolean topos, F(b) is an isomorphism. Theorem 6.5 yields the functor Bool(F) :

Bool(7) —= Bool(T”). It is easy to check that B(7T’) = &, hence Bool(7") = 7. So we
have the commutative triangle:

T ! Map(Spang (7)) = ¢ - Bool(T)
|

Bool(F)
T/

For uniqueness, let [f, g]s(r) be a map in Spang (7). Then [f, 1]5r) is an isomor-
phism with inverse [1, f]g(. For any functor G such that G on = F', we compute:

Glf,glsry =Gl1,
1

= Bool(F)[f, gls(m)-

This completes the proof. [
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