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MULTICATEGORIES FROM SYMMETRIC MONOIDAL
CATEGORIES

A. D. ELMENDORF

Abstract. This paper considers the possible underlying multicategories for a sym-
metric monoidal category, and shows that, up to canonical and coherent isomorphism,
there really is only one. As a result, there is a well-defined forgetful functor from sym-
metric monoidal categories to multicategories, as long as all morphisms of symmetric
monoidal categories are at least lax symmetric monoidal.
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1. Introduction

The main aim of this paper is to give a rigorous treatment of the folk theorem that a
symmetric monoidal category has a canonical underlying multicategory. The problem
with this statement is that it is false: a general symmetric monoidal category has many
different underlying multicategories, and there is no truly natural choice of which one to
use. However, even if we use an absurdly large collection of underlying multicategories, as
we will do in this paper, they are all canonically and coherently isomorphic. As a result, it
doesn’t matter which ones we use, or even if we use different ones for different symmetric
monoidal categories: we still obtain a functor from symmetric monoidal categories (with
lax monoidal functors between them) to multicategories, given by whatever underlying
multicategory we choose for each symmetric monoidal category.

This underlying multicategory functor has a “weak” left adjoint, whose construction
is the same as the actual left adjoint to the underlying multicategory functor from per-
mutative categories and strict maps, as constructed in [3]. However, the “counit” of the
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adjunction is only natural with respect to strict maps, which is far too restrictive in gen-
eral. The adjunction triangles do however commute, so we do get an adjunction comonad
on symmetric monoidal categories, which provides us with a strictification construction
different from that given in [5].

Previous work on this issue has concentrated on monoidal categories that need not be
symmetric: see, for example, Hermida’s work in [4], especially section 7, as well as section
3.3 of Leinster’s [6]. In particular, Leinster discusses symmetric multicategories in Section
A.2, but doesn’t relate them to symmetric monoidal categories, which he doesn’t appear
to discuss at all.

The author owes an enormous debt of gratitude to the anonymous referee, who scru-
tinized the paper with astonishing thoroughness and offered perceptive and probing com-
ments throughout the paper, to its great benefit. All flaws that remain are, however,
entirely the responsibility of the author.

It has been a pleasure to discuss some of the material in this paper with Anna Marie
Bohmann, Cary Malkiewich, Mona Merling, and Inna Zakharevich. They too are in no
way responsible for any errors or omissions that may occur in the paper.

2. Definitions and Results

We begin by describing the enormous array of possible underlying multicategories for
a symmetric monoidal category, and this relies on the categorical operad Y described
in [1] whose algebras are precisely symmetric monoidal categories. The objects of the
component category Y (n) can be thought of as a complete parenthesization of a list of
length at least n, together with a way of permuting and inserting n variables into slots in
the list. The rest of the slots are to be filled with identity elements. There is a unique
morphism from any object of Y (n) to any other, so all diagrams in Y (n) commute. Then
we will describe one underlying multicategory for a symmetric monoidal category C for
each sequence of functions

κn : ObCn → ObY (n)

for n ≥ 0, with no further structure. We give an example of such a sequence at the
beginning of Section 7. We will write this underlying multicategory as UκC. The idea
is that for each n-tuple x = (x1, . . . , xn) of objects of C, the image κnx tells us how to
combine the objects into a single object using the symmetric monoidal structure of C.
Formally, we obtain an object κn(x)(x) for each x ∈ Cn; we will abbreviate this, and
write

κn(x)(x) = κx.

For notation, we will always write a morphism set in a multicategory with a semicolon sep-
arating the source list from the target object. Then the formal definition of the morphism
sets in UκC is almost as follows:
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2.1. Definition. Given an n-tuple x = (x1, . . . , xn) of objects of C and a single object y
of C, we define

UκC(x; y) = C(κx, y).

The reason this is almost, but not quite, the correct definition is described at the
beginning of Section 3.

Our first major theorem is then

2.2. Theorem. The morphism sets UκC(x; y) form a multicategory, with objects the ob-
jects of C.

The structure is given in Section 3; the verification that the properties of a multicat-
egory are satisfied is somewhat lengthy, and deferred until Section 7.

Our next major theorem shows that these underlying multicategories are all essentially
the same.

2.3. Theorem. Let λn : ObCn → ObY (n) be another sequence of functions defining
another underlying multicategory UλC. Then there is a canonical isomorphism of multi-
categories

UκC → UλC.

Further, given a third sequence ρn : ObCn → ObY (n), the diagram of canonical isomor-
phisms

UκC //

""E
EE

EE
EE

E UλC

||yy
yy
yy
yy

UρC

commutes, so the isomorphisms are both canonical and coherent.

The proof is in Section 4.
In order for theorem 2.3 to give us an actual underlying multicategory functor, we need

the morphisms between symmetric monoidal categories to induce morphisms between the
underlying multicategories. To this end, we have:

2.4. Theorem. Let C and D be symmetric monoidal categories, with arbitrary choices UC
and UD of underlying multicategories. Then a map of multicategories (a multifunctor)

UC → UD

determines and is determined by a lax symmetric monoidal functor C → D. This as-
signment produces a fully faithful functor from symmetric monoidal categories with lax
symmetric monoidal functors to multicategories with multifunctors.

The proof is in Section 5. As a result, Theorem 2.3 shows that any choices of underlying
multicategories produce canonically isomorphic underlying multicategory functors.



872 A. D. ELMENDORF

2.5. Corollary.Any category of symmetric monoidal categories, all of whose morphism
functors are at least lax symmetric monoidal, supports an underlying multicategory functor
from symmetric monoidal categories to multicategories.

Our last major theorem gives this underlying multicategory functor a weak left adjoint,
where “weak” means that the counit map is only lax natural.

2.6. Theorem. The forgetful functor from symmetric monoidal categories to multicate-
gories has a weak left adjoint, as long as we include strong symmetric monoidal functors
as maps of symmetric monoidal categories. The adjunction is weak in the sense that the
counit is only natural up to a natural transformation.

The construction is exactly the same as the left adjoint constructed in [3], Theorem
4.2, in the context of permutative categories and strict maps. The proof is in Section 6.
Since the unit of the weak adjunction is actually natural, we do get a comonad, although
only a weak monad. We also observe the following in Section 6:

2.7. Theorem. The weak left adjoint from Theorem 2.6 converts multicategories and
multifunctors into permutative categories and strict maps, so the comonad of the weak
adjunction converts symmetric monoidal categories and lax symmetric monoidal functors
into permutative categories and strict maps. The (weak) counit of the adjunction is a
homotopy equivalence of categories.

This is not quite the same as the strictification construction due originally to Isbell [5],
and made explicit by May in [7]. We discuss the comparison and differences in Section 6.

3. Underlying Multicategories: Structure

In this section we give the structure of UκC as a multicategory, following the definition
of a multicategory given in [2], Section 2. (There are other sources for the definition, but
we will use this one for reference.) The objects of UκC are just the objects of C, and we
have already almost defined the morphism sets, namely, given a list x = (x1, . . . , xn) of
objects of C and a target object y, we would like to define

UκC(x; y) = C(κx, y) = C(κn(x)(x), y).

However, this definition obscures a subtle technical point that will be important later: if
x ̸= x′, then UκC(x; y) must be disjoint from UκC(x′; y). For example, if a, b ∈ C, and we
choose κ(a, b) = a⊕ b = κ(a⊕ b), the proposed definition would say that

UκC(a, b; a⊕ b) = C(a⊕ b, a⊕ b) = UκC(a⊕ b; a⊕ b),

which makes ida⊕b play the role of both a 2-morphism and a 1-morphism. To avoid this
problem rigorously, we would need to define instead

UκC(x; y) = (x, C(κx, y))
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in order to explicitly keep track of the source string in UκC. However, to avoid making
notation more cumbersome than strictly necessary we will continue to drop the explicit
source string, and just use C(κx, y). When necessary, we will indicate whether an element
is to be considered an element of a particular arity by using a superscript: so in the
example, id2

a⊕b will indicate ida⊕b as an element of UκC(a, b; a⊕b), while id1
a⊕b will indicate

ida⊕b as an element of UκC(a⊕ b; a⊕ b).
We must specify identity elements in UκC(a; a) = C(κ(a), a) for each object a of C.

Now κ(a) = κ1(a)(a), and κ1(a) is an object of Y (1), which also has the canonical identity
object 1 ∈ Y (1). We therefore have a unique isomorphism ω(a) : κ1(a) → 1 in Y (1), and
applying this to a itself, we get a canonical isomorphism in C:

ω(a)(a) : κ(a) = κ1(a)(a) → 1 · a = a,

which we take as our identity element in UκC(a; a) = C(κ(a), a).
We must give a right action of Σn on the morphism sets with source n-tuples of objects.

For x = (x1, . . . , xn) and σ ∈ Σn, let’s write

σ−1x = (xσ(1), . . . , xσ(n))

in accordance with the standard left action of Σn. Then we need to define a map

σ∗ : UκC(x; y) → UκC(σ−1x; y)

which we will verify does give a right action in Section 7. We define σ∗ by appealing to
the definition of an operad action to see that

κx = κn(x)(x) = (κn(x) · σ)(σ−1x).

Since κn(σ
−1x) and κn(x) · σ are both objects of Y (n) there is a unique isomorphism

θ(x, σ) : κn(σ
−1x) → κn(x) · σ.

As a result, we have a canonical map, which is an isomorphism,

κ(σ−1x) = κn(σ
−1x)(σ−1x)

θ(x,σ) // κn(x) · σσ−1x = κn(x)(x) = κx

which induces our desired map

σ∗ : UκC(x; y) = C(κx, y) → C(κ(σ−1x), y) = UκC(σ−1x; y).

Explicitly, we can say σ∗ = C(θ(x, σ), 1).
Finally, we must specify a multiproduct that gives the composition in UκC, and in

order to do so efficiently, we need some notation. Suppose we are given a final target
object z, a tuple y = (y1, . . . , yn) that we will map to z, and for each s with 1 ≤ s ≤ n, a
tuple xs = (xs1, . . . , xsjs) that we will map to ys. Let j = j1+ · · ·+ jn, and write ⊙sxs for



874 A. D. ELMENDORF

the j-tuple that is the concatenation of all the xs’s. Then we must specify a composition
multiproduct

Γ : UκC(y; z)×
n∏
s=1

UκC(xs; ys) → UκC(⊙sxs; z).

But using the definition of UκC, this means giving a map

Γ : C(κy, z)×
n∏
s=1

C(κxs, ys) → C(κ(⊙sxs), z).

Now we need just a bit more notation. First, given a list of items such as κx1, . . . , κxn,
we write the entire list as ⟨κxs⟩, with the subscript presumed to run over appropriate
limits. Next, since we are using Γ for our composition in UκC, we will use γ for the operad
operation in Y to avoid confusion. (We used Γ in [1] for the operation in Y .)

We can now rewrite
n∏
s=1

C(κxs, ys) = Cn(⟨κxs⟩,y),

and noting that since κn(y) is an object of Y (n), it induces a functor Cn → C. Fur-
ther, both κj(⊙sxs) and γ(κny; ⟨κjsxs⟩) are objects of Y (j), and so there is a unique
isomorphism

ϕ(y, ⟨xs⟩) : κj(⊙sxs) → γ(κny; ⟨κjsxs⟩),
which we can apply to the object ⊙sxs to obtain an isomorphism which we abusively
denote with the same notation:

ϕ(y, ⟨xs⟩) : κ(⊙sxs) → γ(κny; ⟨κjsxs⟩)(⊙sxs) = κny⟨κxs⟩,

and consequently an induced map

C(ϕ(y, ⟨xs⟩), 1) : C(κn(y)⟨κxs⟩, z) → C(κ(⊙sxs), z).

We now define our composition multiproduct in UκC as the following composite:

C(κy, z)×
∏n

s=1 C(κxs, ys)
=

��
C(κy, z)× Cn(⟨κxs⟩,y)

1×κn(y)
��

C(κy, z)× C(κn(y)⟨κxs⟩, κy)
◦
��

C(κn(y)⟨κxs⟩, z),
C(ϕ(y,⟨xs⟩),1)
��

C(κ(⊙sxs), z).
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This completes the specification of the structure of UκC as a multicategory. The verifica-
tion that this structure satisfies the properties of a multicategory is deferred to Section
7.

4. Isomorphisms of Underlying Multicategories

In this section we prove Theorem 2.3, which shows that all the multicategories UκC for all
possible values of κ are canonically and coherently isomorphic. This means that we can
reasonably speak of “the” underlying multicategory for a symmetric monoidal category,
since any one is unique up to a unique canonical isomorphism.

We suppose given two arbitrary sequences

κn : ObCn → ObY (n) and λn : ObC → ObY (n),

which determine underlying multicategories UκC and UλC. The proof of the theorem con-
sists of the definition of the canonical isomorphism UκC → UλC, the verification that the
coherence diagram commutes, and finally the verification that our map is an isomorphism
of multicategories. We begin with the definition of the canonical isomorphism.

4.1. Definition. Let κn : ObCn → ObY (n) and λn : ObCn → ObY (n) be any two
sequences of functions. Then given an object x ∈ Cn, we have the objects κnx and λnx of
Y (n), and we define

α(x) : λnx → κnx

to be the unique isomorphism in Y (n) with the given source and target.
To define an isomorphism of multicategories UκC → UλC, we must give maps on

objects and on sets of morphisms. On objects, we just use idObC, since both underlying
multicategories have ObC as their objects. On morphisms, for each x ∈ Cn, we have the
induced map, which technically should be labeled α(x)(x),

λx = λn(x)(x)
α(x) // κn(x)(x) = κx,

which in turn induces our desired map

Uκ(x; y) = C(κx, y) C(α(x),1) // C(λx, y) = Uλ(x; y).

It follows immediately from the definition that these maps are coherent, in the sense
given in the theorem and in greater detail in the following corollary.

4.2. Corollary. Let ρn : ObCn → ObY (n) be a third set of functions defining an
underlying multicategory UρC, let

β(x) : ρnx → λnx and δ(x) : ρnx → κnx
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be the unique isomorphisms in Y (n) inducing the alleged isomorphisms of underlying
multicategories UλC → UρC and UρC → UκC. Then the diagram of induced isomorphisms

UκC
∼= //

∼= ""E
EE

EE
EE

E UλC

∼=||yy
yy
yy
yy

UρC

commutes. Further, the induced automorphism on any one underlying multicategory is
the identity.

Proof. The isomorphisms of underlying categories are induced by the diagrams of iso-
morphisms in Y (n)

κnx λnx
α(x)oo

ρnx,
δ(x)

ccGGGGGGGGG β(x)

;;wwwwwwwww

which commute since they are diagrams in Y (n), where all diagrams commute. If we set
λ = κ, then α(x) = idκnx, so the automorphism of UκC is the identity.

We must show that this definition actually preserves multicategory structure. Since
the inducing maps α(x) are all isomorphisms, the induced maps on morphism sets are all
bijections, so this will show that we do have an isomorphism of multicategories. We begin
with the identity structure.

4.3. Proposition. The identity element ida ∈ UκC(a; a) is sent to ida ∈ UλC(a; a).

Proof. We have the unique isomorphisms in Y (1)

ω(a) : κ1(a) → 1 and ω′(a) : λ1(a) → 1

which applied to a give us the identity elements in UκC(a; a) = C(κa, a) and UλC(a; a) =
C(λa, a). But we also have the diagram

λ1a
α(a) //

ω′(a)   A
AA

AA
AA

A κ1a

ω(a)~~}}
}}
}}
}}

1

in Y (1), where all diagrams commute, and so

UκC(a; a) = C(κa, a) C(α(a),1) // C(λa, a) = UλC(a; a)

sends ω(a) to ω′(a), and therefore preserves the identity morphisms.
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Next, we show that composition is preserved. Following the definition of the com-
position in UκC given in Section 3, we assume given a final target object z, an n-tuple
y = (y1, . . . , yn) mapping to z, and for each 1 ≤ s ≤ n, a js-tuple xs that will map to
ys. Also as before, we say j = j1 + · · · jn, and the concatenation ⊙sxs of all the xs’s is
therefore a j-tuple.

4.4. Proposition.The maps of morphism sets defined above preserve composition, mean-
ing that the following diagram commutes:

C(κy, z)× Cn(⟨κxs⟩,y) Γ //

C(α(y),1)×Cn(⟨α(xs)⟩,1)
��

C(κ(⊙sxs), z)

C(α(⊙sxs),1)
��

C(λy, z)× Cn(⟨λxs⟩,y) Γ
// C(λ(⊙sxs), z).

Proof. We expand the diagram as follows using the definition of Γ, where g is induced
by the unique isomorphism in Y (j) given by

γ(λny; ⟨λjsxs⟩) → γ(κny; ⟨κjsxs⟩),

and ϕ′(y, ⟨xs⟩) : λ(⊙sxs) → λn⟨λxs⟩ is the λ-analogue of ϕ(y, ⟨xs⟩):

C(κy, z)× Cn(⟨κxs⟩,y)
1×κny //

C(α(y),1)×Cn(⟨α(xs)⟩,1)
��

C(κy, z)× C(κny⟨κxs⟩, κy)

C(α(y),1)×C(g,α(y)−1)

uullll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

◦
��

C(λy, z)× Cn(⟨λxs⟩,y)
1×λny

��

C(κny⟨κxs⟩, z)

C(g,1)

uulll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

l
C(ϕ(y,⟨xs⟩),1)
��

C(λy, z)× C(λny⟨λxs⟩, λy)
◦
��

C(κ(⊙sxs), z)

C(α(⊙sxs),1)

��

C(λny⟨λxs⟩, z) C(ϕ′(y,⟨xs⟩),1)
// C(λ(⊙sxs), z).

The bottom (distorted) square commutes because all the maps are induced by isomor-
phisms in Y (j), where all diagrams commute. The middle (somewhat less distorted)
square commutes because we are composing with both α(y) and its inverse, which then
cancel. The top distorted square is the product of two separate squares, and commutes
when restricted to the first factor C(κy, z) by inspection. This reduces the argument to
verifying that the top square commutes when restricted to the second factor, at which
point the desired diagram becomes

Cn(⟨κxs⟩,y)
κny //

Cn(⟨α(xs)⟩,1)
��

C(κny⟨κxs⟩, κy)
C(g,α(y)−1)
��

Cn(⟨λxs⟩,y) λny
// C(λny⟨λxs⟩, λy).
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Tracing a typical element ⟨fs⟩ ∈ Cn(⟨κxs⟩,y) through the diagram, we find that commu-
tativity requires us to verify that

λny⟨fs ◦ α(xs)⟩ = α(y)−1 ◦ κny⟨fs⟩ ◦ g,

or equivalently,
α(y) ◦ λny⟨fs ◦ α(xs)⟩ = κny⟨fs⟩ ◦ g,

where we recall that g is induced by the unique map in Y (j)

γ(λny; ⟨λjsxs⟩) → γ(κny; ⟨κjsxs⟩),

therefore giving the canonical isomorphism

λny⟨λxs⟩ → κny⟨κxs⟩.

Our desired equality now becomes the commutativity of the following diagram, in which
the top row composes to g:

λny⟨λxs⟩
α(y) //

λny⟨fs◦α(xs)⟩
��

κny⟨λxs⟩
κny⟨α(xs)⟩ //

κny⟨fs◦α(xs)⟩ ((QQ
QQQ

QQQ
QQQ

QQQ
Q

κny⟨κxs⟩

κny⟨fs⟩
��

λy
α(y)

// κy.

The top row does compose to g, since it is induced by maps in Y (j), where all diagrams
commute. The triangle commutes by functoriality of κny, and the left part of the diagram
by naturality of α(y). The total diagram therefore commutes, which completes the proof
that our map of multicategories preserves composition.

To conclude showing that we have a map of multicategories, we must show that the
Σn-actions on the morphism sets are preserved. This is the content of the following
proposition:

4.5. Proposition. Let x ∈ Cn, y ∈ C, and σ ∈ Σn. Then the following diagram com-
mutes:

UκC(x; y)
C(α(x),1) //

σ∗

��

UλC(x; y)

σ∗

��
UκC(σ−1x; y)

C(α(σ−1x),1)
// UλC(σ−1x; y).

Proof. We already have the unique isomorphism θ(x, σ) : κn(σ
−1x) → κnx · σ in Y (n)

which induces the map σ∗ in UκC, and analogously let

π(x, σ) : λn(σ
−1x) → λnx · σ
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be the unique isomorphism in Y (n) inducing the map σ∗ in UλC. Then the required square
converts and expands as follows:

C(κx, y) C(α(x),1) //

=

��

C(λx, y)
=

��
C((κnx · σ)(σ−1x), y)

C(θ(x,σ),1)
��

C(α(x)·σ,1) // C((λnx · σ)(σ−1x), y)

C(π(x,σ),1)
��

C(κ(σ−1x), y)
C(α(σ−1x),1)

// C(λ(σ−1x), y).

The top square commutes because both horizontal arrows express the map induced by
α(x). The bottom square commutes since all the arrows are induced by maps in Y (n),
where all diagrams commute. The induced map therefore preserves the Σn-action. This
concludes the proof that we have defined a map of multicategories, which must be an
isomorphism since it is a bijection on objects and all morphism sets, and further the
inverse is induced by the maps α(x)−1.

5. The Relation to Lax Symmetric Monoidal Functors

We have now shown that all of the vast collection of possible underlying multicategories
UκC for C are canonically and coherently isomorphic, so we obtain an underlying mul-
ticategory functor that is unique up to unique isomorphism. This still leaves open the
issue of what sort of maps of symmetric monoidal categories can be used to give maps of
underlying multicategories. This is answered by Theorem 2.4, whose proof occupies this
section.

Before starting the proof of the theorem, it will be convenient to make some assump-
tions about the sequences {κn} defining our underlying multicategories. This is justified
by the fact that all the underlying multicategories we have defined are canonically and
coherently isomorphic, so we can choose any one of them without loss of generality. In
particular, throughout this proof, we will assume that both underlying multicategories
are defined by sequences of functions that are constant on objects of the same length, so
are defined by a sequence of particular objects of Y (n) for each n, which we will call just
κn. We ask that κ0 = 0, the generator in dimension 0 of the objects of Y , that κ1 = 1, the
identity element in Y (1), and that κ2 = m, the generator in dimension 2 of the objects of
Y ; note that the action of Y on any symmetric monoidal category C sends 0 to the unit
object eC, and sends m to the monoidal product, so m · (a, b) = a ⊕ b. For larger values
of n, we use induction to define

κn = γ(m;κn−1, 1).

Note however that κ1 ̸= γ(m;κ0, 1), since γ(m; 0, 1) acts on an object a to produce eC⊕a,
while κ1 = 1 acts as the identity.
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The effect of our assumed values of the κn’s is that we are parenthesizing all products
by piling up the parentheses to the left.

We will drop the argument x of κnx for an object x ∈ Cn, since we are assuming κn
is constant, and instead just write κn.

As an additional notational assumption, we suppose give a multifunctor F̂ and wish
to produce a lax symmetric monoidal functor F . Putting the hat on the multifunctor will
distinguish it from its induced monoidal functor, while reducing the number of hats in
the description.

Now we begin the proof by assuming that we are given a multifunctor F̂ : UκC → UκD;
we must show that this induces a lax symmetric monoidal functor F : C → D. In
particular, we must produce an induced functor F : C → D, and show that we have
induced natural transformations η : eD → FeC and ξ : Fa⊕Fb→ F (a⊕b), subject to the
following three diagrams, where ca : a⊕ eC → a is the unit isomorphism, τ : a⊕ b→ b⊕ a
is the commutativity isomorphism, and α : (a ⊕ b) ⊕ c → a ⊕ (b ⊕ c) is the associativity
isomorphism:

Fa⊕ eD
1⊕η //

cFa

��

Fa⊕ FeC

ξ

��
F (a) F (a⊕ eC),Fca

oo

(Fa⊕ Fb)⊕ Fc
α //

ξ⊕1
��

Fa⊕ (Fb⊕ Fc)

1⊕ξ
��

F (a⊕ b)⊕ Fc

ξ

��

Fa⊕ F (b⊕ c)

ξ

��
F ((a⊕ b)⊕ c)

Fα
// F (a⊕ (b⊕ c)),

and
Fa⊕ Fb τ //

ξ

��

Fb⊕ Fa

ξ

��
F (a⊕ b)

Fτ
// F (b⊕ a).

We produce our lax monoidal functor as follows.

5.1. Definition. The functor F is just the underlying functor of the multifunctor. Since
we are assuming κ1 = 1, the identity for Y (1), it follows that κa = a for a single object
a, and therefore

UκC(a; b) = C(κa, b) = C(a, b),
and similarly for UκD. We do therefore get a functor F : C → D by restricting to
1-morphisms.

The unit map η : eD → FeC arises from the map of 0-morphisms. Since we are
assuming κ0 = 0 ∈ Y (0), and since C0 is the terminal category with one object which we
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denote ∗, and further the action of 0 ∈ Y (0) by definition selects out the unit element in
a symmetric monoidal category, we see that

UκC(; y) = C(κ(∗), y) = C(0 · ∗, y) = C(eC, y),

by the definition of the action of Y on the symmetric monoidal category C, and similarly
for UκD. Now given a multifunctor F̂ , we restrict to 0-morphisms and have in particular
a map

C(eC, eC) = UκC(; eC)
F̂0 // UκD(; F̂ eC) = D(eD, FeC).

We define η : eD → FeC to be the image of ideC (technically id0
eC
) under this map of

0-morphisms.
We next define the structure map ξ : Fa ⊕ Fb → F (a ⊕ b). Since the action of Y

on a symmetric monoidal category sends the generator m ∈ Y (2) to the product map, so
m · (a, b) = a⊕ b, and we have assumed κ2 is constant at the element m ∈ Y (2), we can
restrict our multifunctor to 2-morphisms, and have

C(a⊕ b, a⊕ b)

=

��
UκC(a, b; a⊕ b)

F̂2
��

UκD(F̂ a, F̂ b; F̂ (a⊕ b))

=

��
D(Fa⊕ Fb, F (a⊕ b)),

and we take ξ to be the image of ida⊕b (technically id2
a⊕b) under this map.

We must verify the three coherence diagrams, and begin with the unit coherence
diagram.

5.2. Lemma. With the above definitions, the diagram

Fa⊕ eD
1⊕η //

cFa

��

Fa⊕ FeC

ξ

��
F (a) F (a⊕ eC).Fca

oo

commutes.
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Proof. This will follow from the definition of the multicomposition in UκC and UκD, and
the multifunctoriality of F̂ . We observe first that we can write a ⊕ eC as γ(m; 1, 0) · a,
and then the unit isomorphism ca : a ⊕ eC → a is induced by the unique isomorphism
γ(m; 1, 0) → 1 in Y (1). Further, this is the inverse of the following isomorphism, which is a
special case of the isomorphism ϕ(y, ⟨xs⟩) introduced in the definition of the multiproduct
on UκC:

ϕ((a, eC), a) : 1 = κ1(a) → γ(κ2(a, eC);κ1a, κ0(∗)) = γ(m; 1, 0).

The key step is to examine the following composition in the multicategory UκC:

UκC(a, eC; a⊕ eC)× UκC(a; a)× UκC(; eC) → UκC(a; a⊕ eC).

In particular, we look at the triple (id2
a⊕eC , id

1
a, id

0
eC
) and find its image in the expanded

version of the composition as follows:

C(m · (a, eC), a⊕ eC)× C2((a, eC), (a, eC))

1×m
��

C(m · (a, eC), a⊕ eC)× C(m · (a, eC),m · (a, eC))
◦
��

C(m · (a, eC), a⊕ eC)

=

��
C(γ(m; 1, 0) · a, a⊕ eC)

C(ϕ((a,eC),a),1)
��

C(a, a⊕ eC).

Tracing the triple (ida⊕eC , ida, ideC) through the composition, we see that at the next-to-
the-last step, we have id1

a⊕eC . This is then composed with ϕ((a, eC), a), which is the inverse
of the map inducing ca, so the composite is c−1

a .
Now we apply the multifunctor F̂ to the entire composite, so by multifunctoriality,

we must end up with F̂ (c−1
a ) = (F̂ ca)

−1. The starting point is by definition the triple
(ξ, idFa, η), and we trace this through the composite

UκD(Fa, FeC;F (a⊕ eC))× UκD(Fa;Fa)× UκD(;FeC) → UκD(Fa;F (a⊕ eC)),
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which expands to

D(m · (Fa, FeC), F (a⊕ eC))×D2((Fa, eD), (Fa, FeC))

1×m
��

D(m · (Fa, FeC), F (a⊕ eC))×D(m · (Fa, eD),m · (Fa, FeC))
◦
��

D(m · (Fa, eD), F (a⊕ eC))

D(ϕ((Fa,eD),Fa),1)

��
D(Fa, F (a⊕ eC)).

Our triple now traces as follows, since the last map is, as before, composition with c−1
Fa:

(ξ, idFa, η) 7→ (ξ, idFa ⊕ η) 7→ ξ ◦ (idFa ⊕ η) 7→ ξ ◦ (idFa ⊕ η) ◦ c−1
Fa.

Since this must coincide with (F̂ ca)
−1 = (Fca)

−1 by multifunctoriality, our desired dia-
gram does commute.

We must verify commutativity of the associativity coherence diagram, and claim:

5.3. Lemma. The associativity coherence diagram

(Fa⊕ Fb)⊕ Fc α //

ξ⊕1
��

Fa⊕ (Fb⊕ Fc)

1⊕ξ
��

F (a⊕ b)⊕ Fc

ξ
��

Fa⊕ F (b⊕ c)

ξ
��

F ((a⊕ b)⊕ c)
Fα

// F (a⊕ (b⊕ c)).

commutes.

Proof. Again we exploit the definition of the multicomposition in the two underlying
multicategories, along with the multifunctoriality of F̂ . We note first that by our conven-
tion, κ3 = γ(m;m, 1), and therefore κ3(a, b, c) = (a ⊕ b) ⊕ c. Further, the associativity
isomorphism (a⊕ b)⊕ c→ a⊕ (b⊕ c) is induced by the unique isomorphism in Y (3)

α : κ3 = γ(m;m, 1) → γ(m; 1,m).

We will need this associativity isomorphism in two different guises: as a 3-morphism
in UκC(a, b, c; a⊕ (b⊕ c)) and as a 1-morphism in UκC((a⊕ b)⊕ c; a⊕ (b⊕ c)). Let’s call
the first of these α3, and the second one α1.
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We begin the argument by showing that the left vertical column in the desired diagram
arises from id3

(a⊕b)⊕c by applying the multifunctor F̂ . We consider the composition in UκC
as follows:

UκC(a⊕ b, c; (a⊕ b)⊕ c)× UκC(a, b; a⊕ b)× UκC(c; c) → UκC(a, b, c; (a⊕ b)⊕ c),

and trace the image of the triple (id2
(a⊕b)⊕c, id

2
a⊕b, id

1
c) through its expansion:

C(m · (a⊕ b, c), (a⊕ b)⊕ c)× C2((m · (a, b), c), (a⊕ b), c)

1×m
��

C(m · (a⊕ b, c), (a⊕ b)⊕ c)× C(m · (m · (a, b), c),m · (a⊕ b, c))

◦
��

C(m · (m · (a, b), c), (a⊕ b)⊕ c)

C(ϕ((a⊕b,c),((a,b),c)),1)
��

C((a⊕ b)⊕ c, (a⊕ b)⊕ c).

Now in the last map of this display, we have ϕ((a ⊕ b, c), ((a, b), c)) : κ3 → γ(κ2;κ2, κ1),
but the target here is just

κ3 = γ(m;m, 1),

so the last map is an identity, and our triple ends up at id3
(a⊕b)⊕c. Applying the multi-

functor F̂ throughout will therefore end us up at F̂ (id3
(a⊕b)⊕c). When we do so, we are

looking at the image of the triple

(F̂ (id2
(a⊕b)⊕c), F̂ (id

2
a⊕b), F̂ (id

1
c)) = (ξa⊕b,c, ξa,b, idF̂ c)

in the composition in UκD given by

UκD(F̂ (a⊕ b), F̂ c; F̂ ((a⊕ b)⊕ c))× UκD(F̂ a, F̂ b; F̂ (a⊕ b))× UκD(F̂ c, F̂ c)

Γ
��

UκD(F̂ a, F̂ b, F̂ c; F̂ ((a⊕ b)⊕ c)).

This expands, using the definition of Γ, as follows:

D(m · (F (a⊕ b), F c), F ((a⊕ b)⊕ c))×D2((m · (Fa, Fb), F c), (F (a⊕ b), F c))

1×m
��

D(m · (F (a⊕ b), F c), F ((a⊕ b)⊕ c))×D(m · (m · (Fa, Fb), F c),m · (F (a⊕ b), F c))

◦
��

D(m · (m · (Fa, Fb), F c), F ((a⊕ b)⊕ c))

D(ϕ((F (a⊕b),F c),(Fa,Fb,Fc)),1)
��

D((Fa⊕ Fb)⊕ Fc, F ((a⊕ b)⊕ c)).
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But again, the final map here is just the identity, since κ3 = γ(m;m, 1). Our source triple
therefore traces as

(ξa⊕b,c, ξa,b, idFc) 7→ (ξ, ξ ⊕ 1) 7→ ξ ◦ (ξ ⊕ 1).

We may conclude that F̂ sends

id3
(a⊕b)⊕c ∈ UκC(a, b, c; (a⊕ b)⊕ c)

to

ξ ◦ (ξ ⊕ 1) ∈ UκD(F̂ a, F̂ b, F̂ c; F̂ ((a⊕ b)⊕ c))

= D((Fa⊕ Fb)⊕ Fc, F ((a⊕ b)⊕ c)),

which is the left column of the desired diagram.
Next, we consider the composition in UκC

UκC((a⊕ b)⊕ c; a⊕ (b⊕ c))× UκC(a, b, c; (a⊕ b)⊕ c) → UκC(a, b, c; a⊕ (b⊕ c)),

and trace the image of the pair (α1, id
3
(a⊕b)⊕c), which will turn out to be α3. The com-

position unpacks using the definition just as an ordinary composite, since the usual first
step is just the identity, and suppressed, since we are assuming κ1 = 1:

C((a⊕ b)⊕ c, a⊕ (b⊕ c))× C((a⊕ b)⊕ c, (a⊕ b)⊕ c)

◦
��

C((a⊕ b)⊕ c, a⊕ (b⊕ c)).

Tracing the pair (α1, id
3
(a⊕b)⊕c) through this, we just get α, but now interpreted as an

element of UκC(a, b, c; (a⊕ b)⊕ c), so we actually end up with α3. We can therefore apply
F̂ throughout, and find that the pair (F̂ (α1), F̂ (id

3
(a⊕b)⊕c)) is sent to F̂ (α3). But tracing

that through the definition, which just unpacks

UκD(F̂ ((a⊕ b)⊕ c), F̂ (a⊕ (b⊕ c)))× UκD(F̂ a, F̂ b, F̂ c; F̂ ((a⊕ b)⊕ c))

Γ
��

UκD(F̂ a, F̂ b, F̂ c; F̂ (a⊕ (b⊕ c)))

as
D(F ((a⊕ b)⊕ c), F (a⊕ (b⊕ c)))×D((Fa⊕ Fb)⊕ Fc, F ((a⊕ b)⊕ c))

◦
��

D((Fa⊕ Fb)⊕ Fc, F (a⊕ (b⊕ c))),

we find that
F̂ (α3) = F̂ (α1) ◦ F̂ (id(a⊕b)⊕c) = F (α) ◦ ξ ◦ (ξ ⊕ 1),
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where we are justified in removing the hat at the last step since the induced functor F
is just the multifunctor F̂ at the 1-level. This is the counterclockwise direction of our
desired diagram.

In the other direction, we begin with the composition in UκC given by

UκC(a, b⊕ c; a⊕ (b⊕ c))× UκC(a; a)× UκC(b, c; b⊕ c) → UκC(a, b, c; a⊕ (b⊕ c)),

and trace the triple given by (id2
a⊕(b⊕c), id

1
a, id

2
b⊕c) through the expanded definition of the

composition:

C(m · (a, b⊕ c), a⊕ (b⊕ c))× C2((a, b⊕ c), (a, b⊕ c))

1×m
��

C(m · (a, b⊕ c), a⊕ (b⊕ c))× C(m · (a, b⊕ c),m · (a, b⊕ c))

◦
��

C(m · (a, b⊕ c), a⊕ (b⊕ c))

C(ϕ((a,b⊕c),(a,b,c)),1)
��

C((a⊕ b)⊕ c, a⊕ (b⊕ c)).

The triple ends up at ida⊕(b⊕c) before the final map, but the map ϕ((a, b⊕ c), (a, b, c)) is
induced by the map in Y (3)

κ3 = γ(m;m, 1) → γ(m; 1,m),

which is precisely the associativity isomorphism. We can therefore conclude that our
triple gets sent to α, interpreted as α3, so applying the multifunctor F̂ throughout, we
will end up at F̂ (α3).

When we do so, we start with the triple

(F̂ (id2
a⊕(b⊕c)), F̂ (id

1
a), F̂ (id

2
b⊕c)) = (ξa,b⊕c, idF̂ a, ξb,c)

in the composition

UκD(F̂ a, F̂ (b⊕ c); F̂ (a⊕ (b⊕ c)))× UκD(F̂ a; F̂ a)× UκD(F̂ b, F̂ c; F̂ (b⊕ c))

Γ
��

UκD(F̂ a, F̂ b, F̂ c; F̂ (a⊕ (b⊕ c))).
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Expanding using the definition of Γ, we get

D(m · (Fa, F (b⊕ c)), F (a⊕ (b⊕ c)))×D2((Fa,m · (Fb, Fc)), (Fa, F (b⊕ c)))

1×m
��

D(m · (Fa, F (b⊕ c)), F (a⊕ (b⊕ c)))×D(m · (Fa,m · (Fb, Fc)),m · (Fa, F (b⊕ c)))

◦
��

D(m · (Fa,m · (Fb, Fc)), F (a⊕ (b⊕ c)))

D(ϕ((Fa,F (b⊕c)),(Fa,Fb,Fc)),1)
��

D((Fa⊕ Fb)⊕ Fc, F (a⊕ (b⊕ c))).

Now ϕ((Fa, F (b⊕ c)), (Fa, Fb, Fc)) is again induced by the unique isomorphism in Y (3)

γ(m;m, 1) → γ(m; 1,m),

which is precisely the isomorphism inducing the associativity isomorphism α. Tracing our
triple (ξa,b⊕c, idFa, ξb,c) through the composition, we get

(ξa,b⊕c, idFa, ξb,c) 7→ (ξa,b⊕c, ida ⊕ ξb,c) 7→ ξ ◦ (1⊕ ξ) 7→ ξ ◦ (1⊕ ξ) ◦ α.

We conclude that in this direction, we have

F̂ (α3) = ξ ◦ (1⊕ ξ) ◦ α,

so identifying the two calculations of F̂ (α3), we find that

F (α) ◦ ξ ◦ (ξ ⊕ 1) = F̂ (α3) = ξ ◦ (1⊕ ξ) ◦ α,

which says precisely that our desired coherence diagram for associativity does commute.

We conclude this direction of the argument by verifying commutativity of the trans-
position coherence diagram, which we rewrite by switching our two variables.

5.4. Lemma. The transposition coherence diagram

Fb⊕ Fa τ //

ξ

��

Fa⊕ Fb

ξ

��
F (b⊕ a)

Fτ
// F (a⊕ b)

commutes.
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Proof. Once again we have a morphism in C that represents two different morphisms in
UκC: in this case the transposition isomorphism τ ∈ C(b⊕a, a⊕b) represents a 1-morphism
in UκC(b ⊕ a; a ⊕ b) which we will write as τ1, and also a 2-morphism in UκC(b, a; a ⊕ b)
which we will write as τ2.

Next, since F̂ is a multifunctor, it is in particular equivariant, so the diagram

UκC(a, b; a⊕ b) F̂ //

τ∗

��

UκD(F̂ a, F̂ b; F̂ (a⊕ b))

τ∗

��

UκC(b, a; a⊕ b)
F̂

// UκD(F̂ b, F̂ a; F̂ (a⊕ b))

must commute. Tracing the element id2
a⊕b clockwise in the underlying categories from the

upper left of the diagram, we have

ida⊕b 7→ ξ 7→ ξ ◦ τ,

as an element of D(Fb⊕ Fa, F (a⊕ b)), which is the clockwise composite in the diagram
we wish to verify.

Now tracing id2
a⊕b counterclockwise, we get

ida⊕b 7→ τ2 7→ F̂ (τ2).

Since the diagram commutes, we conclude that

F̂ (τ2) = ξ ◦ τ.

Next, we have the composition in UκC

UκC(b⊕ a, a⊕ b)× UκC(b, a; b⊕ a) Γ // UκC(b, a; a⊕ b),

and expanding using the definition of composition in UκC, we see that the pair (τ1, id2
b⊕a)

gets sent to τ2. Applying the multifunctor F̂ , it follows that the pair (F̂ (τ1), F̂ (id
2
b⊕a))

gets sent to F̂ (τ2). But this then says that under

UκD(F (b⊕ a), F (a⊕ b))× UκD(Fb, Fa;F (b⊕ a)) Γ // UκD(Fb, Fa;F (a⊕ b)),

the pair (F̂ (τ1), ξ) gets sent to F̂ (τ2). Since F is just the restriction of F̂ to 1-morphisms,
we see that F̂ (τ1) = F (τ), and further the definition of Γ in the display sends (F̂ (τ1), ξ)
to F̂ (τ1) ◦ ξ. Combining the two calculations, we conclude that

ξ ◦ τ = F (τ2) = F (τ) ◦ ξ,

which says that our desired diagram commutes. We therefore do have a lax symmetric
monoidal functor.
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We turn now to the reverse direction of the theorem: given a lax symmetric monoidal
functor F , we must produce a multifunctor UκF : UκC → UκD on underlying multi-
categories. Again, since all underlying multicategories are canonically and coherently
isomorphic, it suffices to produce a multifunctor between the underlying multicategories
given by the sequence of objects κn ∈ Y (n), where κ0 = 0, κ1 = 1, and for n ≥ 2,
κn = γ(m;κn−1, 1). We begin by generalizing the structure map ξ : Fa⊕ Fb→ F (a⊕ b).
Note that we can express ξ as

ξ : κ(Fa, Fb) → Fκ(a, b).

5.5. Definition. Let x be an object of Cn, with Fx the corresponding object of Dn, so

Fx = (Fx1, . . . , Fxn).

We define a map
ξn : κFx → Fκx

first for n = 0, in which case x = ∗ ∈ C0, κx = eC and κFx = eD. Then we define ξ0 to
be

κFx = eD
η // FeC = Fκx.

For n ≥ 1 we use induction on n, with ξ1 = idFx1. For n ≥ 2, let x̂ = (x1, . . . , xn−1), that
is, x with the last entry deleted. Note that since κn = γ(m;κn−1, 1), we have

κx = κx̂⊕ xn.

Then we define ξn as the composite

κFx = κF x̂⊕ Fxn
ξn−1⊕1 // Fκx̂⊕ Fxn

ξ // F (κx̂⊕ xn) = Fκx.

In particular, ξ2 = ξ.

5.6. Remark. We can’t actually start our induction at n = 0, because the definition

κn = γ(m;κn−1, 1)

does not apply when n = 1: we have κ1 = 1, but γ(m; 0, 1) ̸= 1 in Y (1). This is reflected
in the fact that in a general symmetric monoidal category, we don’t have x = eC ⊕ x:
they’re canonically isomorphic, but not equal.

This now allows us to define the structure of our underlying multifunctor UκF , which
we will often just write as F .
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5.7. Definition. Let F : C → D be a lax symmetric monoidal functor with structure
maps η : eD → FeC and ξ : Fa⊕ Fb → F (a⊕ b). We define the underlying multifunctor
by giving it on objects and morphism sets. On objects, we just use the map given by the
functor F . For morphism sets, let x ∈ Cn and y ∈ C; we must produce a map

Fn : UκC(x; y) → UκD(Fx;Fy).

For all n, we define Fn as the composite

UκC(x; y) = C(κx, y) F // D(Fκx;Fy)
D(ξn,1) // D(κFx;Fy) = UκD(Fx;Fy).

Note that when n = 0, this becomes

UκC(; y) = C(eC, y) F // D(FeC, Fy)
D(η,1)// D(eD, Fy) = UκD(;Fy).

This completes the definition of the structure of UκF . Note that in the special case n = 1,
since κx = x (because κ1 = 1), F1 coincides with the original functor F .

We must show that UκF preserves all the multicategory structure. In particular, it
must preserve

1. the identity maps,

2. the composition, and

3. the symmetric group actions.

For preservation of the identity maps, we merely note that F1 coincides with the
original functor, as noted above, and therefore the identity maps are preserved.

We turn to verifying the preservation of composition, which requires some preliminary
definitions and lemmas.

5.8. Definition. Let x ∈ Cj, let j = q+r, and let x = x′⊙x′′ with x′ ∈ Cq and x′′ ∈ Cr,
so x′ = (x1, . . . , xq) and x′′ = (xq+1, . . . , xj). We allow the possibility that either q = 0 or
r = 0, but do assume that j > 0. Then we define a map

ϕqrx : κx → κx′ ⊕ κx′′

by applying the unique isomorphism

ϕqr : κj → γ(m;κq, κr)

in Y (j) to the object x.

Our first lemma towards preservation of composition relates these maps ϕqr to the
previously defined ξj’s:
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5.9. Lemma. The following diagram commutes:

κFx
ϕqrFx //

ξj

��

κFx′ ⊕ κFx′′

ξq⊕ξr
��

Fκx′ ⊕ Fκx′′

ξ

��
Fκx

Fϕqrx
// F (κx′ ⊕ κx′′).

Proof.We begin with the special case r = 0, which requires its own argument. Applying
the map in Y (j)

ϕj0 : κj → γ(m;κj, 0)

to x ∈ Cj gives us the map
ϕj0x : κx → κx⊕ eC

inverse to the unit map c : κx⊕ eC → κx. Now our diagram becomes

κFx
ϕj0Fx //

ξj

��

κFx⊕ eD

ξj⊕ξ0
��

Fκx⊕ FeC

ξ

��
Fκx

Fϕj0x
// F (κx⊕ eC).

But we can expand this as follows:

κFx
ϕj0Fx //

ξj

��

κFx⊕ eD

ξj⊕1

��

ξj⊕ξ0

))RRR
RRRR

RRRR
RRR

Fκx⊕ eD 1⊕ξ0
// Fκx⊕ FeC

ξ

��
Fκx

c−1

77oooooooooooo

Fϕj0
// F (κx⊕ eC).

Remembering that ϕj0 coincides with c−1, the inverse of the unit isomorphism, the left
square commutes by naturality of c−1, and the bottom square by the coherence diagram
relating η and ξ. The triangle commutes by inspection, and now the perimeter gives us
our desired diagram.

We also need to consider the special case in which q = 0 and r = 1. In this case, we
have the map

ϕ01 : 1 = κ1 → γ(m;κ0, κ1) = γ(m; 0, 1),
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which applies to an object x ∈ C to give x→ eC ⊕ x, the inverse of the composite

eC ⊕ x
τ // x⊕ eC

c // x,

since γ(m; 0, 1) · τ = γ(m · τ ; 1, 0). Consequently we can write

ϕ01x = τc−1 : x→ eC ⊕ x.

Further, τc−1 (or equivalently cτ) satisfies the analogous coherence diagram with ξ that
c itself does, namely

eD ⊕ Fx
η⊕1 //

cτ

��

FeC ⊕ Fx

ξ

��
Fx F (eC ⊕ x).

F (cτ)
oo

This is because we can expand it as follows:

eD ⊕ Fx
η⊕1 //

τ

��

FeC ⊕ Fx
τ

wwooo
ooo

ooo
ooo

ξ

��
Fx⊕ eD

c

��

1⊕η // Fx⊕ FeC

ξ ''OO
OOO

OOO
OOO

O F (eC ⊕ x)

Fτ
��

Fx F (x⊕ eC).Fc
oo

The top square commutes by naturality of τ , the right “square” by the coherence diagram
for ξ and τ , and the bottom square by the coherence diagram for η and ξ. The perimeter
traces the claimed diagram.

Now the desired diagram in the case q = 0 and r = 1 becomes

Fx
τc−1

//

=

��

eD ⊕ Fx

ξ0⊕ξ1
��

FeC ⊕ Fx

ξ

��
Fx

F (τc−1)
// F (eC ⊕ x).

But since ξ0 = η and ξ1 = id, this is just a rearrangement of the previous coherence
diagram, so it does commute. This gives us the special case q = 0 and r = 1.

We now proceed by induction on r starting at r = 1. If q = 0, we have just verified
the lemma, and if q ≥ 1, then ϕqr = id, and the diagram simply gives the definition of ξn.
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Now assume by induction that r > 1 and that the diagram commutes with r replaced
with r − 1. We examine two diagrams that will need to be pasted together horizontally,
and hats always indicate that the last entry is deleted. The first diagram is

κFx = //

ξj

��

κF x̂⊕ Fxj
ϕq(r−1)⊕1

//

ξj−1⊕1

��

(κFx′ ⊕ κF x̂′′)⊕ Fxj

(ξq⊕ξr−1)⊕1

��
(Fκx′ ⊕ Fκx̂′′)⊕ Fxj

ξ⊕1

��
Fκx̂⊕ Fxj

Fϕq(r−1)⊕1
//

ξ

��

F (κx′ ⊕ κx̂′′)⊕ Fxj

ξ

��
Fκx =

//

Fϕqr

��

F (κx̂⊕ xj)
F (ϕq(r−1)⊕1)

// F ((κx′ ⊕ κx̂′′)⊕ xj)

Fα
��

F (κx′ ⊕ κx′′) =
// F (κx′ ⊕ (κx̂′′ ⊕ xj)).

The top left rectangle commutes by the definition of ξj, the top right rectangle by induc-
tion, the middle right rectangle by naturality of ξ, and the bottom rectangle because it
is F applied to a diagram induced by a diagram in Y (j), where all diagrams commute.
The whole diagram therefore commutes.

The second diagram is

(κFx′ ⊕ κF x̂′′)⊕ Fxj
α //

(ξq⊕ξr−1)⊕1

��

κFx′ ⊕ (κF x̂′′ ⊕ Fxj)
= //

ξq⊕(ξr−1⊕1)

��

κFx′ ⊕ κFx′′

ξq⊕ξr

��

(Fκx′ ⊕ Fκx̂′′)⊕ Fxj α
//

ξ⊕1
��

Fκx′ ⊕ (Fκx̂⊕ Fxj)

1⊕ξ
��

F (κx′ ⊕ κx̂′′)⊕ Fxj

ξ

��

Fκx′ ⊕ F (κx̂′′ ⊕ xj)
= //

ξ

��

Fκx′ ⊕ Fκx′′

ξ

��
F ((κx′ ⊕ κx̂′′)⊕ xj)

Fα //

Fα
��

F (κx′ ⊕ (κx̂′′ ⊕ xj))
= // F (κx′ ⊕ κx′′)

=

��
F (κx′ ⊕ (κx̂′′ ⊕ xj)) =

// F (κx′ ⊕ κx′′).

The top left square commutes by naturality of α, the top right by definition of ξr, the
middle left by the coherence diagram for α, and the middle right and bottom by inspection.
The total second diagram therefore also commutes.

The right column of the first diagram coincides with the left column of the second
diagram, so we can paste the two diagrams together along their common column. When
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we do so, the counterclockwise direction of the total diagram coincides with the counter-
clockwise direction of our desired diagram, but the clockwise direction requires a bit more
work. We need the following diagram to commute:

κFx = //

ϕqr

��

κF x̂⊕ Fxj
ϕq(r−1)⊕1

// (κFx′ ⊕ κF x̂′′)⊕ Fxj

α

��
κFx′ ⊕ κFx′′

=
// κFx′ ⊕ (κF x̂′′ ⊕ Fxj).

However, all three maps are induced by maps in Y (j), where all diagrams commute. The
desired diagram therefore does commute.

We will need a generalization of this lemma, and this requires a bit more notation.

5.10. Definition. Let x ∈ Cj, and let j = j1 + · · ·+ jn, so we can decompose x as

x = ⊙sxs,

where xs ∈ Cjs for 1 ≤ s ≤ n. Regardless of x, we have a unique isomorphism

κj → γ(κn; ⟨κjs⟩)

in Y (j). Note that if we apply the target element γ(κn; ⟨κjs⟩) to x = ⊙sxs, we can write
the result as either κ⟨κxs⟩ or κn⟨κxs⟩, since we have chosen a single object κn ∈ Y (n)
as the target of the n’th map in our defining sequence {κn}. We will use κn⟨κxs⟩ since
we need the index n for induction in the next proof. So applying the map in Y (n) to
x = ⊙sxs, we obtain a map (which is an isomorphism) which we denote

ϕ⟨js⟩ : κ(⊙sxs) → κn⟨κxs⟩.

This is a generalization of the previous ϕqr when n = 2, j1 = q, and j2 = r.

We also generalize lemma 5.9 for these maps, as follows.

5.11. Lemma. Given x ∈ Cj and j = j1 + · · · + jn, note that ⊙sFxs = F (⊙sxs). Then
decomposing x as ⊙sxs for 1 ≤ s ≤ n, the following diagram commutes:

κ(⊙sFxs)
ϕ⟨js⟩ //

ξj

��

κn⟨κFxs⟩
κn⟨ξjs ⟩
��

κn⟨Fκxs⟩
ξn
��

Fκ(⊙sxs)
Fϕ⟨js⟩

// Fκn⟨κxs⟩.
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Proof. We proceed by induction on n, and the case n = 1 is trivial: ϕ⟨j⟩ = id, κ1 = 1,
and ξ1 = id as well.

As with Lemma 5.9, the proof consists of verifying two diagrams that need to be
pasted together horizontally. We let j′ = j − jn, and let hats throughout indicate that
the last index has been deleted. The notation ϕqr is as above from Lemma 5.9. Our first
diagram is as follows:

κ(⊙sFxs)
ϕj′jn //

ξj

��

κ(⊙̂sFxs)⊕ κFxn
ϕ⟨̂js⟩⊕1 //

ξj′⊕ξjn

��

κn−1
̂⟨κFxs⟩ ⊕ κFxn

κn−1
̂⟨ξjs ⟩⊕1

��

κn−1
̂⟨Fκxs⟩ ⊕ κFxn

ξn−1⊕ξjn
��

Fκ(⊙̂sxs)⊕ Fκxn

ξ

��

Fϕ⟨̂js⟩⊕1 // Fκn−1
̂⟨κxs⟩ ⊕ Fκxn

ξ

��

Fκ(⊙sbs)

Fϕ⟨js⟩
��

Fϕj′jn // F (κ(⊙̂sxs)⊕ κxn)
F (ϕ⟨̂js⟩⊕1)// F (κn−1

̂⟨κxs⟩ ⊕ κxn).

Fκn⟨κxs⟩
=

22ddddddddddddddddddddddddddddddddddddd

The left rectangle commutes since it is an instance of Lemma 5.9. The top right rectangle
commutes by induction, and the bottom right rectangle by naturality of ξ. The bottom
triangle commutes since it is F applied to a diagram induced from maps in Y (j), where
all diagrams commute. The total diagram therefore commutes.

The second diagram is as follows:

κn−1
̂⟨κFxs⟩ ⊕ κFxn

= //

κn−1
̂⟨ξjs ⟩⊕1

��

κn−1
̂⟨ξjs ⟩⊕ξjn

**TTT
TTTT

TTTT
TTTT

κn⟨κFxs⟩

κn⟨ξjs ⟩
��

κn−1
̂⟨Fκxs⟩ ⊕ κFxn

1⊕ξjn //

ξn−1⊕ξjn
��

κn−1
̂⟨Fκxs⟩ ⊕ Fκxn

= //

ξn−1⊕1ttjjjj
jjjj

jjjj
jjj

κn⟨Fκxs⟩

ξn

��

Fκn−1
̂⟨κxs⟩ ⊕ Fκxn

ξ

��

F (κn−1
̂⟨κxs⟩ ⊕ κxn) =

// Fκn⟨κxs⟩.

The two triangles commute by inspection. The top (distorted) rectangle commutes since
κny = κn−1ŷ ⊕ yn, where in this case y = ⟨κFxs⟩, and the bottom part commutes by
definition of ξn. The total diagram therefore commutes.
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Now we paste the two diagrams together along their common column, the right col-
umn of the first diagram and the left column of the second diagram, and see that the
counterclockwise direction of the total diagram coincides with the counterclockwise direc-
tion of our desired diagram. For the clockwise direction, again we need to do a bit more
work. We observe that since the top row of the total diagram is induced by maps in Y (n),
where all diagrams commute, it does coincide with the desired clockwise direction, and
the desired diagram therefore does commute.

We are now ready to verify that the multifunctor F preserves composition. Let xs ∈ Cjs
for 1 ≤ s ≤ n, y ∈ Cn, and z ∈ C. We claim:

5.12. Proposition. The multifunctor F preserves composition, meaning the diagram

UκC(y; z)×
∏n

s=1 UκC(xs, ys)

Γ
��

F // UκD(Fy, Fz)×
∏n

s=1 UκD(Fxs, Fys)

Γ
��

UκC(⊙sxs, z) F
// UκD(⊙sFxs, Fz)

commutes.

Proof. We proceed by a sequence of three diagrams which can be pasted together hor-
izontally, resulting in a total diagram that gives our desired diagram, unpacked using
the definitions of our multicategory composition Γ and the multifunctor F . Note that
κny = κy because of our convention that κn is a constant function. The first diagram is
as follows:

C(κy, z)× Cn(⟨κxs⟩,y)
1×κn
��

C(κy, z)× C(κn⟨κxs⟩, κy)
◦

sshhhhh
hhhh

hhhh
hhhh

h

F
��

C(κn⟨κxs⟩, z)

F ++VVVV
VVVV

VVVV
VVVV

VV

C(ϕ⟨js⟩,1)

��

D(Fκy, Fz)×D(Fκn⟨κxs⟩, Fκy)
◦
��

D(Fκn⟨κxs⟩, Fz)
D(Fϕ⟨js⟩,1)
��

C(κ(⊙sxs), z) F
// D(Fκ(⊙sxs), Fz).

Both parts of the diagram commute because F is a functor.
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The second diagram, which pastes to the right of the first one, is as follows:

C(κy, z)× Cn(⟨κxs⟩,y)
1×κn

��

F // D(Fκy, Fz)×Dn(⟨Fκxs⟩, Fy)
1×κn
��

C(κy, z)× C(κn⟨κxs⟩, κy)

F
��

D(Fκy, Fz)×D(κn⟨Fκxs⟩, κFy)
1×D(1,ξn)

��
D(Fκy, Fz)×D(Fκn⟨κxs⟩, Fκy)

◦
��

1×D(ξn,1)// D(Fκy, Fz)×D(κn⟨Fκxs⟩, Fκy)
◦
��

D(Fκn⟨κxs⟩, Fz)

D(Fϕ⟨js⟩,1)

��

D(ξn,1)
// D(κn⟨Fκxs⟩, Fz)

D(κn⟨ξjs ⟩,1)
��

D(κn⟨κFxs⟩, Fz)
D(ϕ⟨js⟩,1)
��

D(Fκ(⊙sxs), Fz) D(ξj ,1)
// D(κ(⊙sFxs), Fz).

The top hexagon is the product of two separate hexagons, and the first factor commutes,
since both directions are just F . For the second factor, we trace a typical element ⟨fs⟩ ∈
Cn(⟨κxs⟩,y) through the hexagon, and find that it commutes precisely when

Fκn⟨fs⟩ ◦ ξn = ξn ◦ κn⟨Ffs⟩,

which is to say that the following diagram commutes:

κn⟨Fκxs⟩
κn⟨Ffs⟩ //

ξn
��

κnFy

ξn
��

Fκn⟨κxs⟩
Fκn⟨fs⟩

// Fκy.

But this is just naturality of ξn, so the top hexagon does commute.
The middle rectangle commutes by inspection.
The bottom part of the diagram is D( , 1) applied to the diagram

κ(⊙sFxs)
ξj //

ϕ⟨js⟩
��

Fκ(⊙sxs)

Fϕ⟨js⟩

��

κn⟨κFxs⟩
κn⟨js⟩

��
κn⟨Fκxs⟩ ξn

// Fκn⟨κxs⟩,
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which is an instance of Lemma 5.11. The second total diagram therefore commutes.
The third diagram we need to paste onto the second one is as follows:

D(Fκy, Fz)×Dn(⟨Fκxs⟩, Fy)
1×κn

��

D(ξn,1)×Dn(⟨ξjs ⟩,1)// D(κFy, Fz)×Dn(⟨κFxs⟩, Fy)
1×κn
��

D(Fκy, Fz)×D(κn⟨Fκxs⟩, κFy)

1×D(1,ξn)

��

D(ξn,1)×1

))TTT
TTTT

TTTT
TTTT

D(κFy, Fz)×D(κn⟨κFxs⟩, κFy)

◦

��

D(κFy, Fz)×D(κn⟨Fκxs⟩, κFy)

◦

��

1×D(κn⟨ξjs ⟩,1)
55jjjjjjjjjjjjjjj

D(Fκy, Fz)×D(κn⟨Fκxs⟩, Fκy)

◦ ))TTT
TTTT

TTTT
TTTT

D(κn⟨κFxs⟩, Fz)

D(ϕ⟨js⟩,1)

��

D(κn⟨Fκxs⟩, Fz)
D(κn⟨ξjs ⟩,1)

55jjjjjjjjjjjjjjj

D(κ(⊙sFxs), Fz).

The counterclockwise direction traces the right hand column of the second diagram, so
this diagram can be pasted to it. The top pentagon commutes by naturality of κn, the
left square by naturality of ξn, and the right square by inspection. Now examining the
perimeter of the total pasted diagram, we see that the counterclockwise direction gives us
the expansion of F ◦Γ in our original claimed diagram, and the clockwise direction gives us
the expansion of Γ ◦F . The diagram therefore commutes, and F preserves composition.

Our final step in showing that F is a multifunctor is preservation of the Σn-actions.
This is the content of the following proposition:

5.13. Proposition. Let x ∈ Cn, y ∈ C, and σ ∈ Σn. Then the following diagram
commutes:

UκC(x; y) F //

σ∗

��

UκD(Fx;Fy)

σ∗

��
UκC(σ−1x; y)

F
// UκD(σ−1Fx;Fy).

Proof. The map σ∗ is induced by the map in Y (n)

θ(x, σ) : κn(σ
−1x) → κnx · σ,

but since we are assuming that the map κn : ObCn → ObY (n) is constant, we will just
abbreviate this to

θ : κn → κn · σ.
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Now expanding the desired diagram using the definitions, we find that we wish to verify
commutativity of the following diagram:

C(κx, y) F //

=

��

D(Fκx, Fy)
D(ξn,1) //

=

��

D(κFx, Fy)

=

��
C((κn · σ)(σ−1x), y) F //

C(θ,1)
��

D(F (κn · σ)(σ−1x), Fy)
D(ξn,1)//

D(Fθ,1)

��

D((κn · σ)(σ−1Fx), Fy)

D(θ,1)

��
C(κnσ−1x, y)

F
// D(Fκnσ

−1x, Fy)
D(ξn,1)

// D(κnσ
−1Fx, Fy).

The top two squares commute by inspection, and the lower left one by functoriality of F .
This reduces the argument to verifying the bottom right square, which is in turn induced
from a square in D as follows:

κnσ
−1Fx

ξn //

θ
��

Fκnσ
−1x

Fθ
��

κn · σσ−1Fx

=

��

Fκn · σσ−1x

=

��
κnFx ξn

// Fκnx.

We need to show that this diagram commutes, and we proceed by induction on n,
starting with n = 1, in which case there are no non-trivial permutations, so the diagram
does commute.

Next, we assume the diagram does commute with n replaced by n−1, and first consider
the case in which σ = σ̂ ⊕ 1 for σ̂ ∈ Σn−1. We write

θ̂ : κn−1 → κn−1 · σ̂

for the unique map in Y (n− 1). Then the diagram

κn = γ(m;κn−1, 1)
θ //

γ(m;θ̂,1) ))TTT
TTTT

TTTT
TTTT

γ(m;κn−1, 1) · σ
=

��
γ(m;κn−1 · σ̂, 1)

in Y (n) commutes, since all diagrams commute in Y (n). So if we apply this diagram to
an object x, we have the diagram

κnx = κn−1x̂⊕ xn
θ //

θ̂⊕1 **UUU
UUUU

UUUU
UUUU

UU
κn · σx = κn(σ̂x̂⊕ xn)

=

��
κn−1σ̂x̂⊕ xn,
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which tells us that in this case, we have θ = θ̂ ⊕ 1.
Now we can expand our desired diagram as follows:

κnσ
−1Fx = κn−1σ̂

−1F x̂⊕ Fxn
ξn−1⊕1 //

θ=θ̂⊕1
��

Fκn−1σ̂
−1x̂⊕ Fxn

ξ //

F θ̂⊕1
��

F (κn−1σ̂
−1x̂⊕ xn)

F (θ̂⊕1)
��

κnσσ
−1Fx = κn−1σ̂σ̂

−1F x̂⊕ Fxn
ξn−1⊕1//

=

��

Fκn−1σ̂σ̂
−1x̂⊕ Fxn

ξ //

=

��

F (κn−1σ̂σ̂
−1x̂⊕ xn)

=

��
κnFx = κn−1F x̂⊕ Fxn ξn−1⊕1

// Fκn−1x̂⊕ Fxn ξ
// Fκnx.

Since ξn = ξ ◦ (ξn−1 ⊕ 1) and θ = θ̂ ⊕ 1, the perimeter of the diagram does give our
desired diagram. The left part of the diagram commutes by induction, and the right part
by naturality of ξ. This concludes the verification of preservation of the action of σ when
σ = σ̂ ⊕ 1.

The remaining case is when σ moves the index n, but since all elements of Σn can be
written as a product of transpositions of adjacent indices, we can restrict our attention to
such transpositions, and the only one that moves the last index is the transposition of n
and n− 1. So we let σ be this transposition, and the argument will be done when we’ve
verified the square for this particular permutation, which satisfies σ = σ−1.

We first look at the inducing map θ : κn → κn · σ, and note that applied to an object
x ∈ Cn, we have

σx = (x1, . . . , xn−2, xn, xn−1).

Therefore

κnσx = γ(m;κn−1, 1)σx = κn−1(x1, . . . , xn−2, xn)⊕ xn−1

= (κn−2(x1, . . . , xn−2)⊕ xn)⊕ xn−1.

We’ve already introduced the notation x̂ for x with its last entry removed; now we also
need x̃ for x with its last two entries removed. Then what the last calculation shows is
that

κnσx = (κn−2x̃⊕ xn)⊕ xn−1,

and we can also expand
κnx = (κn−2x̃⊕ xn−1)⊕ xn.
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We can now construct the map θ : κnx → κnσx as the composite

(κn−2x̃⊕ xn−1)⊕ xn

α

��
κn−2x̃⊕ (xn−1 ⊕ xn)

1⊕τ
��

κn−2x̃⊕ (xn ⊕ xn−1)

α−1

��
(κn−2x̃⊕ xn)⊕ xn−1.

Since both θ and this composite are induced from maps in Y (n), where all maps are
unique, this does coincide with θ.

Next, we observe that ξn : κnFx → Fκnx, which expands by definition to

κnFx = (κn−1F x̂)⊕ Fxn
ξn−1⊕1// (Fκn−1x̂)⊕ Fxn

ξ // F (κn−1x̂⊕ xn) = Fκnx,

expands even further as follows, since ξn−1 = ξ ◦ (ξn−2 ⊕ 1):

κnFx

=

��
(κn−2F x̃⊕ Fxn−1)⊕ Fxn

(ξn−2⊕1)⊕1

��
(Fκn−2x̃⊕ Fxn−1)⊕ Fxn

ξ⊕1
��

F (κn−2x̃⊕ xn−1)⊕ Fxn

ξ
��

F ((κn−2x̃⊕ xn−1)⊕ xn)

=

��
Fκnx.

We can now fill in the diagram by pasting together two pieces horizontally; the first
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piece is as follows, using the (ξn−2 ⊕ 1)⊕ 1 part of the above composition:

(κn−2F x̃⊕ Fxn)⊕ Fxn−1
(ξn−2⊕1)⊕1 //

α

��

(Fκn−2x̃⊕ Fxn)⊕ Fxn−1

α

��
κn−2F x̃⊕ (Fxn ⊕ Fxn−1)

ξn−2⊕1 //

1⊕τ
��

Fκn−2x̃⊕ (Fxn ⊕ Fxn−1)

1⊕τ
��

κn−2F x̃⊕ (Fxn−1 ⊕ Fxn)
ξn−2⊕1 //

α−1

��

Fκn−2x̃⊕ (Fxn−1 ⊕ Fxn)

α−1

��
(κn−2F x̃⊕ Fxn−1)⊕ Fxn

(ξn−2⊕1)⊕1
// (Fκn−2x̃⊕ Fxn−1)⊕ Fxn.

The top and bottom rectangles commute by naturality of α, and the middle one by
inspection.

The second piece, to be pasted horizontally to the first one, is

(Fκn−2x̃⊕ Fxn−1)⊕ Fxn
ξ◦(ξ⊕1) //

α

��

F ((κn−2x̃⊕ xn−1)⊕ xn)

Fα
��

Fκn−2x̃⊕ (Fxn−1 ⊕ Fxn)

1⊕τ
��

ξ◦(1⊕ξ) // F (κn−2x̃⊕ (xn−1 ⊕ xn))

F (1⊕τ)
��

Fκn−2x̃⊕ (Fxn ⊕ Fxn−1)

α−1

��

ξ◦(1⊕ξ) // F (κn−2x̃⊕ (xn ⊕ xn−1))

Fα−1

��
(Fκn−2x̃⊕ Fxn)⊕ Fxn−1

ξ◦(ξ⊕1)
// F ((κn−2x̃⊕ xn)⊕ xn−1).

The perimeter of the total pasted diagram gives our desired diagram, so it just remains to
verify commutativity of this second piece of the pasting. The top and bottom rectangles
both commute by the coherence diagram for α and ξ, so this just leaves the middle
rectangle. But using generic variables to save space, this can be expanded to

Fa⊕ (Fb⊕ Fc)
1⊕ξ //

1⊕τ
��

Fa⊕ F (b⊕ c)
ξ //

1⊕Fτ
��

F (a⊕ (b⊕ c))

F (1⊕τ)
��

Fa⊕ (Fc⊕ Fb)
1⊕ξ
// Fa⊕ F (c⊕ b)

ξ
// F (a⊕ (c⊕ b)).

However, the left square commutes by the transposition coherence diagram for ξ, and the
right square by naturality of ξ. This completes the verification, and so F does define a
multifunctor.
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6. The Weak Left Adjoint

This section is devoted to the proof of Theorem 2.6. As a result of Theorem 2.4, we have
a well-defined underlying multicategory functor

U : Sym → Mult

with source symmetric monoidal categories and lax monoidal functors, and target multi-
categories and multifunctors. It is natural to ask for a left adjoint to this construction,
and we almost have one: there is a functor

L : Mult → Sym

with maps η : id → UL and ε : LU → id satisfying the triangle identities for the unit and
counit of an adjunction. The only problem is that while η is natural, ε is only lax natural:
its naturality squares only commute up to a natural map of their own that satisfies a
coherence condition. The constructions, which are identical to those in [3], Theorem 4.2,
are as follows.

6.1. Construction. Let M be a multicategory. We construct a symmetric monoidal
category LM, which is actually permutative, as follows. The objects of LM are the free
monoid on the objects of M, namely ∐

n≥0

ObMn.

Given objects x = (x1, . . . , xj) and y = (y1, . . . , yn) of LM, we define the elements of
the morphism set LM(x,y) to consist of ordered pairs (f, ⟨ϕs⟩), where f : {1, . . . , j} →
{1, . . . , n} is a function with no further structure, and for 1 ≤ s ≤ n, ϕs is a morphism
in M(⟨xr⟩f(r)=s; ys).

Given a third object z = (z1, . . . , zp) of LM, and a morphism (g, ⟨ψt⟩) ∈ LM(y, z),
we define

(g, ⟨ψt⟩) ◦ (f, ⟨ϕs⟩) = (g ◦ f, ⟨χt⟩),
where the morphisms χt : ⟨xr⟩gf(r)=t → zt are given by the composite

⟨xr⟩gf(r)=t ∼=
⊙

g(s)=t⟨xr⟩f(r)=s
⊙g(s)=tϕs // ⟨ys⟩g(s)=t

ψt // zt.

Here the first isomorphism simply rearranges the tuple ⟨xr⟩gf(r)=t into chunks correspond-
ing to each s for which g(s) = t. The symmetric monoidal structure, which is actually
permutative, is given by concatenation for the product, and the empty list as the unit.

To define the functoriality of this constriction, suppose given a multifunctor F : M →
N. We define LF : LM → LN, which will actually be a strict monoidal functor, as
follows. On objects, this is just the free monoid functor, so

LF (x1, . . . , xj) = (Fx1, . . . , Fxj).
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On morphisms, suppose given (f, ⟨ϕs⟩) : x → y, where x and y are as above, so we have

f : {1, . . . , j} → {1, . . . , n} and ϕs : ⟨xr⟩f(r)=s → ys for 1 ≤ s ≤ n.

Then we just define
LF (f, ⟨ϕs⟩) = (f, ⟨Fϕs⟩).

Functoriality is now straightforward to verify, as is the fact that LF is strict monoidal,
and in fact strict symmetric monoidal.

To show that this construction gives a weak left adjoint to the underlying multicat-
egory construction, we provide a unit and weak counit, and show that the adjunction
triangles commute. Since LM is permutative, we use the usual definition for the under-
lying multicategory of a permutative category, which in this case becomes

ULM(x1, . . . ,xn;y) = LM(⊙sxs,y).

6.2. Definition. Let M be a multicategory. We define the unit map η : M → ULM
as follows. On objects, this is just the unit map of the free-forgetful adjunction between
sets and monoids, so sends an object x to the list of length 1 with entry x, i.e, we include
ObM as the objects in level 1 in ObLM. On morphisms, suppose ϕ ∈ M(x; y), where
x = (x1, . . . , xj). Then there is exactly one function p : {1, . . . , j} → {1}, so we send
ϕ to the j-morphism (p, {ϕ}) of ULM. We can now check that this defines a map of
multicategories, and gives a natural map id → UL.

For the weak counit, we use the following.

6.3. Definition. Let C be a symmetric monoidal category. Suppose again that we are
using our constant sequence κn : ObCn → ObY (n) with κ0 = 0, κ1 = 1, and κn =
γ(m;κn−1, 1) for n ≥ 2 to define our underlying multicategory. We define the counit map
ε : LUC → C as follows. On objects our map sends

(y1, . . . , yn) = y 7→ κny = κy.

Now let x = (x1, . . . , xj), and suppose given a morphism (f, ⟨ϕs⟩) ∈ LUC(x,y), so f :
{1, . . . , j} → {1, . . . , n} and ϕs : ⟨xr⟩f(r)=s → ys in UC. Let js = |f−1s|, so j = j1 + · · ·+
jn. Then by definition, we have

ϕs ∈ C(κ(⟨xr⟩f(r)=s), ys),

and so
⟨ϕs⟩ ∈ Cn(⟨κ(⟨xr⟩f(r)=s)⟩,y).

Let σf be the element of Σj for which

σf · x = ⊙r⟨xs⟩f(r)=s.
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Then we have isomorphisms in Y (j)

κj
∼= // κj · σf

∼= // γ(κn; ⟨κjs⟩) · σf ,

which induce the isomorphisms in the following composition:

Cn(⟨κ(⟨xr⟩f(r)=s)⟩,y)
κn
��

C(κn⟨κ(⟨xr⟩f(r)=s)⟩, κy)
∼=
��

C(κ(⊙s⟨xr⟩f(r)=s), κy)
∼=
��

C(κx, κy).

We use the image of ⟨ϕs⟩ under this composition as our ε(f, ⟨ϕs⟩). It is an exercise to see
that ε is a strong symmetric monoidal functor.

Several remarks are in order about this weak counit. First, it is not strictly natural,
but rather only natural up to a natural transformation, in the sense that if we are given
a lax symmetric monoidal functor F : C → D, we can form the following diagram:

LUC LUF //

εC
��

LUD
εD
��

C
F

// D.

For ε to be natural, this diagram would have to always commute on the nose, but instead
it only commutes up to a natural map, which is an isomorphism if F is strong monoidal.
If F is strict monoidal, we do get equality. We see this since following an object (x1, x2)
of LUC counterclockwise, it ends up first at x1 ⊕ x2, and then F (x1 ⊕ x2). However,
clockwise it ends up first at (Fx1, Fx2), and then at Fx1⊕Fx2. We then have to use the
lax monoidal structure map

ξF : Fx1 ⊕ Fx2 → F (x1 ⊕ x2)

in order to give a map between the two ways of traversing the square. For a general object
x = (x1, . . . , xn) of LUC, we use the map ξn : κFx → Fκx of Definition 4.5, which is only
an equality when F is a strict monoidal functor. These then combine to give a natural
map ξ from the clockwise direction to the counterclockwise direction, so we have a 2-cell

LUC LUF //

εC
��

				�� ξF

LUD
εD
��

C
F

// D
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instead of a commutative diagram. The natural maps ξ are coherent, in the sense that if
we have another lax symmetric monoidal functor G : D → E , then we have the following
equality of pasting diagrams:

LUC LUF //

εC
��

				�� ξF

LUD
εD
��

LUG //

				�� ξG

LUE
εE
��

C
F

// D
G

// E

=

LUC LU(G◦F ) //

εC
��

������ ξGF

LUE
εE
��

C
G◦F

// E .

Further, ξid is the identity transformation.
Note that the counit ε is strict monoidal if C is permutative, but only strong monoidal

in general: we have

εx⊕ εy = κx⊕ κy = γ(m;κj, κn) · (x⊙ y),

but
ε(x⊙ y) = κ(x⊙ y) = κj+n · (x⊙ y),

and κj+n ̸= γ(m;κj, κn) in Y (j + n). In all cases, the structure map εx⊕ εy → ε(x⊙ y)
is induced by the unique isomorphism

γ(m;κj, κn) → κj+n

in Y (j + n), which induces an identity if C is permutative, but not in general.
Since we have chosen κ0 = 0, it follows that ε is strictly unital: ε() = κ0∗ = eC.
We leave to the reader the verification of the coherence diagrams showing that ε is a

symmetric monoidal functor.
The proof of Theorem 2.6 concludes with the following lemma.

6.4. Lemma. The adjunction triangles

UC ηU //

=
$$I

II
II

II
II

ULUC
Uε
��

UC

and LM
Lη //

=
%%JJ

JJ
JJ

JJ
J LULM

εLM

��
LM

both commute.

Proof. For the left triangle, an object in UC is just an object x ∈ C, which gets sent
to a list with one entry in ULUC, and assuming κ1 = 1 allows us to conclude that this
gets sent in turn back to κ1x = x. The triangle therefore commutes on objects, and the
verification on morphisms is the same.

For the right triangle, an object x ∈ ObMj ⊂ ObLM gets sent by Lη to a single list
(x) in LULM. This is then concatenated as a list of lists by ε, but since there’s only one
list in the list of lists, it goes back to the original list x. The triangle therefore commutes
on objects, and a simple check shows that it also commutes on morphisms. We therefore
do have a weak adjunction between the underlying multicategory functor and the free
symmetric monoidal functor, and the left adjoint actually lands in permutative categories
and strict monoidal maps.
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Because both adjunction triangles commute strictly, and η is strictly natural, we do
get a comonad LU on the category of symmetric monoidal categories and lax symmetric
monoidal functors, although the composite UL is only a lax monad on the category of
multicategories.

For the proof of Theorem 2.7, we have already observed that the weak left adjoint L
gives us permutative categories and strict monoidal maps as its output, so the comonad
LU on symmetric monoidal categories does convert lax symmetric monoidal maps of
symmetric monoidal categories into strict monoidal maps of permutative categories. The
remaining claim of the Theorem is the following proposition:

6.5. Proposition. The weak counit ε : LUC → C of the weak adjunction is a homotopy
equivalence of categories.

Proof. The first adjunction triangle shows that the unit η of the adjunction gives a right
inverse for ε, since a map on underlying multicategories is the same as a lax symmetric
monoidal functor on symmetric monoidal categories. We produce a natural map ν : id →
η ◦ ε of functors LUC → LUC, which therefore shows that ε and η are inverse homotopy
equivalences of categories.

An object x ∈ LUC is sent by η ◦ ε to the list of length 1 consisting of κx. Let’s say
that x = (x1, . . . , xj). We define νx : x → (κx) as the map in LUC given by the unique
function f : {1, . . . , j} → {1}, together with the identity idκx. It is now easy to check
that ν is a natural map, which concludes the proof.

We end this section by noting that ν does not have an inverse, since f is not a
bijection. However, there is a comparison map to the strictification construction of Isbell
[5], as described explicitly by May in [7], Proposition 4.2. May’s construction has as its
objects the free monoid on the objects of C, but subject to the relation that eC = (): the
implication is that eC is a strict unit to begin with. However, the construction can be
easily modified to use the free monoid with no relations, which are precisely the objects
of LUC. The morphisms are then created by the counit ε, rather than being those in
Definition 6.1. This still gives us a permutative category and a categorical equivalence
with the original symmetric monoidal category. Further, the counit ε factors through this
construction, and therefore LUC is also homotopy equivalent to it.

7. Underlying Multicategories: Properties

We return finally to verifying that the structure given in Section 3 does satisfy the prop-
erties necessary to form a multicategory. We return to our original assumption of an
arbitrary sequence of functions

κn : ObCn → ObY (n),

which determine the underlying multicategory UκC.
To give an example of how involved such a structure can look like, we can consider the

free symmetric monoidal category on one object which we describe as follows, using some
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notation from [1]. (This example is unnecessary for the subsequent arguments.) Let’s call
this category H.

The category H is a disjoint union of categories H(n) for n ≥ 0, where the index
n indicates the number of times the freely chosen object is combined with itself. Each
category H(n) has as its objects a set Z(n). The sets Z(n) themselves consist of ordered
pairs (a,R), where a is a complete parenthesization of at least n letters, and R indicates
the slots into which n copies of the free object are to be inserted, with identities in the
rest. To be precise, we define the parenthesization sets V (k) for k ≥ 0 by V (0) = ∅,
V (1) = {1}, and for k ≥ 2,

V (k) =
∐
i+j=k

V (i)× V (j).

The idea is that a complete parenthesization of k letters has a last product, with the
left factor and right factors being parenthesizations of smaller numbers of letters. The
component a of (a,R) is to be an element of V (k) for k ≥ n.

In order to specify the n slots into which our free object is to be inserted, we define

Pn(k) = {R ⊂ {1, . . . , k} : |R| = n}.

Then we define our object set Z(n) of the component category H(n) by

Z(n) =
∐
k≥n

V (k)× Pn(k).

For morphisms, if (a,R) ∈ Z(n) and (b, S) ∈ Z(m), then there are no morphisms
unless n = m, and if n = m, the morphism set is a copy of the symmetric group Σn.
Composition is given by group multiplication.

The symmetric monoidal structure is given as follows. First, the unit object is (1, ∅) ∈
Z(0). Next, for the monoidal product, suppose given (a,R) ∈ V (k)× Pn(k) ⊂ Z(n) and
(b, S) ∈ V (q)× Pm(q) ⊂ Z(m). Then we define

(a,R)⊕ (b, S) = ((a, b), R ⨿ k + S),

Here (a, b) ∈ V (k)×V (q) ⊂ V (k+q), and R⨿k+S is the subset of {1, . . . , k+q} consisting
of R together with k added to each element of S, so this is just the concatenation of R and
S in {1, . . . , k}⨿ {1, . . . , q} = {1, . . . , k+ q}. We therefore obtain an object of Z(n+m).
The monoidal product of morphisms is given by the block sum Σn × Σm → Σn+m.

The unit isomorphisms and the associator are all given by identity elements of the
appropriate Σn. In detail, if given (a,R) ∈ V (k)× Pn(k) ⊂ Z(n) then we have

(a,R)⊕ (1, ∅) = ((a, 1), R) ∈ V (k + 1)× Pn(k + 1) ⊂ Z(n)

and
(1, ∅)⊕ (a,R) = ((1, a), 1 +R) ∈ V (k + 1)× Pn(k + 1) ⊂ Z(n).

In both cases, we use the identity element 1n ∈ Σn as the unit isomorphism to (a,R).
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For the associator, suppose given

(a,R) ∈ V (k)× Pn(k) ⊂ Z(n),

(b, S) ∈ V (q)× Pm(q) ⊂ Z(m), and

(c, T ) ∈ V (w)× Pt(w) ⊂ Z(t).

Then we have

((a,R)⊕ (b, S))⊕ (c, T ) = (((a, b), c), R ⨿ k + S ⨿ k + q + T ), and

(a,R)⊕ ((b, S)⊕ (c, T )) = ((a, (b, c)), R ⨿ k + S ⨿ k + q + T ).

Note that the first of these has first component an element of V (k+ q)× V (w), while the
second has first component an element of V (k) × V (q + w). However, both objects are
elements of Z(n + m + t), so we can use the identity element 1n+m+t ∈ Σn+m+t as the
associator giving an isomorphism between them.

For the transposition, again suppose given (a,R) ∈ V (k)×Pn(k) ⊂ Z(n) and (b, S) ∈
V (q)× Pm(q) ⊂ Z(m). Then

(a,R)⊕ (b, S) = ((a, b), R ⨿ k + S), and

(b, S)⊕ (a,R) = ((b, a), S ⨿ q +R).

Both are elements of Z(n+m), but we do not use the identity of Σn+m as the transposition
isomorphism, but rather the element τ⟨n,m⟩ that transposes a block of length n and a
block of length m. (We don’t want the identity element, since that would actually give
the identity as the transposition when (b, S) = (a,R).)

All the coherence diagrams that do not involve the transposition commute because
all the maps are given by identity elements of a symmetric group. For the two that do
involve the transposition, we find that τ 2 = id because τ⟨n,m⟩ ◦ τ⟨m,n⟩ = id. And the
hexagon

((a,R)⊕ (b, S))⊕ (c, T ) α //

τ⊕1
��

(a,R)⊕ ((b, S)⊕ (c, T )) τ // ((b, S)⊕ (c, T ))⊕ (a,R)

α

��
((b, S)⊕ (a,R))⊕ (c, T ) α

// (b, S)⊕ ((a,R)⊕ (c, T ))
1⊕τ
// (b, S)⊕ ((c, T )⊕ (a,R))

commutes because (1m ⊕ τ⟨n, t⟩) ◦ (τ⟨n,m⟩ ⊕ 1t) = τ⟨n,m+ t⟩.
We can now give an example of a sequence of functions {κn : ObHn → ObY (n)} as

follows. This example is deliberately complicated in order to show how arbitrary such a
choice can be. Suppose given an object ((a1, R1), . . . , (an, Rn)) of Hn, where ai ∈ Z(ji)
and Ri ∈ Pki(ji), so (ai, Ri) ∈ ObH(ki), and ji ≥ ki for 1 ≤ i ≤ n. Pick an arbitrary
β ∈ Z(n). Then using the (non-symmetric) operad structure on {Z(n)} given in [1], we
can form

δ = γ(β;α1, . . . , αn) ∈ Z(j1 + · · · jn).
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This replaces each parenthesized slot in β with the parenthesization given by the corre-
sponding αi. Since ji > 0 for all i, we must have j1+ · · · jn ≥ n, so we can form an object
of Y (n) with δ as its first component. Next, let

S = {1, j1 + 1, j1 + j2 + 1, . . . , j1 + · · · jn−1 + 1} ⊂ {1, . . . , j1 + · · · jn},

so S ∈ Pn(j1 + · · · jn). Finally, to specify an object of Y (n), we need an element of Σn,
so assuming n ≥ 2, we pick the permutation σ that transposes the first two elements of
{1, . . . , n} if n is odd, and the last two elements if n is even. Then we assign the object
(δ, S, σ) to the object ((α1, R1), . . . , (αn, Rn)) of H

n in order to define our function κn.
We now proceed with the proof that UκC does have the structure of a multicategory

in all cases, including the example of UκH for the H and κ given above. We first show
that we really do have a right action of Σn on the collection of n-morphisms in UκC, and
then proceed to verify the diagrams given in Definition 2.1 of [2].

7.1. Proposition. Let x = (x1, . . . , xn) ∈ ObCn and y ∈ ObC. Then the maps

σ∗ : UκC(x; y) → UκC(σ−1x; y)

produce a right action of Σn on the collection of n-morphisms of UκC.

Proof. We must show that 1 ∈ Σn produces the identity map, and that given σ, τ ∈ Σn,
we have

τ ∗ ◦ σ∗ = (σ ◦ τ)∗.

For both of these, recall that σ∗ is induced by the unique map in Y (n)

θ(x, σ) : κn(σ
−1x) → κn(x) · σ.

But if σ = 1, then source and target are both just κnx ∈ Y (n), and objects of Y have
only the identity as automorphisms, so θ(x, 1) = id, and therefore 1 ∈ Σn induces the
identity on the collection of n-morphisms of UκC.

To see that τ ∗ ◦σ∗ = (σ ◦ τ)∗, we examine the following diagram between representing
objects:

κn(x)(x)
= //

=

��

[κn(x) · σ](σ−1x)

=

��

θ(x,σ) // [κn(σ
−1x)](σ−1x)

=

��
[κn(x) · (σ ◦ τ)]((σ ◦ τ)−1x)

=

**VVVV
VVVV

VVVV
VVVV

VV

θ(x,σ◦τ)

��

[κn(σ
−1x) · τ ](τ−1σ−1x)

θ(σ−1x,τ)

��

[(κn(x) · σ) · τ ](τ−1σ−1x)

θ(x,σ)·τ
44iiiiiiiiiiiiiiiii

κn((σ ◦ τ)−1x)((σ ◦ τ)−1x) =
// κn(τ

−1σ−1x)(τ−1σ−1x).
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The perimeter of the diagram gives the desired identity. The top left square commutes,
being a diagram of identities on the same object. The lower pentagon commutes since
it is induced from a diagram in Y (n), where all diagrams commute. This leaves the top
right square, which commutes due to the equivariance of the action map of Y on C. In
particular, if we explicitly say that ξ : Y (n) → Cat(Cn, C) is the action map, then we
have

ξ(θ(x, σ) · τ) = ξ(θ(x, σ)) · τ.
This is an identity of natural transformations of functors Cn → C, which we evaluate at
the object τ−1σ−1x. Then the left side becomes

(θ(x, σ) · τ) · (τ−1σ−1x)

which is the bottom arrow in the top right square, while the right side becomes

θ(x, σ) · τ · τ−1σ−1x = θ(x, σ) · σ−1x,

which is the top arrow in the top right square, so that square does commute. The entire
diagram therefore commutes.

We must verify the associativity diagram, given as (1) on p. 168 of [2], but we give some
notation that will allow us to display it in slightly more compressed form. So suppose
given a final target d. We suppose given a tuple c = (c1, . . . , cn) that will map to d,
and for each s with 1 ≤ s ≤ n, a tuple bs that will map to cs. Further, we write the
entries in bs as bst for a second index t, where we say 1 ≤ t ≤ js, with j = j1 + · · · + jn.
We write the concatenation of all the bs’s as ⊙sbs, which is a j-tuple. For each index
pair st, we assume given a tuple ast that will map to bst. For any fixed s we write
the concatenation of the tuples ast as ⊙tast, and the concatenation of all these (so a
concatenation of concatenations) as ⊙s ⊙t ast. We now claim the following, where Γ is
the multiproduct (or composition) in UκC:

7.2. Proposition. The following associativity diagram in UκC commutes:

UκC(c; d)×
∏
s

UκC(⊙tast; cs)

Γ

��4
44

44
44

44
44

44
44

44

UκC(c; d)×
∏
s

(
UκC(bs; cs)×

∏
t

UκC(ast; bst)
)id×

∏
s Γ

55kkkkkkkkk

∼=

��

UκC(⊙s ⊙t ast; d).

UκC(c; d)×
∏
s

UκC(bs; cs)×
∏
s

∏
t

UκC(ast; bst)
Γ×1

**TTT
TTTT

TTTT
TT

UκC(⊙sbs; d)×
∏
s

∏
t

UκC(ast; bst)

Γ

CC������������������
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Proof. The basic idea for showing that this diagram commutes is to connect it to the
associativity square in C displayed below:

C(κ(c), d)× C(κ(⊙sbs), κ(c))× C(κ(⊙s ⊙t ast), κ(⊙sbs))
◦×1

wwooo
ooo

ooo
oo

1×◦

��7
77

77
77

77
77

77
77

77

C(κ(⊙sbs), d)× C(κ(⊙s ⊙t ast), κ(⊙sbs))

◦

��?
??

??
??

??
??

??
??

??
??

C(κ(c), d)× C(κ(⊙s ⊙t ast), κ(c))

◦zzttt
tt
tt
tt

C(κ(⊙s ⊙t ast), d).

Unpacking the counterclockwise direction of the desired associativity diagram using
the definition of the multiproduct composition Γ, we get the following:

C(κc, d)× Cn(⟨κbs⟩, c)× Cj(⊙s⟨κast⟩,⊙sbs)

1×κn(c)×1
��

C(κc, d)× C(κn(c)⟨κbs⟩, κc)× Cj(⊙s⟨κast⟩,⊙sbs)

◦×1
��

C(κn(c)⟨κbs⟩, d)× Cj(⊙s⟨κast⟩,⊙sbs)

C(ϕ(c,⟨bs⟩),1)×1
��

C(κ(⊙sbs), d)× Cj(⊙s⟨κast⟩,⊙sbs)

1×κj(⊙sbs)

��
C(κ(⊙sbs), d)× C(κj(⊙sbs)(⊙s⟨κast⟩), κ(⊙sbs))

◦
��

C(κj(⊙sbs)(⊙s⟨κast⟩), d)
C(ϕ(⊙sbs,⟨⊙sast⟩),1)
��

C(κ(⊙s ⊙t ast), d).

However, the composites and the actions of the morphisms in Y are essentially indepen-
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dent, so we can compress the display to the following:

C(κc, d)× Cn(⟨κbs⟩, c)× Cj(⊙s⟨κast⟩,⊙sbs)

1×κn(c)×κj(⊙sbs)

��
C(κc, d)× C(κn(c)⟨κbs⟩, κc)× C(κj(⊙sbs)(⊙s⟨κast⟩), κ(⊙sbs))

1×C(ϕ(c,⟨bs⟩),1)×C(ϕ(⊙sbs,⟨⊙sast⟩),1)
��

C(κc, d)× C(κ(⊙sbs), κc)× C(κ(⊙s ⊙t ast), κ(⊙sbs))

◦×1
��

C(κ(⊙sbs), d)× C(κ(⊙s ⊙t ast), κ(⊙sbs))

◦
��

C(κ(⊙s ⊙t ast), d).

In particular, the last two maps are now the counterclockwise direction in the associativity
diagram we know commutes in C.

We turn next to the clockwise direction in the desired associativity diagram. Using
the definition of the multiproduct in UκC, it unpacks as follows:

C(κc, d)× Cn(⟨κbs⟩, c)× Cj(⊙s⟨κast⟩,⊙sbs)

1×1×⊙sκjsbs

��
C(κc, d)× Cn(⟨κbs⟩, c)× Cn(⟨κjsbs⟨κast⟩⟩, ⟨κbs⟩)

1×◦
��

C(κc, d)× Cn(⟨κjsbs⟨κast⟩⟩, c)
1×Cn(⟨ϕ(bs,⟨ast⟩)⟩,1)
��

C(κc, d)× Cn(⟨κ(⊙tast)⟩, c)
1×κnc
��

C(κc, d)× C(κnc⟨κ(⊙tast)⟩, κc)
◦
��

C(κnc⟨κ(⊙tast)⟩, d)
C(ϕ(c,⟨⊙tast⟩),1)
��

C(κ(⊙s ⊙t ast), d).

We can rewrite this direction also to delay the compositions to the end, which we omit
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and will paste on in the next display. We get the following:

C(κc, d)× Cn(⟨κbs⟩, c)× Cj(⊙s⟨κast⟩,⊙sbs)

1×1×⊙sκjsbs

��
C(κc, d)× Cn(⟨κbs⟩, c)× Cn(⟨κjsbs⟨κast⟩⟩, ⟨κbs⟩)

1×1×Cn(⟨ϕ(bs,⟨ast⟩)⟩,1)
��

C(κc, d)× Cn(⟨κbs⟩, c)× Cn(⟨κ(⊙tast)⟩, ⟨κbs⟩)
1×κnc×κnc
��

C(κc, d)× C(κnc⟨κbs⟩, κc)× C(κnc⟨κ(⊙tast)⟩, κnc⟨κbs⟩)
1×1×C(ϕ(c,⟨⊙tast⟩),1)
��

C(κc, d)× C(κnc⟨κbs⟩, κc)× C(κ(⊙s ⊙t ast), κnc⟨κbs⟩).

We now insert an extra arrow that has no effect on the composite, but allows us to connect
the display to the associativity diagram in C: we paste the following to the bottom of the
previous display, giving the clockwise direction in the desired diagram:

C(κc, d)× C(κnc⟨κbs⟩, κc)× C(κ(⊙s ⊙t ast), κnc⟨κbs⟩).
1×C(ϕ(c,⟨bs⟩),1)×C(1,ϕ(c,⟨bs⟩)−1)
��

C(κc, d)× C(κ(⊙sbs), κc)× C(κ(⊙s ⊙t ast), κ(⊙sbs))

1×◦
��

C(κc, d)× C(κ(⊙s ⊙t ast), κc)

◦
��

C(κ(⊙s ⊙t ast), d).

Note that the first arrow in the above display composes with ϕ(c, ⟨bs⟩) and its inverse,
which then get composed together at the next step. The new arrow therefore has no
effect on the composite, so we do actually still have the same clockwise direction in our
desired diagram, but the last two arrows now coincide with the clockwise direction in the
associativity diagram for C. It therefore suffices to show that the two directions coincide
at the point that they reach the known associativity diagram.

Another benefit of rewriting the two directions to delay compositions to the end is
that we can follow what happens to each of the three factors in the beginning term

C(κc, d)× Cn(⟨κbs⟩, c)× Cj(⊙s⟨κast⟩,⊙sbs)
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independently, since the two maps to the known associativity diagram are products of
three maps from each of the three factors. Starting with the first term C(κc, d), we see
that nothing happens to it in either direction, so the two directions do coincide on that
factor.

The maps in either direction on the second factor consist of the same composite,
namely

Cn(⟨κbs⟩, c)
κnc // C(κnc⟨κbs⟩, κc)

C(ϕ(c,⟨bs⟩),1) // C(κ(⊙sbs), κc).

The two directions therefore coincide on that factor as well, reducing the issue to the
restrictions to the third factor in either direction.

On the third factor, the counterclockwise direction restricts as follows:

Cj(⊙s⟨κast⟩,⊙sbs)

κj(⊙sbs)

��
C(κj(⊙sbs)(⊙s⟨κast⟩), κ(⊙sbs))

C(ϕ(⊙sbs,⟨⊙tast⟩),1)
��

C(κ(⊙s ⊙t ast), κ(⊙sbs)).

However, the clockwise direction restricts as

Cj(⊙s⟨κast⟩,⊙sbs)

⊙sκjsbs

��
Cn(⟨κjsbs⟨κast⟩⟩, ⟨κbs⟩)

Cn(⟨ϕ(bs,⟨ast⟩)⟩,1)
��

Cn(⟨κ(⊙tast)⟩, ⟨κbs⟩)
κnc

��
C(κnc⟨κ(⊙tast)⟩, κnc⟨κbs⟩)

C(ϕ(c,⟨ast⟩),ϕ(c,⟨bs⟩)−1)
��

C(κ(⊙s ⊙t ast), κ(⊙sbs)).

Because of the functoriality of κnc, we can rearrange the middle two arrows, so the array
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becomes
Cj(⊙s⟨κast⟩,⊙sbs)

⊙sκjsbs

��
Cn(⟨κjsbs⟨κast⟩⟩, ⟨κbs⟩)

κnc

��
C(κnc⟨κjsbs⟨κast⟩⟩, κnc⟨κbs⟩)

C(κnc⟨ϕ(bs,⟨ast⟩)⟩,1)
��

C(κnc⟨κ(⊙tast)⟩, κnc⟨κbs⟩)
C(ϕ(c,⟨⊙tast⟩),ϕ(c,⟨bs⟩)−1)
��

C(κ(⊙s ⊙t ast), κ(⊙sbs)),

or even more compactly as

Cj(⊙s⟨κast⟩,⊙sbs)

γ(κnc;⟨κjsbs⟩)
��

C(κnc⟨κjsbs⟨κast⟩⟩, κnc⟨κbs⟩)
C(κnc⟨ϕ(bs,⟨ast⟩)⟩,1)
��

C(κnc⟨κ(⊙tast)⟩, κnc⟨κbs⟩)
C(ϕ(c,⟨⊙tast⟩),ϕ(c,⟨bs⟩)−1)
��

C(κ(⊙s ⊙t ast), κ(⊙sbs)).

The last two arrows are induced by isomorphisms in the operad Y , which are entirely
determined by their sources and targets, so lets just indicate them by isomorphism symbols
∼=. The same is true for the second arrow from the counterclockwise direction. Then
asking that the two directions coincide is the same as asking for the commutativity of the
following square:

Cj(⊙s⟨κast⟩,⊙sbs)

κj(⊙sbs)

��

γ(κnc;⟨κjsbs⟩) // C(κnc⟨κjsbs⟨κast⟩⟩, κnc⟨κbs⟩)
∼=
��

C(κj(⊙sbs)(⊙s⟨κast⟩), κ(⊙sbs)) ∼=
// C(κ(⊙s ⊙t ast), κ(⊙sbs)).

If we trace a typical element f ∈ Cj(⊙s⟨κast⟩,⊙sbs) around the square, we find that
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we are asking for commutativity of the following diagram:

κnc⟨κjbs(⊙s⟨κast⟩)⟩
γ(κnc⟨κjsbs⟩)f // κnc⟨κbs⟩

κ(⊙s ⊙t ast)

∼=
44hhhhhhhhhhhhhhhhhh

∼= **VVVV
VVVV

VVVV
VVVV

VV

κj(⊙sbs)(⊙s⟨κast⟩)

ϕ(c,⊙sbs)∼=

OO

κj(⊙sbs)f
// κ(⊙sbs).

ϕ(c,⊙sbs)∼=

OO

The square commutes by naturality of ϕ(c,⊙sbs), and the triangle because it is induced
by a diagram in Y , however not in Y (j), but rather in the degree of the total concatenation
⊙s ⊙t ast. The diagram therefore does commute, and the composition multiproduct in
UκC is associative.

Continuing the verification of diagrams from [2], we turn to the unit diagrams, listed
as (2) on p. 168 in [2]. We begin with the first of them:

7.3. Proposition. The following unit diagram in UκC commutes:

UκC(c; d)× {1}n
∼= //

id×1n

��

UκC(c; d).

UκC(c; d)×
∏n

s=1 UκC(cs; cs)
Γ

44jjjjjjjjjjjjjjjj

Proof. Expanding the counterclockwise direction in the diagram using the definitions of
the structure maps, we have

C(κc, d)× {1}n

id×1n

��
C(κc, d)×

∏n
s=1 C(κcs, cs)
=

��
C(κc, d)× Cn(⟨κcs⟩, c)

id×κnc
��

C(κc, d)× C(κnc⟨κcs⟩, κc)
id×C(ϕ(c,⟨cs⟩),1)
��

C(κc, d)× C(κc, κc)
◦
��

C(κc, d).
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Since we want this to coincide with the canonical projection, and nothing happens to the
first factor until the composition at the end, it suffices to trace the second factor and see
that it lands at idκc ∈ C(κc, κc) at the next to the last step.

To see this, note first that the 1’s get sent to the maps induced by the unique maps
ω(cs) : κ1(cs) → cs in Y (1), by definition of the unit map. Next, observe that

κnc⟨κcs⟩ = γ(κnc; ⟨κ1cs⟩)c,

and the map from there to κc is the one induced by the maps ω(cs) : κ1(cs) → 1 in Y (1).
But this also gives the inverse to the unique isomorphism

ϕ(c, ⟨cs⟩) : κnc → γ(κnc; ⟨κ1cs⟩),

so we do end up at the identity element at the next to the last step. The claimed diagram
therefore does commute.

We next verify the second unit diagram.

7.4. Proposition. The unit diagram

{1} × UκC(c; d)
∼= //

1×id
��

UκC(c; d)

UκC(d; d)× UκC(c; d)
Γ

55kkkkkkkkkkkkkk

commutes.

Proof. Again we unpack the counterclockwise direction using the definitions, and we get

{1} × C(κc, d)
1×id
��

C(κd, d)× C(κc, d)
id×κ1d
��

C(κd, d)× C(κ1d(κc), κd)
1×C(ϕ(d,c),1)
��

C(κd, d)× C(κc, κd)
◦
��

C(κc, d).

Looking at what happens before the final composition, the initial {1} gets sent to the
canonical map ω(d) : κd→ d in C(κd, d). We can delay the composition in order to insert
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maps induced by ω(d) and its inverse as follows, without affecting the outcome:

{1} × C(κc, d)
1×id
��

C(κd, d)× C(κc, d)
id×κ1d
��

C(κd, d)× C(κ1d(κc), κd)
1×C(ϕ(d,c),1)
��

C(κd, d)× C(κc, κd)
C(ω(d)−1,1)×C(1,ω(d))
��

C(d, d)× C(κc, d)
◦
��

C(κc, d).

But since the first map sends 1 to ω(d), now the initial {1} ends up at idd ∈ C(d, d), so
the issue is making sure that the second factor C(κc, d) has its identity as the total map.
Tracing a typical element f ∈ C(κc, d), so f : κc → d, we see that the issue is whether
the following square commutes:

κ1d(κc)
κ1d(f) // κd

ω(d)

��
κc

ϕ(d,c)

OO

f
// d.

Now ϕ(d, c) arises from the unique isomorphism κnc → γ(κ1d;κnc) in Y (n), but this can
be expressed as

γ(ω(d)−1;κnc) : κnc = γ(1;κnc) → γ(κ1d;κnc)

by the uniqueness of morphisms in Y (n). This means that ϕ(d, c) is really just ω(d)−1

applied to the object κc, so we might as well express the diagram as

κ1d(κc)
κ1d(f) // κd

ω(d)

��
κc

ω(d)−1

OO

f
// d.

Since ω(d) is a natural isomorphism, the square commutes by naturality. The second unit
diagram therefore commutes.



920 A. D. ELMENDORF

We next verify the commutativity of the equivariance diagram labeled (4) on p. 169
in [2].

7.5. Theorem. Let σ ∈ Σn. Then the following equivariance diagram in UκC commutes:

UκC(c; d)×
∏n

s=1 UκC(bs; cs)
Γ //

σ∗×σ−1

��

UκC(⊙sbs; d)

σ⟨jσ(1),...,jσ(n)⟩∗

��
UκC(σ−1c, d)×

∏n
s=1 UκC(bσ(s), cσ(s)) Γ

// UκC(⊙sbσ(s), d).

Proof. The counterclockwise direction unpacks as follows:

C(κc, d)× Cn(⟨κbs⟩, c)

σ∗×σ−1

��
C(κ(σ−1c), d)× Cn(⟨κbσ(s)⟩, σ−1c)

1×κn(σ−1c)
��

C(κ(σ−1c), d)× C(κn(σ−1c)⟨κbσ(s)⟩, κ(σ−1c))

◦
��

C(κn(σ−1c)⟨κbσ(s)⟩, d)

C(ϕ(σ−1c,⟨bσ(s)⟩),1)
��

C(κ(⊙sbσ(s)), d).

The clockwise direction unpacks as follows:

C(κc, d)× Cn(⟨κbs⟩, c)
1×κnc
��

C(κc, d)× C(κnc⟨κbs⟩, κc)
◦
��

C(κnc⟨κbs⟩, d)
C(ϕ(c,⟨bs⟩),1)
��

C(κ(⊙sbs), d)

=

��
C([κj(⊙sbs) · σ⟨jσ(1), . . . , jσ(n)⟩](⊙sbσ(s)), d)

C(θ(⊙sbs,σ⟨jσ(1),...,jσ(n)⟩),1)
��

C(κ(⊙sbσ(s)), d).
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To begin connecting the two directions, we first decompose the second arrow in the
last display, labeled ◦ for composition, as follows:

C(κc, d)× C(κnc⟨κbs⟩, κc)
=

��
C([κnc · σ]σ−1c, d)× C(κnc⟨κbs⟩, [κnc · σ]σ−1c)

C(θ(c,σ),1)×C(1,θ(c,σ)−1)
��

C(κ(σ−1c), d)× C(κnc⟨κbs⟩, κ(σ−1c))

◦
��

C(κnc⟨κbs⟩, d).

Since we are composing in one factor with θ(c, σ) and in the other with its inverse, the
composition map remains the same.

Now we connect the two directions by means of the following diagram, which we claim
commutes, where the map p is defined below:

C(κc, d)× Cn(⟨κbs⟩, c)

σ∗×σ−1

��

1×κnc
,,ZZZZZZZ

ZZZZZZZ
ZZ

C(κc, d)× C(κnc⟨κbs⟩, κc)

=

��

C(κ(σ−1c), d)× Cn(⟨κbσ(s)⟩, σ−1c)

1×κn(σ−1c)

��

C([κnc · σ]σ−1c, d)× C(κnc⟨κbs⟩, [κnc · σ]σ−1c)

C(θ(c,σ),1)×C(1,θ(c,σ)−1)

��

C(κ(σ−1c), d)× C(κn(σ−1c)⟨κbσ(s)⟩, κ(σ−1c))

1×C(p,1) ,,ZZZZZZZ
ZZZZZZZ

Z

◦

��

C(κ(σ−1c), d)× C(κnc⟨κbs⟩, κ(σ−1c))
◦��

C(κn(σ−1c)⟨κbσ(s)⟩, d)
C(p,1) //

C(ϕ(σ−1c,⟨bσ(s)⟩),1)

��

C(κnc⟨κbs⟩, d)
C(ϕ(c,⟨bs⟩),1)��

C(κ(⊙sbs), d)
=��

C([κj(⊙sbs) · σ⟨jσ(1), . . . , jσ(n)⟩](⊙sbσ(s)), d)

C(θ(⊙sbs,σ⟨jσ(1),...,jσ(n)⟩),1)rrddddddd
ddddddd

ddd

C(κ(⊙sbσ(s)), d)

Here p is induced by the unique isomorphism

γ(κnc; ⟨κjsbs⟩) · σ⟨jσ(1), . . . , jσ(n)⟩ → γ(κn(σ
−1c); ⟨κjσ(s)

bs⟩)
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in Y (j), which in turn arises as the composite

γ(κnc; ⟨κjsbs⟩) · σ⟨jσ(1), . . . , jσ(n)⟩
=

��
γ(κnc · σ · σ−1; ⟨κjsbs⟩) · σ⟨jσ(1), . . . , jσ(n)⟩

=

��
γ(κnc · σ; ⟨κjσ(s)

bσ(s)⟩) · σ−1⟨j1, . . . , jn⟩ · σ⟨jσ(1), . . . , jσ(n)⟩

=

��
γ(κnc · σ; ⟨κjσ(s)

bσ(s)⟩)

γ(θ(c,σ)−1;1)
��

γ(κn(σ
−1c); ⟨κjσ(s)

bσ(s)⟩),

where the second equality arises from the first equivariance formula for an operad in [8],
Definition 1.1(c) on page 2. We are therefore also justified in writing p as θ(c, σ)−1.

The bottom pentagon commutes, since each map is induced by an isomorphism in
Y (j), where all diagrams commute. The middle (distorted) square commutes since the
horizontal arrows are given by the same map p. This leaves the top hexagon to check, and
we can do so on each factor separately, since the hexagon is actually the product of two
separate hexagons. On the first factor C(κc, d), the counterclockwise direction is given
by the map σ∗. But this is defined to be induced by θ(c, σ), which is what induces the
clockwise direction. The top portion therefore commutes on the first factor, thus reducing
the question to its commutativity on the second factor. This is captured in the perimeter
of the following diagram:

Cn(⟨κbs⟩, c)
σ−1

ttiiii
iiii

iiii
iiii κnc

))SSS
SSSS

SSSS
SSSS

Cn(⟨κbσ(s)⟩, σ−1c)

κn(σ−1c)
��

κnc·σ // C(κnc⟨κbs⟩, κc)

C(1,θ(c,σ)−1)

��
C(κn(σ−1c)⟨κbσ(s)⟩, κ(σ−1c))

C(p,1)
// C(κnc⟨κbs⟩, κ(σ−1c)).

The triangle on top commutes because κnc · σ is just the composition of κnc with the
permutation given by σ, so composing with σ−1 just gives κnc. This reduces us to verifying
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commutativity of the bottom square. But we can rewrite the bottom square as follows:

Cn(⟨κbσ(s)⟩, σ−1c)
κn(σ−1c)

uujjjj
jjjj

jjjj
jjj κnc·σ

**TTT
TTTT

TTTT
TTTT

C(κn(σ−1c)⟨κbσ(s)⟩, κ(σ−1c))

C(θ(c,σ)−1,1) ))TTT
TTTT

TTTT
TTTT

C(θ(c,σ)−1,θ(c,σ)) // C(κnc · σ⟨κbσ(s)⟩, κn · σ(σ−1c))

C(1,θ(c,σ)−1)ttjjjj
jjjj

jjjj
jjj

C(κnc · σ⟨κbσ(s)⟩, κ(σ−1c))

=

��
C(κnc⟨κbs⟩, κ(σ−1c)).

The top triangle commutes by the naturality of θ(c, σ), and the bottom triangle by in-
spection. This concludes the verification of the first equivariance diagram.

The verification that UκC satisfies the requirements for a multicategory concludes with
the commutativity of the second equivariance diagram, labeled (4) on p. 169 of [2]. We
suppose given permutations τs ∈ Σjs for 1 ≤ s ≤ n.

7.6. Proposition. The following equivariance diagram commutes:

UκC(c; d)×
∏n

s=1 UκC(bs; cs)
Γ //

1×
∏
τ∗s
��

UκC(⊙sbs, d)

(⊕sτs)∗

��
UκC(c; d)×

∏n
s=1 UκC(τ−1

s bs, cs) Γ
// UκC(⊙sτ

−1
s bs; d).

Proof. The clockwise direction unpacks as follows:

C(κc, d)× Cn(⟨κbs⟩, c)
1×κnc
��

C(κc, d)× C(κnc⟨κbs⟩, κc)
◦
��

C(κnc⟨κbs⟩, d)
C(ϕ(c,⟨bs⟩),1)
��

C(κ(⊙sbs), d)

(⊕sτs)∗

��
C(κ(⊙sτ

−1
s bs), d).
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However, it will be convenient to rearrange this to delay the composition to the end, as
follows:

C(κc, d)× Cn(⟨κbs⟩, c)
1×κnc
��

C(κc, d)× C(κnc⟨κbs⟩, κc)
1×C(ϕ(c,⟨bs⟩),1)
��

C(κc, d)× C(κ(⊙sbs), κc)

1×(⊕sτs)∗

��
C(κc, d)× C(κ(⊙sτ

−1
s bs), κc)

◦
��

C(κ(⊙sτ
−1
s bs), d).

The counterclockwise direction unpacks as follows:

C(κc, d)× Cn(⟨κbs⟩, c)
1×

∏
s τ

∗
s

��
C(κc, d)× Cn(⟨κ(τ−1

s bs)⟩, c)
1×κnc
��

C(κc, d)× C(κnc⟨κ(τ−1
s bs)⟩, κc)

◦
��

C(κnc⟨κ(τ−1
s bs)⟩, d)

C(ϕ(c,⟨τ−1
s bs⟩),1)

��
C(κ(⊙sτ

−1
s bs), d).

But again, it will be convenient to rewrite this to delay the composition to the end, as
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follows:
C(κc, d)× Cn(⟨κbs⟩, c)

1×
∏

s τ
∗
s

��
C(κc, d)× Cn(⟨κ(τ−1

s bs)⟩, c)
1×κnc
��

C(κc, d)× C(κnc⟨κ(τ−1
s bs)⟩, κc)

1×C(ϕ(c,⟨τ−1
s bs⟩),1)

��
C(κc, d)× C(κ(⊙sτ

−1
s bs), κc)

◦
��

C(κ(⊙sτ
−1
s bs), d).

We can connect the two directions, which form the perimeter of the following diagram, in
which the hexagon is actually the product of two separate hexagons:

C(κc, d)× Cn(⟨κbs⟩, c)
1×

∏
s τ

∗
s

ttjjjj
jjjj

jjjj
jjj 1×κnc

))SSS
SSSS

SSSS
SSS

C(κc, d)× Cn(⟨κ(τ−1
s bs)⟩, c)

1×κnc
��

C(κc, d)× C(κnc⟨κbs⟩, κc)
1×C(κnc⟨θ(bs,τs)⟩,1)

rreeeeeee
eeeeeee

eeeeeee
eeeeeee

1×C(ϕ(c,⟨bs⟩),1)
��

C(κc, d)× C(κnc⟨κ(τ−1
s bs)⟩, κc)

1×C(ϕ(c,⟨τ−1
s s⟩),1) **TTT

TTTT
TTTT

TTTT
C(κc, d)× C(κ(⊙sbs), κc)

1×(⊕sτs)∗uukkkk
kkkk

kkkk
kk

C(κc, d)× C(κ(⊙sτ
−1
s bs), κc)

◦
��

C(κ(⊙sτ
−1
s bs), d).

Since nothing happens to the first factor, C(κc, d), until the end composition, we may
ignore it, and concentrate on the second factor, Cn(⟨κbs⟩, c). The top square in the
diagram becomes

Cn(⟨κbs⟩, c)
κnc //

∏
s τ

∗
s

��

C(κnc⟨κbs⟩, κc)
C(κnc⟨θ(bs,τs)⟩,1)
��

Cn(⟨κ(τ−1bs)⟩, c) κnc
// C(κnc⟨κ(τ−1bs)⟩, κc).

But the maps τ ∗s are induced by θ(bs, τs), so we can rewrite the left vertical arrow as
Cn(⟨θ(bs, τs)⟩, 1), and the diagram now commutes by functoriality of κnc.
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The lower square in our desired diagram becomes

C(κnc⟨κbs⟩, κc)
C(ϕ(c,⟨bs⟩),1) //

C(κnc⟨θ(bs,τs)⟩,1)
��

C(κ(⊙sbs), κc)

(⊕sτs)∗

��
C(κnc⟨κ(τ−1bs)⟩, κc)

C(ϕ(c,⟨τ−1
s bs)⟩,1)

// C(κ(τ−1
s bs), κc).

Since all the arrows in this diagram are induced from morphisms in Y (n), where all
diagrams commute, this diagram also commutes. This completes the verification that the
second equivariance diagram commutes, and therefore that UκC satisfies the requirements
for a multicategory.
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