
Theory and Applications of Categories, Vol. 44, No. 30, 2025, pp. 927–963.

PUSHFORWARD MONADS

ADRIÁN DOÑA MATEO

Abstract. Given a monad T on A and a functor G : A → B, one can construct
a monad G♯T on B subject to the existence of a certain Kan extension; this is the
pushforward of T along G. We develop the general theory of this construction in a
2-category, giving two universal properties it satisfies. In the case of monads in CAT,
this gives, among other things, two adjunctions between categories of monads on A
and B. We conclude by computing the pushforward of several familiar monads on the
category of finite sets along the inclusion FinSet ↪→ Set, which produces the monad for
continuous lattices, among others. We also show that, with two trivial exceptions, these
pushforwards never have rank.

1. Introduction

The question of how a monad T on A can be transported along a functor G : A → B to
produce a monad on B has a well-known answer when G has a left adjoint F , in which
case GTF has a monad structure induced from that of T and the adjunction. There is
a lesser-known, more general answer however: even when G is not a right adjoint, the
right Kan extension of GT along T , when it exists, has a monad structure. The monad
obtained thus is the pushforward of T along G, which we denote by G♯T . This notion
of pushforward monad can be traced back to Street’s seminal paper [26, p. 155], but has
received little attention since. In this paper, we explore the properties of this construction,
and study several examples.

Pushforward monads generalise the concept of codensity monads, which correspond
to the case where T is the identity monad on A . This case has been extensively studied,
with the most famous example being the codensity monad of the inclusion FinSet ↪→ Set.
It is a result of Kennison and Gildenhuys [19, p. 341] that this is the ultrafilter monad,
which Manes [22, Prop. 5.5] identified as the monad for compact Hausdorff spaces. This
is a remarkable fact: the theory of compact Hausdorff spaces is derived from the concept
of finite set and some general categorical machinery, without mention of topology. An
account of this and related results was given by Leinster in [21]. Other known codensity
monads of functors without a left adjoint include:

� The codensity monad of the inclusion of finite groups into groups is the profinite

Received by the editors 2025-01-06 and, in final form, 2025-09-17.
Transmitted by Richard Garner. Published on 2025-09-21.
2020 Mathematics Subject Classification: 18C15.
Key words and phrases: codensity, pushforward, monad, limit completion, Kan extension, powerset,

filter, ultrafilter.
© Adrián Doña Mateo, 2025. Permission to copy for private use granted.

927

928 ADRIÁN DOÑA MATEO

completion monad, whose algebras are profinite groups, or equivalently, totally dis-
connected compact Hausdorff topological groups.

� The codensity monad of the inclusion of finite rings into rings is again the profinite
completion monad, whose algebras are profinite rings. These are all of the compact
Hausdorff topological rings, which are automatically totally disconnected. This
and the previous result can be found in Devlin’s PhD thesis [12, Thms. 10.1.30
and 10.2.2].

� The Giry monad, which sends a measurable space to the space of all probability
measures on it, is the codensity monad of the inclusion of a certain (not full) sub-
category of the category of measurable spaces. This and a number of similar results
applying to other probability monads can be found in Avery’s [5, Thm. 5.8] and
Van Belle’s [32].

All of these are examples of straightforward functors whose codensity monad give
interesting, nontrivial theories. Pushforward monads add a new axis to this list, so that
one can now vary both the functor and the monad on the domain being pushed forward.

In Section 2, we develop the theory of pushforward monads in a general 2-category,
starting from their construction. It includes a universal property satisfied by pushforwards
with respect to lax transformations of monads (Theorem 2.1.7), which was first stated by
Street [26, Thm. 5]. This allows us to not only see codensity monads as special cases of
pushforwards, but also vice versa. We also identify a new kind of universal property of
pushforwards with respect to colax transformations of monads (Corollary 2.2.6), which
later allows us to generalise some ideas already present in Adámek and Sousa’s work on
D-ultrafilters [3] (Example 3.2.6(ii)).

In Section 3, we specialise these results to the 2-category CAT of locally small cate-
gories. We give sufficient conditions for the existence of pushforwards (Proposition 3.1.5)
and for the possibility of their iteration (Proposition 3.1.6). One remarkable consequence
of the results in Section 2 is the existence of two adjunctions between categories of monads,
the most important one being the content of Theorem 3.2.3. A particular instantiation
of this adjunction shows that the concept of the pseudoconstants of a theory appears
naturally from the consideration of pushforwards along Set̸=∅ ↪→ Set (Example 3.2.5).
The last subsection shows that codensity monads are stable (in a suitable sense) under
limit completions (Proposition 3.3.5), and relates them to Diers’s theory of multiadjunc-
tions [14, 16], and Tholen’sD-pro-adjunctions [31]. This allows us, for example, to identify
the category of algebras of the codensity monad of the inclusion Field ↪→ Ring as the free
product completion of the category of fields, Prod(Field) (Example 3.3.10(i)).

Lastly, in Section 4, we study explicit examples of pushforward monads. Building on
Kennison and Gildenhuys’s result, we examine the pushforward of three different families
of monads on FinSet along the inclusion FinSet ↪→ Set. The most striking of these is
the pushforward of the powerset monad, which we identify as the filter monad, whose
algebras are continuous lattices. As with the ultrafilter monad, this example highlights
the complexity of the process: the inputs are the concept of finite set and the (finite)

PUSHFORWARD MONADS 929

powerset monad, and the output is the nontrivial theory of continuous lattices. The
results in this section may be summarised as follows.

1.1. Theorem. Let i : FinSet ↪→ Set be the inclusion. Then:

(i) if E is a finite set, then Seti♯((·)+E) is the category of E-pointed compact Hausdorff
spaces;

(ii) if M is a finite monoid, then Seti♯(M×(·)) is the category of compact Hausdorff spaces
with a discrete M-action;

(iii) Seti♯P is the category of continuous lattices.

We also prove that, with two trivial exceptions, pushforwards along FinSet ↪→ Set are
as far from being finitary as possible. In fact, they have no rank (Theorem 4.3.3).

Although this paper develops both the general theory and specific examples of pushfor-
ward monads, there is much left to be understood about them. Some possible directions
for future work include:

� There are many examples of closed bicategories, such as Span(C), V -Mat, and
V -Prof for suitable choices of C and V . What is does the pushforward construction
look like in each of these? Does it recover a well-known process?

� Left oplax Kan extensions of 2-functors have recently been used by Tarantino and
Wrigley [30] to unrelativise relative pseudomonads. Is there a lax pushforward
process for pseudomonads using right (op)lax Kan extensions?

� What properties or structures of a monad are preserved by pushforwards, and when?
For example, when is the pushforward of an idempotent monad idempotent? When
can one put a strength on the pushforward of a strong monad? When can one
transfer a distributive law between two monads to a distributive law between their
pushforwards?

Acknowledgements. I would like to thank Tom Leinster for his invaluable guidance
and many constructive discussions, and for introducing me to the concept of pushforward
monads, which he in turn learned about from Gejza Jenča. I would also like to thank
Nathanael Arkor for his comments and questions, and for pointing me to the work of
Diers and Tholen; Zev Shirazi, who first told me about monad lifts and with whom I had
many fruitful conversations during CT2024; and the anonymous reviewer for their useful
comments. This work has been funded by a PhD Scholarship from The Carnegie Trust
for the Universities of Scotland.

2. Pushforward monads

In this section, we work in the setting of a 2-category K , although from Section 3 onwards
we will always take K to be CAT. The pushforward construction makes sense in any

930 ADRIÁN DOÑA MATEO

bicategory, but we will do everything in the strict case for simplicity. We write α · β for
the vertical composite of two 2-cells α and β, and α ∗ β for their horizontal composite.

2.1. Generalities of pushforward monads. We begin with a largely expository
subsection which spells out the construction of the pushforward of a monad and gives its
general properties. Some of the results here, such as Lemmas 2.1.6 and 2.1.9 do not seem
to have appeared in writing before.

Given a 0-cell z and a 1-cell g : x → y in K , we write g∗ : K (z, x) → K (z, y) and
g∗ : K (y, z) → K (x, z) for the functors given by composing with g on the left and on
the right, respectively. Given a monad t on x, and taking z = y, we can form the comma
category g∗↓gt, whose objects are pairs (s, σ) such that s ∈ K (y, y) and σ : sg → gt.

2.1.1. Proposition. Let t be a monad on x, and g : x → y be a 1-cell. The comma
category g∗↓gt admits a strict monoidal structure such that the forgetful functor g∗↓gt→
K (y, y) is strict monoidal.

Proof. Let us write η and µ for the unit and multiplication 2-cells of t, respectively. Given
two objects (s, σ) and (s′, σ′) of g∗↓gt, we define (s′, σ′)⊗ (s, σ) to be the composite:

x y

x y

x y

g

t

t

s
σ

g

t

µ

s′
σ′

g

The monoidal unit is simply gη : g → gt. A routine calculation shows that the axioms
for a strict monoidal category follow from the axioms for the monad t. That the forgetful
functor g∗↓gt→ K (y, y) is strict monoidal is clear.

A right extension of gt along g is precisely a terminal object of g∗↓gt. As the terminal
object of a monoidal category, it has a unique monoid structure. Taking its image under
the forgetful functor g∗↓gt→ K (y, y) gives a monoid in K (y, y), i.e. a monad on y.

2.1.2. Definition. Let t be a monad on x and g : x→ y be a 1-cell. The pushforward
of t along g is the right extension of gt along g, with its canonical monad structure
described above. When it exists, we denote it by g♯t.

We can give a more explicit description of the monad structure of g♯t. Let (g♯t, ϵ) be
a right extension of gt along g, as depicted by the following diagram.

x y

x y

g

t g♯t
ϵ

g

PUSHFORWARD MONADS 931

We will usually call ϵ the counit of the pushforward g♯t. The unit and multiplication of
g♯t are the unique 2-cells ηg♯t and µg♯t making

g

(g♯t)g gt

(η
g♯t)g gηt

ϵ

and

(g♯t)
2g (g♯t)gt gt2

(g♯t)g gt

µ
g♯tg

(g♯t)ϵ ϵt

gµt

ϵ

(1)

commute.

2.1.3. Examples.

(i) If g : x→ y is right adjoint to f , with unit δ and counit ν, then the right extension
of a 1-cell h : x→ z along g is (hf, hν). In particular, g♯t = gtf , with its well-known
monad structure:

ηg♯t = gηtf · δ and µg♯t = gµtf · gtνtf.

(ii) The pushforward of the identity monad along g is the codensity monad of g.
In this case, the underlying endofunctor of the monad is the right extension of g
along itself. By the previous example, the codensity monad of a right adjoint is the
monad induced by the adjunction. The most famous example of a codensity monad
in the 2-category CAT of a functor that is not a right adjoint is that of the inclusion
functor FinSet ↪→ Set, which was identified as the ultrafilter monad by Kennison
and Gildenhuys [19, p. 341].

(iii) Let 1 be the terminal category. There is a unique monad on 1, namely the identity
monad. A functor g : 1 → C corresponds to an object x of C . If C is locally
small and has Set-indexed powers, then the codensity monad of g is given by y 7→
xC (y,x). This is called the endomorphism monad of x. Proposition 2.1.7 and the
discussion following it show that for any monad T on C , the T -algebra structures
on x correspond to monad maps (see 2.1.4(iii)) from T to the endomorphism monad
of x.

(iv) Let K be a monoidal category, thought of as a one-object bicategory. Monads in
K are simply monoids, and right extension along an object x ∈ K is by definition
a right adjoint to −⊗x. If m is a monoid, and −⊗x ⊣ [x,−], then the pushforward

932 ADRIÁN DOÑA MATEO

x♯m is [x, x⊗m], with unit and multiplication the respective transposes of

x

x⊗m

x⊗ηm and

[x, x⊗m]⊗ [x, x⊗m]⊗ x

[x, x⊗m]⊗ x⊗m

x⊗m⊗m

x⊗m.

[x,x⊗m]⊗evx⊗m

evx⊗m⊗m

x⊗µm

The pushforward construction was first introduced by Street in [26, p. 155]. In fact,
he defines it in terms of a universal property (given in Theorem 2.1.7) with respect to
the forgetful functor from the 2-category of monads in K , denoted by MND(K), to K ,
and then shows that the right extension in Definition 2.1.2 has this universal property.
In [20], Lack and Street defined a related 2-category EM(K) which is to be thought of
as the free completion of K under Eilenberg–Moore objects. These objects generalise
the usual Eilenberg–Moore categories of a monad in CAT to the context of 2-categories,
and are given by a particular weighted limit (identified by Street in [27, p. 178]). The
2-categories MND(K) and EM(K) have the same 0- and 1-cells, but the latter has more
2-cells in general. We will not be concerned with the 2-cells, so for simplicity we will only
refer to EM(K). Next, we introduce its 1-cells with some standard terminology.

2.1.4. Definition. Let t be a monad on x, and s be a monad on y.

(i) A lax transformation of monads from t to s is a pair (g, φ) of a 1-cell g : x → y
and a 2-cell φ : sg → gt such that

φ · ηsg = gηt and φ · µsg = gµt · φt · sφ. (2)

Equivalently, it is a 1-cell (x, t) → (y, s) in EM(K). Let Lax(t, s) denote the (large)
set of lax transformations from t to s, and Laxg(t, s) denote the subset of those
whose 1-cell part is g.

(ii) A colax transformation of monads from t to s is a pair (g, ψ) of a 1-cell g : x→ y
and a 2-cell ψ : gt→ sg such that

ψ · gηt = ηsg and ψ · gµt = µsg · sψ · ψt. (3)

Equivalently, it is a 1-cell (x, t) → (y, s) in EM(K op)op. Let Colax(t, s) denote the
(large) set of colax transformations from t to s, and Colaxg(t, s) denote the subset
of those whose 1-cell part is g.

PUSHFORWARD MONADS 933

(iii) If x = y, a map of monads on x (or simply a monad map) from t to s is a 2-cell
θ : t→ s such that

θ · ηt = ηs and θ · µt = µs · (θ ∗ θ). (4)

Let Mndx(t, s) denote the (large) set of monad maps from t to s. Note that
Mndx(t, s) = Lax1x(s, t) = Colax1x(t, s).

2.1.5. Examples. Let t be a monad on x.

(i) The unit ηt is a monad map 1x → t.

(ii) The pair (t, µt) is a lax transformation 1x → t, since in this case the aximos in (2) be-
come the left unitality and associativity of t. Dually, (t, µt) is a colax transformation
t→ 1x.

(iii) Let g : x→ y be a 1-cell such that g♯t exists and has counit ϵ. Then (1) shows that
(g, ϵ) is a lax transformation t → g♯t. In fact, there is a natural bijection between
monoids in g∗↓gt (with its strict monoidal structure given by Proposition 2.1.1) and
monads on y equipped with a lax transformation from t whose 1-cell part is g.

With these definitions, Lax and Colax become 1-categories whose objects are monads
in K , namely the 1-truncations of EM(K) and EM(K op)op, respectively. In general,
these categories are not even locally small. The composite of (g, φ) ∈ Lax(t, s) and
(g′, φ′) ∈ Lax(s, r) is the pair (g′g, φ′g · g′φ). Dually, the composite of (g, ψ) ∈ Colax(t, s)
and (g′, ψ) ∈ Colax(s, r) is the pair (g′g, g′ψ · ψ′g). In particular, Mndx becomes a 1-
category, whose objects are monads on x, and which is a subcategory of K (x, x) and
Colax, and contravariantly of Lax.

The pushforward construction is a functor in the monad argument, and in fact one
which is as continuous as the 1-cell along which on one pushes forward, as given by
the next lemma. It is not quite functorial in the 1-cell argument, but it does preserve
composition laxly (see Lemma 2.1.9).

2.1.6. Lemma. Let g : x → y be a 1-cell. Then g♯ is a functor Mndx → Mndy insofar as
it is defined. Moreover, g♯ preserves the limit of any diagram D : I → Mndx such that g∗

preserves the limit of I
D−→ Mndx → K (x, x).

Proof. Let t and s be monads on x such that g♯t and g♯s exist, with counits ϵt and
ϵs respectively. Given θ ∈ Mndx(t, s), there is a unique 2-cell g♯θ : g♯t → g♯s such that
ϵs · (g♯θ)g = gθ · ϵt. This is a monad map: the equation

ϵs · (g♯θ · ηg♯t)g = gθ · ϵt · ηg♯tg (1)
= gθ · gηt (4)

= gηs
(1)
= ϵs · ηg♯sg

implies that g♯θ ·ηg♯t = ηg♯s by uniqueness of factorisations through ϵs. The proof that g♯θ
preserves multiplication is similar. As is often the case, the uniqueness of g♯θ guarantees
functoriality.

934 ADRIÁN DOÑA MATEO

For the statement about of limits, recall that the functor Ux : Mndx → K (x, x) creates
(and hence preserves and reflects) limits, being the forgetful functor from a category of
monoids in a monoidal category. Let (l, λ) be a limit cone for D. Then (g∗Uxl, g∗Uxλ) is
a limit cone for g∗UxD in K (x, y) by assumption. Since rang is a partial right adjoint
to g∗, it preserves limits whenever it is defined, so (rang g∗Uxl, rang g∗Uxλ) is still a limit
cone. But this is precisely the image under Uy of the cone (g♯l, g♯λ), which is then a limit
cone since Uy reflects limits.

The following theorem was stated without proof by Street, albeit in a slightly different
language. It gives the universal property of pushforward monads.

2.1.7. Theorem. [Street [26, Thm. 5]] Let g : x→ y be a 1-cell, t be a monad on x, and
s be a monad on y. If g♯t exists, then there is a bijection

Laxg(t, s) ∼= Mndy(s, g♯t)

natural in t and s.

Proof. Let ϵ be the counit of g♯t, so that (g, ϵ) ∈ Lax(t, g♯t) by Example 2.1.5(iii). A
monad map θ : s→ g♯t is in particular a lax transformation (1y, θ) : g♯t→ s, so composing
with (g, ϵ) gives an assignment Mndy(s, g♯t) → Laxg(t, s). Given (g, φ) ∈ Laxg(t, s), the
universal property of the right extension defining g♯t gives a unique 2-cell pφ : s→ g♯t such
that φ = ϵ · pφg. It suffices to check that pφ is a monad map, since then this construction
gives an inverse to the former assignment. We have

ϵ · (pφ · ηs)g = ϵ · pφg · ηsg = φ · ηsg (2)
= gηt

(1)
= ϵ · ηg♯tg,

which implies that pφ · ηs = ηg♯t by uniqueness of factorisations through ϵ. The proof that
pφ preserves multiplication is similar.

Naturality in t is with respect to monad maps in Mndx, while that in s is with respect
to monad maps in Mndy. They both follow easily from the fact that the bijection is given
by composition with (g, ϵ) and that g♯ is a functor.

The significance of this universal property becomes clear when K has Eilenberg–
Moore objects. Recall that this is a completeness condition under a certain class of
weighted limits, which is satisfied, for example, by CAT.

2.1.8. Proposition. [Lack, Street] Let K have Eilenberg–Moore objects, and write xt

for the Eilenberg–Moore object of a monad t on x. Let t be a monad on x and s be a monad
on y. Then there is a bijection between lax transformations of monads (g, φ) ∈ Laxg(t, s)
and 1-cells gφ such that the square

xt ys

x y

gφ

ut us

g

commutes.

Proof. This follows from the analysis of EM(K) by Lack and Street in [20, §2.2].

PUSHFORWARD MONADS 935

The bijection in Theorem 2.1.7 then becomes a correspondence between dashed 1-cells
as follows:

xt ys

x y

∀

ut us

g

yg♯t ys

y

∃!

u
g♯t us (5)

In other words, 1-cells over y from gut to us correspond to 1-cells over y from ug♯t to us.
The 1-cells of the form us are called monadic, so this gives a way of ‘approximating’ gut

by a monadic 1-cell.
If we consider the case where t is the identity monad on x, then ut is an isomorphism,

and g♯t is the codensity monad of g. Its universal property implies that the assignment
g 7→ ug♯1 gives a (partially defined) reflection from the slice category K /y to its full
subcategory on the monadic 1-cells. Thus, when g♯1 exists, we speak of ug♯1 as the
monadic reflection of g.

2.1.9. Lemma. Let g : x → y and h : y → z be 1-cells, and t a monad on x. Then there
exists a canonical map of monads on z

h♯(g♯t) → (hg)♯t

natural in t, assuming the domain and codomain exist. Moreover, this map is an isomor-
phism if h preserves the right extension of gt along g.

Proof. Let ϵg, ϵh and ϵhg be the counits of g♯t, h♯(g♯t) and (hg)♯t, respectively. By
Example 2.1.5(iii), we have (g, ϵg) ∈ Lax(t, g♯t) and (h, ϵh) ∈ Lax(g♯t, h♯(g♯t)), so their
composite (hg, ϵhg · hϵg) is a lax transformation t → h♯(g♯t) whose 1-cell part is hg.
By Theorem 2.1.7, this corresponds to a unique monad map h♯(g♯t) → (hg)♯t. Naturality
follows from the fact that pushforward is a functor, and that the bijection in Theorem 2.1.7
is natural in t.

If h preserves rang gt, then rang hgt = (h(rang gt), hϵ
g). By general properties of exten-

sions, ranh(rang hgt) = ranhg hgt, but the former may now be given as (ranh h(rang gt), ϵ
hg·

hϵg). Thus the factorisation of ϵhg · hϵg through ϵhg is an isomorphism.

Informally, one can interpret this lemma as saying that the assignment x 7→ Mndx and
g 7→ g♯ is a lax 2-functor from K0 (the underlying 1-category of K) to a strict 2-category
of categories, (partial) functors and natural transformations.

2.1.10. Remark. In the notation of Lemma 2.1.9, for h to preserve rang gt it suffices for
one of g and h to be a right adjoint. This is because in any 2-category, right extensions
along right adjoints are absolute (i.e. preserved by any 1-cell), and right adjoints preserve
right extensions.

In CAT, it is also sufficient for the right Kan extension defining g♯t to be pointwise,
and for h to preserve the limits involved. This is true, for example, if x is a small category,
y is complete and h preserves all small limits.

936 ADRIÁN DOÑA MATEO

For an example where the map is not an isomorphism, one can take K = CAT, g to
be the unique functor 0 → 1 from the initial to the terminal category, h to be the functor
1 → Set picking out a set X with at least two elements, and t to be the identity monad
on 0. Then g♯t is the identity monad on 1, and h♯(g♯t) is the endomorphism monad of X,
as in Example 2.1.3(iii), while (hg)♯t is constant at the terminal set.

Note that (5) says that ug♯t is the monadic reflection of gut, but the same is true for
u(gu

t)♯1 assuming (gut)♯1 exists. Since u
t is a right adjoint, the previous remark and lemma

imply that (gut)♯1 = g♯(u
t
♯1), and by Example 2.1.3(i) we have ut♯1 = t. Altogether, this

shows:

2.1.11. Corollary. Let K be a 2-category with Eilenberg–Moore objects, g : x → y be
a 1-cell in K , and t a monad on x. Then g♯t is the codensity monad of gut.

This corollary seems to suggest that one need not think about pushforwards, and
that studying codensity monads would suffice. However, the pushforward construction
has many benefits that are lost by passing to the associated codensity monad. Most
importantly, it gives a functor between categories of monads, and so it can be used to
produce maps between complex monads from maps between simple ones.

2.2. Colax transformations and g-determined monads. In this subsection, we
study a new universal property that pushforwards have with respect to colax transfor-
mations of monads. This work was inspired by Adámek and Sousa’s paper [3], where
they give explicit descriptions of the codensity monads of the inclusions Afp ↪→ A for
several locally finitely presentable categories A . They say a monad T on A has the limit
property with respect to a full embedding i : B ↪→ A if (T, 1T i) is the pointwise right
Kan extension of Ti. They then exhibit a certain monad S with this property, and show
that the codensity monad of i is the smallest submonad of S with the limit property. Our
results will generalise this to the context of pushforward monads in a 2-category. For a
more explicit comparison, see Example 3.2.6(ii).

We will it find useful to dualise some of the results in the previous subsection. Formally,
these duals are obtained by passing to the 2-category K op, where 1-cells have been
reversed. Extensions then become lifts: a right lift of a 1-cell g : x→ z through a 1-cell
f : y → z is a terminal object (h, ϵ) of f∗↓g, which we will denote by riftf g. Dually, a
left lift of g through f is an initial object of g↓f∗, denoted by liftf g. Lifts seem to be
less common in the literature than extensions, but they are famously used in Street and
Walters’s theory of Yoneda structures [29, §1].

2.2.1. Definition. Let g : x → y and h : y → z be 1-cells. We say that h is g-
determined if (h, 1hg) is a right extension of hg along g. Dually, we say g is h-
opdetermined if it is h-determined in K op, i.e. if (g, 1hg) = rifth hg. A monad is
g-(op)determined if its 1-cell part is.

The condition in this definition can be replaced by an apparently weaker one, as shown
by the next lemma.

PUSHFORWARD MONADS 937

2.2.2. Lemma. In the notation of the previous definition, h is g-determined iff there
exists a monic 2-cell ϵ such that rang hg = (h, ϵ).

Proof. The forwards implication is clear. Now let rang hg = (h, ϵ) with ϵ monic, and let
α, β : h→ h be the unique 2-cells such that ϵ ·αg = ϵ · ϵ and ϵ ·βg = 1hg. Since ϵ is monic,
this implies that αg = ϵ. Then

ϵ · (α · β)g = ϵ · αg · βg = ϵ · ϵ · βg = ϵ

and
ϵ · (β · α)g = ϵ · βg · αg = 1hg · αg = ϵ,

which imply that α and β are mutual inverses, since ϵ is the counit of a right extension
along g. It follows that β is an isomorphism (h, 1hg) ∼= (h, ϵ) in g∗↓hg, so (h, 1hg) is also
a right extension.

2.2.3. Example. Let g : x → y be right adjoint to f , with unit and counit η and ϵ,
respectively. Then h : y → z is g-determined iff hη is an isomorphism. Indeed, we
have rang hg = (hgf, hgϵ). The claim follows easily from the fact that hη is the unique
morphism (h, 1hg) → (hgf, hgϵ) in g∗↓hg, since the codomain is terminal.

It follows that f is g-determined iff the adjunction f ⊣ g is idempotent. In CAT,
we also have that if G : A → B is a coreflection, then any functor with domain B is
G-determined.

2.2.4. Theorem. Let g : x→ y be a 1-cell, t be a monad on x, and s be a g-determined
monad on y. If g♯t exists, then right extending along g gives a function

Colaxg(t, s) → Mndy(g♯t, s)

natural in t and s. Moreover, it takes monic 2-cells to monic 2-cells.

Proof. Let ϵ be the counit of g♯t. Given (g, ψ) ∈ Colaxg(t, s), we have ψ : gt → sg. Let
pψ := rang ψ : rang gt→ rang sg. Since s is g-determined, we may take the right extension

in the codomain to be (s, 1sg), so that pψ is the unique 2-cell such that

pψg = ψ · ϵ. (6)

We check that pψ is a monad map g♯t→ s. We have

(pψ · ηg♯t)g (6)
= ψ · ϵ · ηg♯tg (1)

= ψ · gηt (3)
= ηsg,

938 ADRIÁN DOÑA MATEO

so pψ · ηg♯t = ηs, since they both have the same factorisation through the right extension
1sg. For the multiplication axiom we have

(pψ · µg♯t)g = ψ · ϵ · µg♯tg (by (6))

= ψ · gµt · ϵt · (g♯t)ϵ (by (1))

= µsg · sψ · ψt · ϵt · (g♯t)ϵ (by (3))

= µsg · sψ · pψgt · (g♯t)ϵ (by (6))

= µsg · pψsg · (g♯t)ψ · (g♯t)ϵ (by the interchange law)

= µsg · pψsg · (g♯t) pψg (by (6))

= (µs · pψs · (g♯t) pψ)g.

For the same reason as before, this implies pψ · µg♯t = µs · pψs · (g♯t) pψ.
As in Theorem 2.1.7, naturality in t is with respect to monad maps in Mndx, and

naturality in s is with respect to monad maps in Mndy between g-determined monads. In
both cases, it follows from the fact that rang is a (partial) functor, and that the monads
on y are g-determined.

The preservation of monic 2-cells is immediate from the fact that rang is a partial right
adjoint.

2.2.5. Remark. If K (x, x) has kernel pairs (e.g. if K = CAT and x has kernel pairs),
then a map of monads on x is monic iff it is monic as a 2-cell. This follows from the fact
that the forgetful functor Mndx → K (x, x) creates limits, since a morphism is monic iff
its kernel pair consists of identities.

2.2.6. Corollary. In the notation of Theorem 2.2.4, if the counit of g♯t is an isomor-
phism, then the function in that theorem is a bijection

Colaxg(t, s) ∼= Mndy(g♯t, s).

Proof. Let ϵ be the counit of g♯t. It is easy to see from (2) and (3), that for an invertible
2-cell φ : sg → gt we have (g, φ) ∈ Lax(t, s) iff (g, φ−1) ∈ Colax(t, s). Then (g, ϵ−1) ∈
Colaxg(t, g♯t), and an inverse to the function in Theorem 2.2.4 is given by composing by
(g, ϵ−1) on the right in the category Colax.

This corollary gives a second universal property of pushforwards whose counit is an
isomorphism. In CAT, this is the case as soon as g is fully faithful and the right Kan
extension is pointwise.

To finish off this section, we will take advantage of duality to produce analogous
statements about monad lifts. Formally, we are replacing the 2-category K with K op.
This process only reverses the direction of the 1-cells, so monads in K op are the same thing
as monads in K . It does, however, swap the concepts of lax and colax transformations
of monads.

PUSHFORWARD MONADS 939

2.2.7. Definition. Let g : x → y be a 1-cell, and s be a monad on y. The monad lift
of s along g is the right lift of sg along g, with its canonical monad structure. When it
exists, we denote it by g♯s.

Monad lifts have been used by Shirazi [24, Thm. 4.5] to give presentations of proba-
bility monads as codensity monads.

As with pushforwards, g♯ is a functor Mndy → Mndx insofar as it is defined, which
preserves those limits that g∗ : K (y, y) → K (x, y) preserves. The dual of Theorem 2.1.7
shows that, given a 1-cell g : x → y, and monads t on x and s on y, there is a natural
bijection

Colaxg(t, s) ∼= Mndx(t, g
♯s) (7)

whenever g♯s exists. Moreover, the dual of Corollary 2.2.6 shows that, if additionally t is
g-opdetermined and the counit of g♯s is an isomorphism, then there is a natural bijection

Laxg(t, s) ∼= Mndx(g
♯s, t). (8)

A moment’s glance at these isomorphisms together with their duals immediately gives
two adjunctions between two pairs of full subcategories of Mndx and Mndy:

(i) Theorem 2.1.7 and (8) gives g♯ ⊣ g♯; and

(ii) Corollary 2.2.6 and (7) gives g♯ ⊣ g♯.

The respective full subcategories of Mndx and Mndy are generated by the monads that
satisfy the assumptions of the results in each case. These conditions do not appear very
natural in a general 2-category, however we will see in the next section that, at least in
the case of the first adjunction, they are not rare when K = CAT.

3. Pushforwards in CAT

In this section we study pushforward monads in the 2-category CAT of locally small
categories, functors and natural transformations. We give sufficient conditions for the
existence of pushforwards, specialise and refine many of the results in the previous section,
and show that codensity monads are invariant under limit completions.

3.1. Existence. In CAT, extensions are usually called Kan extensions, and there are
well-known formulas that compute them in terms of (co)limits in the codomain category.
Let F : A → X and G : A → B be functors. If for each b ∈ B the (weighted) limit

{B(b,G−), F} = lim
(
b↓G Πb−→ A

F−→ X
)

(9)

exists, where Πb is the forgetful functor, then the assignment b 7→ limFΠb assembles into
a functor B → X , which is a (pointwise) right Kan extension of F along G. The details
of this can be found in Riehl’s book [23, §6].

940 ADRIÁN DOÑA MATEO

If T is a monad on A , then the pushforward G♯T is given by

G♯T (b) = lim
(
b↓G Πb−→ A

T−→ A
G−→ B

)
, (10)

when the right-hand side exists. If A is small, then so is b↓G, so that the limit in (10)
is guaranteed to exist if B is complete. We can relax this condition by transferring the
smallness hypothesis from A to G.

3.1.1. Definition. A functor P : A → Set is small if it is a small colimit of representa-
bles. A functor G : A → B is representably small if B(b,G−) : A → Set is small for
all b ∈ B.

This terminology is taken from Day and Lack’s work in [11], where they study limits
in categories of small functors. Note that what we call representably small is what Avery
and Leinster call corepresentably small in [6, Def. 4.6].

If a functor P : A → Set is representably small then it is small, since one can take
b to be the singleton in the definition. The reverse implication does not hold, however;
see [11, Ex. 8.1] for a counterexample. The following proposition gives a useful equivalent
condition for a functor to be small. We say a category is cofinally small if it admits a
cofinal functor from a small category.

3.1.2. Proposition. The following are equivalent for a functor P : A → Set:

(i) P is small;

(ii) P = LanK H for some functors K : B → A and H : B → Set with B small;

(iii) the category of elements El(P) of P is cofinally small.

Proof. The equivalence between (i) and (ii) is shown in a proposition of Kelly [18,
Prop. 4.83].

Now assume (ii), and let η : H → PK be the unit of the left Kan extension. Then
η induces a functor El(H) → El(PK), which we can compose with the obvious functor
El(PK) → El(P) to get a functorD : El(H) → El(P). It suffices to show thatD is cofinal,
i.e. that the comma category D↓(a, x) is (nonempty and) connected for every a ∈ A and
x ∈ Pa. Since B is small and Set is cocomplete, the left Kan extension is pointwise, so
the assignment

Kb a Hb PKb Pa
f ηb Pf

forms a colimiting cocone for K↓a Πa−→ B
H−→ Set. Hence, there exists some f : Kb → a

and y ∈ Hb such that (Pf · ηb)(y) = x, and so f is a morphism D(b, y) → (a, x) in El(P).
Moreover, for any other f ′ : D(b′, y′) → (a, x), there must be a zig-zag of morphisms in
El(HΠa) connecting (b, y) and (b′, y′), by the computation of colimits in Set. The same
zig-zag connects them in D↓x, so this category is connected.

PUSHFORWARD MONADS 941

Lastly, we show that (iii) implies (i). One of the consequences of the Yoneda lemma
is that P is the colimit of the composite El(P)op → A op → [A , Set]. If El(P) admits a
cofinal functor from a small category, then this colimit is equivalent to a small colimit,
showing that P is small.

3.1.3. Remark. Despite what the name might suggest, a subfunctor of a small functor
need not be small. Let S be a large discrete category, and S0 be the category resulting
from freely adjoining an initial object, denoted by 0, to S . Then the functor G : S0 → Set
which is constant at the singleton set is small (in fact representable), but the subfunctor
F of G which sends 0 to ∅ and acts as G otherwise is not small. This is easily seen, by
the previous proposition, from the fact that El(F) is isomorphic to S , which is clearly
not cofinally small.

3.1.4. Examples.

(i) A functor A → Set from an (essentially) small category is small by taking K = 1A

in Proposition 3.1.2(ii). Consequently, any functor A → B is representably small.

(ii) A right adjoint G : A → B is representably small, since B(b,G−) ∼= A (Fb,−) is
already representable, where F ⊣ G.

(iii) The fully faithful functor D : Set → Top that equips a set with the discrete topology
is representably small. Indeed, given a topological space X, the full subcategory S
of X↓D = El(Top(X,D−)) on the surjections is cofinal. This follows easily from the
facts that Top has an (epi, strong mono) factorisation system and that subspaces of
discrete spaces are discrete. Note that S is small, since for any surjection X → DS
we must have |S| ≤ |X|.

(iv) The fully faithful forgetful functor F : Field → Ring is representably small. Given
a ring R and a field k, any homomorphism f : R → k factors through a unique
residue field of R, namely Frac(R/p), where p = ker f . Hence, R↓F has connected
components in bijection with SpecR, and each of those components has an initial
object.

(v) The functor (−) + E : Set → Set for E any set is representably small. Denote this
functor by PE. Given a set X, the connected components of X↓PE are in bijection
with the functions f : X → 1 + E, and the component corresponding to f has an
initial object given by the function X → f−11 + E which acts as the identity on
f−11 and as f otherwise.

(vi) Let K be a set, and Set≥K be the full subcategory of Set on the sets of cardinality
at least that of K. The inclusion i : Set≥K ↪→ Set is representably small. Indeed,
let X be a set. If |X| ≥ |K|, then X↓i has an initial object. Otherwise, by cardinal
comparability, there exists an injection m : X → K. We claim that the subcategory

942 ADRIÁN DOÑA MATEO

S of X↓i depicted by

X

K K ′,

m
m′

n1

n2

where (n1, n2) is the cokernel pair of m, and m′ = n1m = n2m, is cofinal.

First note that n1 and n2 are also injective, soK
′ ∈ Set≥K . Now take any f : X → Y

in X↓i. It factors through m, either because X = ∅ or because m splits, so S ↓f
is nonempty. To see that it is connected, we illustrate the most complicated case:
where f factors as gm′ and hm′. The next diagram shows a zig-zag connecting g
and h in S ↓f :

K ′

K

X K ′ Y

K

K ′

g
n1

n2

m′

m

m′

m

m′

⟨hn2,gn1⟩

n2

n1

h

where ⟨hn2, gn1⟩ is the unique function K ′ → Y whose composites with n1 and n2

are hn2 and gn1, respectively.

The importance of representably small functors in the theory of pushforward monads
in CAT is clear from the next proposition.

3.1.5. Proposition. Let G : A → B be a representably small functor into a complete
category. Then G♯T exists for any monad T on A .

Proof. It suffices to show that the right Kan extension along G of any functor F : A →
X with X complete exists. This follows from the limit formula (9), since X is complete
and b↓G = El(B(b,G−)) is cofinally small by assumption.

It follows that one can take pushforwards along each of the functors listed in Exam-
ples 3.1.4. Representably small functors enjoy many convenient properties. For example,
they are closed under composition, as shown by Avery and Leinster [6, Lem. 4.7]. With
this result, we can show that the pushforward construction can often be iterated.

PUSHFORWARD MONADS 943

3.1.6. Proposition. Let G : A → B be a representably small functor into a complete
category, and T be a monad on A . If A T has finite connected colimits, then the top
functor in the square

A T BG♯T

A B,

G′

UT U
G♯T

G

corresponding under Proposition 2.1.8 to the counit of G♯T , is also a representably small
functor into a complete category.

Proof. That BG♯T is complete follows from the fact that UG♯T creates limits. By
Example 3.1.4(ii) and the fact that the composite of two representably small functors
is representably small, GUT = UG♯TG′ is representably small, so B(b, UG♯TG′−) ∼=
BG♯T (FG♯T b,G′−) is small for every b ∈ B. We can now use the theory of limits in
categories of small presheaves to show that BG♯T (b,G′−) is small for every b ∈ BG♯T , not
just the free ones.

Let [A T , Set]s denote the full subcategory of [A T , Set] on the small functors. Day
and Lack’s [11, Prop. 4.3] shows that [A T , Set]s has all finite connected limits and, as the
Yoneda embedding (A T)op → [A T , Set] factors through [A T , Set]s, it is easy to see that
such limits are computed objectwise. Every b ∈ BG♯T is a reflexive coequaliser of free
G♯T -algebras, say of the pair of morphisms (f, g). Since equalisers are finite connected
limits, we can take the equaliser E of BG♯T (f,G′−) and BG♯T (g,G′−) in [A T , Set]s, which
satisfies

Ea ∼= BG♯T (coeq(f, g), G′a) ∼= BG♯T (b,G′a),

naturally in a ∈ A T . Hence, BG♯T (b,G′−) ∼= E is small.

3.1.7. Remark. It seems that the hypothesis about the existence of certain colimits in
A T cannot be dropped if one wants to conclude that G′ is representably small in general.
This is because a composite GF being representably small does not imply that F is
representably small, even when G is faithful. (A counterexample where G is monadic has
not been found.)

For an example, let S0 be as in Remark 3.1.3, and let 2 denote the category with two
objects, a and b, and exactly one non-identity morphism a→ b. The functor F : S0 → 2
which sends 0 to a and the rest of S to b is not representably small, since S0(b, F−) is
not small by Remark 3.1.3. Now let G be the unique functor 2 → 1, which is faithful. As
1(∗, GF−) is constant at the singleton (where we have written ∗ for the unique object of
1), GF is representably small by the same remark.

3.1.8. Example. Of course, another way of having G′ in Proposition 3.1.6 be repre-
sentably small is simply having A small. Taking T to be the identity monad, this gives a
codensity version of monadic towers. These (or rather their comonadic dual) were intro-
duced by Appelgate and Tierney in [4], where they are used to decompose an adjunction
into a reflection followed by a number of monadic adjunctions. In the codensity case,

944 ADRIÁN DOÑA MATEO

we need not start with an adjunction, a functor suffices; and instead of a reflection, the
process ends once we reach a codense functor, i.e. one whose codensity monad is the
identity. Here are some examples (see Figure 1):

(i) Let 2 : 1 → Set be the functor which picks out a two-element set. From Exam-
ple 2.1.3(iii), it follows that the codensity monad of 2 is the double-powerset monad.
It is a classical result that its category of algebras is Setop, which is equivalent to
the category of complete atomic Boolean algebras by Stone duality. The functor
2′ : 1 → Setop picks out 1, because its composite with P : Setop → Set is 2. Since 1
is a dense generator of Set, the functor 2′ is codense.

(ii) Let i : fdVect → Vect be the inclusion of the full subcategory of finite dimen-
sional vector spaces over a fixed field. As proved by Leinster [21, §7], its codensity
monad is the double dualisation monad, whose category of algebras is equivalent to
Vectop. The functor i′ : fdVect → Vectop is the composite of iop and the equivalence
(−)∗ : fdVect → fdVectop given by the fact that finite dimensional vector spaces
are self-dual. Now i is dense, because it is the inclusion of the category of finitely
presentable objects, so i′ is codense.

(iii) Let i : FinSet → Set be the inclusion of the full subcategory of finite sets. Its
codensity monad is the ultrafilter monad on Set, whose category of algebras is
CHaus. The functor i′ : FinSet → CHaus equips a finite set with its unique compact
Hausdorff topology: the discrete topology. Its codensity monad i′♯1 sends a space X
to the set of ultrafilters in its Boolean algebra of clopen subsets. The category of
i′♯1-algebras is equivalent to Stone, the category of Stone spaces. This follows from
the argument outlined by Sipos, in [25, §5]:

Note that i′ factors as FinSet
j−→ Stone

U−→ CHaus. Under Stone duality, jop corre-
sponds to the inclusion of the category of finite Boolean algebras into the category
of all Boolean algebras. The former category contains all of the finitely generated
free Boolean algebras. Since Boolean algebras are the algebras of a finitary algebraic
theory, it follows that jop is dense, and so j is codense. By Remark 2.1.10, since U
is a right adjoint, we have

i′♯1 = (Uj)♯1 = U♯(j♯1) = U♯1.

But U is already monadic (being the inclusion of a reflective subcategory), so the
category of algebras of U♯1 is Stone. It also follows that i′′ = j, which is codense, so
the monadic tower stabilises after two steps.

3.2. An adjunction between categories of monads. We now revisit the adjunc-
tions found at the end of Section 2. One of them takes a particularly nice form when one
pushes forwards along a fully faithful functor (see Theorem 3.2.3).

Analogously to extensions, we write RiftG F and LiftG F for the right and left Kan
lifts of F through G, as in the next lemma.

PUSHFORWARD MONADS 945

Setop

1 Set

P

2

2′

(i)

Vectop

fdVect Vect

(−)∗

i

i′

(ii)

Stone

CHaus

FinSet Set

U

V

i

i′

i′′

(iii)

Figure 1: Three examples of codensity monadic towers.

3.2.1. Lemma. Let θ be a natural isomorphism fitting into a diagram

B

A C

GH

F

θ

where G is fully faithful. Then RiftG F = (H, θ) and LiftG F = (H, θ−1).

Proof. We prove the statement about the right Kan lift; the other is dual. Note that
since G is fully faithful, so is G∗ : [A ,B] → [A ,C]. Given any α : F → GH ′, it follows
that there is a unique pα : H → H ′ such that Gpα = α · θ−1. This is exactly what it means
for (H, θ) to be the right Kan lift of F through G.

We aim to use the dual of Corollary 2.2.6, as given in (8). Lemma 3.2.1 allows us to
simplify the conditions on the corresponding monads. Let G : A → B be fully faithful.
This lemma, together with the dual of Lemma 2.2.2, implies that any monad on A is G-
opdetermined (see Definition 2.2.1). Moreover, a monad S on B such that G♯S exists and
has an isomorphism as counit is precisely one that restricts along G, i.e. such that there
exist an endofunctor S ′ of A (which inherits a monad structure) and an isomorphism
GS ′ ∼= SG, since Lemma 3.2.1 then implies that G♯S = S ′.

3.2.2. Examples.

(i) Clearly, the identity monad restricts along any fully faithful functor.

(ii) The following monads on Set restrict along the inclusion FinSet ↪→ Set: the filter
and ultrafilter monads; the (−) +E monad, for a finite set E; the M × (−) monad,
for a finite monoid M ; the powerset monad; and the endomorphism monad of any
finite set (see Example 2.1.3(iii)), such as the double-powerset monad.

3.2.3. Theorem. Let G : A → B be a fully faithful, representably small functor into a
complete category. There is an adjunction

MndA MndresGB

G♯

G♯

⊣

946 ADRIÁN DOÑA MATEO

where MndresGB is the full subcategory of MndB on the monads that restrict along G. More-
over, the right adjoint G♯ is fully faithful.

Proof. Since G is representably small and B is complete, G♯ is defined on all MndA .
Since G is fully faithful, the counit of a right Kan extension along it is an isomorphism,
showing that G♯ has the right codomain. Similarly, Lemma 3.2.1 ensures that G♯ is defined
on all MndresGB . By Theorem 2.1.7 and the dual of Theorem 2.2.4, there is a bijection

MndA (G♯S, T) ∼= LaxG(T, S) ∼= MndB(S,G♯T)

natural in S ∈ MndresGB and T ∈ MndA .
As G is fully faithful, so are RanG and G∗, and hence so is G♯. This can also be easily

seen from the fact that the counit of the adjunction is an isomorphism.

3.2.4. Example. The only endofunctor of CHaus which fixes underlying sets is the iden-
tity. Such an endofunctor amounts to an endomorphism of the ultrafilter monad on Set,
by the correspondence between monad maps and functors between Eilenberg–Moore cat-
egories. Since i♯ : MndFinSet → MndSet is fully faithful, this gives and endomorphism of the
identity monad on FinSet, which can only be the identity.

3.2.5. Example. The adjunction of Theorem 3.2.3 takes a particularly simple form when
we take G to be i : Set≥K ↪→ Set from Example 3.1.4(vi). Most monads on Set have a
monic unit; these are called the consistent monads. The only two inconsistent monads
are the one that is constant at 1, and that which is constant at 1 except that it sends ∅
to ∅ (see [1, Lem. IV.3]).

Every consistent monad T restricts along i. Moreover, for every set X such that
TX is nonempty, we have (i♯i

♯T)X ∼= TX. This is clear if |X| ≥ |K|. Otherwise,
Example 3.1.4(vi) shows that (i♯i

♯T)X is the equaliser of

TK TK ′,
Tn1

Tn2

where (n1, n2) is the cokernel pair of an injection m : X → K. Since TX is nonempty,
there is a retraction r of Tm. We also have the composite

s = TK ′ T 2K TK,
T ⟨ηTK ,Tm·r·ηTK⟩ µT

K

where ⟨f1, f2⟩ denotes the unique morphism such that ⟨f1, f2⟩ · ni = fi for i ∈ {1, 2}, for
f1 and f2 such that f1m = f2m. One checks that r and s, together with Tm, Tn1 and
Tn2 form a split equaliser diagram, showing that (i♯i

♯T)X ∼= TX.
If we takeK = 1, then even the inconsistent monads restrict along i, giving a reflection

MndSet≥1
MndSet.

i♯

i♯

⊣

(11)

PUSHFORWARD MONADS 947

Let a and b be the two functions 1 → 2. Given a monad T on Set, the equaliser of the
pair (Ta, Tb) is the set of pseudoconstants of T . A pseudoconstant can be understood
as a unary term in the theory of T which takes a constant value in every nonempty algebra.
Every constant induces a pseudoconstant; an example of a pseudoconstant that does not
come from a constant is the unique element of any nonempty model of the theory of sets
where all elements are equal.

The monad on MndSet induced by the reflection (11) sends a monad T to i♯i
♯T , which

agrees with T on all nonempty sets and which sends ∅ to the set of pseudoconstants of
T . In other words, i♯i

♯ realises the pseudoconstants of a monad as actual constants. The
argument above implies the well-known fact that as soon as there is at least one constant,
all pseudoconstants are induced by constants.

As outlined at the end of Subsection 2.2, there is also a dual partial adjunction (notice
the interchange between the left and right adjoints):

MndA MndGdet
B

G♯

G♯

⊣

where MndGdet
B is the full subcategory of MndB on the G-determined monads. In this

case, G♯ need not be defined on all of MndGdet
B . A simple sufficient condition to make this

adjunction total is that G be a fully faithful left adjoint (such as the discrete-topology
functor Set → Top), since then right Kan lifts through G always exist.

3.2.6. Examples.

(i) IfG : A → B is fully faithful, then any right Kan extension alongG isG-determined
by Lemma 2.2.2. For example, the endomorphism monad on Set of a finite set
X is i-determined, where i : FinSet → Set. This follows from Example 2.1.3(iii),

because it is the codensity monad of 1
X−→ FinSet

i−→ Set, and hence is given by
RaniX iX = Rani(RanX iX).

In particular, the double-powerset monad on Set is i-determined. This is in stark
contrast to the powerset monad P on Set, which is not i-determined. If it were,
then P = Rani Pi, but we will see in Section 4 that the right-hand side is the filter
monad.

(ii) Let i : A ↪→ B be the inclusion of a full subcategory. By definition, a monad on
B is i-determined precisely when it has the limit property of Adámek and Sousa [3,
Def. 6.2]. Assuming A is small and B is complete, their Theorem 6.5 shows that the
codensity monad of i is the smallest i-determined submonad of a carefully chosen
i-determined monad S on B. One of the key properties of S is that ηS is pointwise
monic, and so is ηSi, since i is fully faithful.

This result can be generalised easily using our theory of pushforwards. Let G : A →
B be a functor such that G♯1 exists. If T is a G-determined monad on B such that

948 ADRIÁN DOÑA MATEO

ηTG is a a monic natural transformation, then G♯1 is the smallest G-determined
submonad of T .

This follows from the fact that for any monad T on B, the pair (G, ηTG) is a
colax transformation 1A → T . If T is G-determined and ηTG is monic, then Theo-

rem 2.2.4 gives a monic monad map yηTG : G♯1 → T . If θ : S → T is a G-determined

submonad, then the naturality in T of this construction ensures that θ ·yηSG = yηTG,
making G♯1 the smallest G-determined submonad of T .

3.3. Limit completions and codensity. We finish this section with the observation
that codensity monads are invariant under limit completions, in a suitable sense. This
allows us to relate codensity monads to Diers’s multiadjunctions [16, p. 58] and Tholen’s
D-pro-adjunctions [31, p. 148]. In particular, Diers’s results allow us to identify the
category of algebras of the codensity monad of Field ↪→ Ring as the free product completion
of Field – see Example 3.3.10(i).

Let G : A → B be a functor with A essentially small and B complete. We get a
usual nerve-realisation-type adjunction:

A

[A , Set]op B

y G

Rany G

RanG y⊣

If we think of [A , Set]op as the free limit completion of A , then the right adjoint realises
the formal limit of a small diagram D : I → A as the actual limit in B of GD. As
Leinster explains in [21, §2], the monad on B that this adjunction induces is precisely the
codensity monad of G. A key aspect in this situation is that the Yoneda embedding y is
codense.

Recall that a functor is codense when its codensity monad is the identity. Codense
functors play an important role in relating the codensity monads of different functors, as
shown by the next proposition.

3.3.1. Proposition. Let G : A → B and H : X → A be functors with H codense. If
G is a right adjoint, then G and GH have the same codensity monad.

Proof. We have
(GH)♯1 ∼= G♯(H♯1) ∼= G♯1,

where the first isomorphism is that of Lemma 2.1.9, since G is a right adjoint, and the
second is the fact that H is codense.

PUSHFORWARD MONADS 949

3.3.2. Remark. The condition that G be a right adjoint cannot be dropped. The fol-
lowing example is due to Kelly [18, §5.2]: the functors 1 : 1 → FinSet and y : FinSet →
[FinSetop, Set] are both dense, but their composite is not. It follows that the codensity
monads of yop and of yop1op are different.

The next lemma is a rich source of codense functors.

3.3.3. Lemma. [Kelly [18, Thm. 5.13]] Let A B CF G be functors, with G fully
faithful. If GF is codense, then so are F and G.

For any category A , the category [A , Set]ops is its free small-limit completion, and
the Yoneda embedding y : A → [A , Set]ops is codense. It follows that the inclusion of
A into any full subcategory of [A , Set]ops containing the representables is codense. Such
subcategories can be thought of as the categories obtained from A by freely adjoining
limits for a chosen class of diagrams.

These facts together with Proposition 3.3.1 allow us to relate codensity monads to the
multiadjunctions of Diers [14, 16] and, more generally, the pro-adjunctions of Tholen [31].
We summarise the situation now.

Let D be a class of small categories containing the terminal category 1. Let Pro(D,A)
be the full subcategory of [A , Set]ops on those objects that are I op-indexed limits of
representables, for I ∈ D. Since 1 ∈ D, the Yoneda embedding factors as a fully faithful
functor A ↪→ Pro(D,A). If A is D-complete, i.e. it has I op-indexed limits for all
I ∈ D, then this inclusion has a right adjoint given by taking the corresponding limit in
A . Any functor G : A → B induces a functor Pro(D, G) making the diagram

A B

Pro(D,A) Pro(D,B)

G

Pro(D,G)

commute.

3.3.4. Definition. [Tholen [31]] A functor G : A → B is

(i) a right D-pro-adjoint if Pro(D, G) is a right adjoint;

(ii) D-pro-monadic if Pro(D, G) is monadic.

Let S be the class of all sets (small discrete categories). Then G is a right multiadjoint
if it is a right S-pro-adjoint, and it is multimonadic if it is S-pro-monadic.

3.3.5. Proposition. If G : A → B is a right D-pro-adjoint and B is D-complete, then
G has a codensity monad and it is the monad induced by the right adjoint

Pro(D,A) Pro(D,B) B.
Pro(D,G)

(12)

Proof. Since Pro(D,A) ↪→ [A , Set]ops is fully faithful, the inclusion A ↪→ Pro(D,A) is
codense by Lemma 3.3.3. The result then follows from Proposition 3.3.1.

950 ADRIÁN DOÑA MATEO

The case of multiadjoints and multimonadic functors was studied by Diers [14, 15, 16].
In this case, the category Pro(S,A) is the free product completion of A , which we denote
by Prod(A).

3.3.6. Lemma. [Tholen] A functor G : A → B is a right multiadjoint iff, for each b ∈ B,
the category b↓G has a set of connected components and each component has an initial
object.

Proof. The second condition is the original definition of right multiadjoint given by
Diers [16, p. 58]. The equivalence with the definition here was proved by Tholen in [31,
Thm. 2.4].

There are analogues of the monadicity theorems for multimonadic functors, many of
which can be found in Diers [14, §3 and 4]. However, there is a sufficient condition for
multimonadicity that is in practice easy to check.

3.3.7. Definition.A functorG : A → B is relatively fully faithful if every morphism
of A is G-cartesian, i.e. for any pair of morphisms f : X → Z and g : Y → Z in A with
the same codomain, and any m : GX → GY in B such that Gg ·m = Gf , there exists a
unique h : X → Y such that hg = f and Gh = m.

This conditions may be summarised by the following diagram.

X GX

Z GZ

Y GY

∃!h

∀f

∀m

Gf

G

∀g Gg

The next proposition is part of Diers [14, Prop. 6.0].

3.3.8. Proposition. [Diers] A functor that is both a right multiadjoint and relatively
fully faithful is multimonadic.

For ease of reference, we reproduce one last powerful result about multimonadic func-
tors which can be found in Diers [15, p. 661]. It relates the monadicity of the functor (12)
to the multimonadicity of G, at least in the case of categories over Set.

3.3.9. Theorem. [Diers] Let G : A → Set be a functor. The functor

Prod(A) Prod(Set) Set
Prod(G)

is monadic iff G is multimonadic and it satisfies the following condition:

for any set I, A ∈ A , and any family of morphisms (fi : A→ Ai)i∈I in A ,
if (GA,Gfi)i∈I is a product cone, then I has exactly one element.

(D)

If this is the case, the corresponding monad is the codensity monad of G.

Condition (D) implies that G does not create any products indexed by a set I, unless
I is a singleton. If G reflects products (e.g. if G is fully faithful), then these two conditions
are equivalent.

PUSHFORWARD MONADS 951

3.3.10. Examples.

(i) The argument in Example 3.1.4(iv) shows, in the light of Lemma 3.3.6, that the
forgetful functor F : Field → Ring is a right multiadjoint. It is clear from Defini-
tion 3.3.4 that right multiadjoints are closed under composition, so the composite
UF : Field → Ring → Set is also a right multiadjoint. Since all field homomorphisms
are injective, it is easy to see that UF is relatively fully faithful, and hence multi-
monadic by Proposition 3.3.8. Moreover, UF reflects limits, because both U and
F do, and it is clear that it does not create any nontrivial products. It follows
from Theorem 3.3.9 that the functor Prod(Field) → Set taking a formal product of
fields to the product of their underlying sets is monadic, and that it is the monadic
reflection of UF .

This functor factors as Prod(Field)
P−→ Ring

U−→ Set, where U is monadic and P is a
right adjoint. It follows from Beck’s monadicity theorem that P is also monadic,
and from Proposition 3.3.5 that the corresponding monad is the codensity monad
of F . In other words, Prod(Field) → Ring is the monadic reflection of Field → Ring.

(ii) Similarly, Example 3.1.4(v) shows that PE : Set → Set is a right multiadjoint. In
fact, it is also relatively fully faithful. Indeed, let f : X → Z and g : Y → Z be
functions, and m : PEX → PEY be such that PEg · m = PEf . It follows that m
must act as the identity on E, so it is of the form PEh for a unique h : X → Y such
that gh = f .

Condition (D) is satisfied as soon as E has at least two elements. It is clear that it
fails for E = ∅ and 1 (the latter one by taking I = ∅). Now suppose e, e′ ∈ E are
two distinct elements, and let I and X be sets, and (fi : X → Xi)i∈I be a cone such
that (PEX,PEfi)i∈I is a product cone. Since PEX is not terminal, I is nonempty. If
I has at least two elements, i and i′, then there is some element of PEX that maps
to e under PEfi and to e′ under PEfi′ , but this is impossible from the definition of
PE. It follows that I is a singleton.

Theorem 3.3.9 then gives a proper class of monadic functors QE : Prod(Set) → Set
(one for each E with at least two elements), sending the formal product of (Xi)i∈I
to the cartesian product

∏
i∈I(Xi + E).

3.3.11. Remark. Given that Proposition 3.3.5 applies to more general limit completions
than those under products, it is possible to imagine generalisations of Theorem 3.3.9 to
D-pro-monadic functors, where D is perhaps a sound doctrine of limits. We leave this
investigation for future work.

4. Pushing forward monads on finite sets

In this last section, we explicitly compute the pushforward along i : FinSet ↪→ Set of
several familiar monads on FinSet. We will also show that, with the exception of two
examples, all pushforwards along i have no rank.

952 ADRIÁN DOÑA MATEO

Note that i is a fully faithful, representably small functor into a complete category, so
we are in the setting of Theorem 3.2.3. In particular, the problem of finding monads on
FinSet reduces to finding monads on Set that restrict along i, i.e. that preserve finiteness.

4.0.1. Examples.There are at least three (families of) monads whose pushforward along
i is easy to identify.

(i) Let T be the terminal monad on FinSet, i.e. the one that is constant at 1. It follows
from the limit preservation property of Lemma 2.1.6 that i♯T is the terminal monad
on Set.

(ii) Let S be the unique submonad of T such that S∅ = ∅. For any nonempty set X,
the limit formula in (10) is the same for i♯T (X) and i♯S(X), so we have i♯S(X) = 1.
Since i is fully faithful, i♯S(∅) = ∅. Hence, i♯S is the other inconsistent monad on
Set.

(iii) Let n be a finite set, and D be the endomorphism monad of n in FinSet, so that
D(X) = nSet(X,n) for any finite set X. This is the codensity monad of n : 1 → FinSet.
Note that the right Kan extension n♯1 is pointwise, and its computation only involves
finite limits. Since i preserves finite limits, it preserves Rann n, and by Lemma 2.1.9
we have i♯D = i♯(n♯1) ∼= (in)♯1, which is the endomorphism monad of n in Set.

The same argument shows that, for any functor G : A → FinSet from a finite
category, and any monad T on A , we have i♯(G♯T) = (iG)♯T .

We will consider the pushforward of three more families of monads on FinSet, which
we introduce now.

� For any finite set E, the functor (·)+E : Set → Set has a well-known monad structure
whose category of algebras is E/Set. We denote this monad by PE and refer to it as
the exception monad. Since it sends finite sets to finite sets, it restricts to a monad
on FinSet, which we denote by P f

E := i♯PE.

� For any finite monoid M , the functor M × (·) : Set → Set has a well-known monad
structure whose algebras are left M -sets, i.e. sets with an action of M on the left.
We denote this monad by AM . Again, since this sends finite sets to finite sets, it
restricts to a monad on FinSet, which we denote by Af

M := i♯AM .

� The covariant powerset functor P : Set → Set has a well-known monad structure
whose category of algebras is the category of suplattices. Once again, this sends
finite sets to finite sets, so it restricts to a monad on FinSet, which we denote by
P f := i♯P. Algebras for P f are finite bounded join-semilattices, i.e. commutative
monoids with a idempotent multiplication (x2 = x for all x).

Before delving into these examples, it will be useful to recall the situation for the
pushforward of the identity on FinSet, i.e. the codensity monad of i. Kennison and

PUSHFORWARD MONADS 953

Gildenhuys [19, p. 341] showed that i♯1 is the ultrafilter monad, which we denote by
β, whose category of algebras is the category of compact Hausdorff topological spaces and
continuous maps. The functoriality of i♯ and Example 2.1.5(i) give monad maps β → i♯T

f

for any monad T f on FinSet. Moreover, each of the monads described above is the monad
lift through i of a monad T on Set. We therefore have a map T → i♯i

♯T which is the unit
of the adjunction of Theorem 3.2.3. In terms of Eilenberg–Moore categories, this gives a
commutative square of forgetful (in fact, monadic) functors

Seti♯i
♯T

CHaus SetT

Set
Uβ UT

(13)

for any monad T on Set which restricts along i.
This situation highlights a similarity between pushforwards of lifted monads and dis-

tributive laws between T and β, whereby the algebras for i♯i
♯T have underlying β- and

T -algebra structures. In the first two cases, we will see that this similarity is manifest, in
that i♯P

f
E and i♯A

f
M are the composite monads given by distributive laws between PE and

β, and AM and β, respectively. In the third case, there is no known distributive law be-
tween P and β, but there is a weak distributive law of P over β, studied by Garner [17].
It will turn out that i♯P f is the composite monad induced by this weak distributive law.

4.0.2. Remark. As far as we can tell, the appearance of these (weak) distributive laws
is a coincidence. Of course, since the pushforward construction makes sense in any 2-
category, one can think about the existence of pushforwards in MND(CAT) or EM(CAT).
Monads in MND(CAT) were identified by Street as distributive laws [26, §6], while monads
in EM(CAT) are Lack and Street’s concept of monad wreaths [20, §3]. However, these 2-
categories do not have the usual calculus of weighted limits, which simplifies the process
of computing pushforwards.

Let S and T be monads on a category A . It is a standard result (see [7, §9.2.2]) that
distributive laws δ : TS → ST correspond to liftings of S to A T , by which we mean a
monad ST on A T which satisfies UTST = SUT and two more axioms. Lack and Street [20,
p. 257] showed that a monad wreath amounts to a similar lifting, but this time without
the last two axioms. Let R be a monad on B, and (G,φ) be a lax transformation from
T to R, i.e. a 1-cell in MND(CAT) or, equivalently, in EM(CAT). By Proposition (2.1.8),
this corresponds to a commutative square of functors

A T BR

A B.

UT

Gφ

UR

G

954 ADRIÁN DOÑA MATEO

Naively, one would hope to push the lifted monad ST on A T forward along Gφ to get a
monad on BR which is a lifting of G♯S, thus pushing forward a distributive law/wreath
on A to one on B. However, even the most simple examples show that this is not the
case in general. In particular, the equation UR(Gφ

♯ S
T) = (G♯S)U

R seems to fail often.
For instance, one can take A = FinSet and B = Set, with T = S = 1 and R = β, and

G = i : FinSet → Set with φ = ϵ, the counit of i♯1 = β. The pushforward iϵ♯1 is the monad
described in Example 3.1.8(iii) which sends a compact Hausdorff space to the space of
utrafilters in its Boolean algebra of clopen subsets. Clearly, Uβ(iϵ♯1) ̸= (i♯1)U

β, as can be
seen by evaluating at any connected compact Hausdorff space with an infinite underlying
set. The situation is no better when G and Gφ are right adjoints; consider, for example,
A = Ring with T = S = 1, and B = Set with BR = Ab.

Because filters and ultrafilters on a set will play a key role in these examples of push-
forwards along i : FinSet ↪→ Set, we now write down the definitions to fix our notation.

4.0.3. Definition. Let X be a set. A filter on X is a subset F of PX, such that

(i) X ∈ F ,

(ii) for A,B ⊆ X, we have A ∩B ∈ F iff A,B ∈ F 1.

An ultrafilter is a filter that also satisfies: for A ⊆ X, either A ∈ F or X \A ∈ F , but
not both. Ordering the filters on X by inclusion, ultrafilters are precisely the maximal
proper ones.

Given A ⊆ X, the principal filter at A is the filter

↑A = {B ⊆ X | A ⊆ B}.

This is an ultrafilter iff A = {x} for some x ∈ X, in which case it is called the principal
ultrafilter at x. Any filter on a finite set is principal; indeed, a filter is closed under finite
intersections, and taking the intersection over the entire filter gives a least element.

Let FX and βX denote the set of filters and ultrafilters on X, respectively. Then F
becomes a functor as follows: given a function f : X → Y and F ∈ FX, let

Ff(F) = {B ⊆ Y | f−1B ∈ F}.

One readily checks that this is a filter on Y , and that this assignment is functorial. Note
that for A ⊆ X, we have Ff(↑A) = ↑f(A). Moreover, Ff(F) is an ultrafilter if F is, so
β becomes a subfunctor of F .

Both F and β have well-known monad structures. Let X be a set. In both cases, the
unit sends x ∈ X to ↑{x}. Given F ∈ FFX, we have

µF
X(F) = {A ⊆ X | A♯ ∈ F} where A♯ = {F ∈ FX | A ∈ F}. (14)

1This condition is often split into two: if A ⊆ B ⊆ X and A ∈ F , then B ∈ F ; and if A,B ∈ F ,
then A ∩B ∈ F . The equivalence between the two definitions is straightforward.

PUSHFORWARD MONADS 955

If F ∈ ββX, then
µβ
X(F) = {A ⊆ X | A♯ ∩ βX ∈ F}. (15)

Since FinSet is essentially small and Set is complete, all pushforwards along i are
pointwise, given by the limit formula (10). For g : X → Y a function into a finite set, we
will write ⟨g⟩ : i♯T f(X) → T fY for the leg of the limit cone at g ∈ X↓i. Which monad T f

on FinSet this refers to will be clear from the context. The cone condition implies that if
f : Y → Y ′ is a function between finite sets then ⟨fg⟩ = T ff · ⟨g⟩.

As a warmup for the remaining examples of pushforwards, we review how β is the
codensity monad of i. Since every ultrafilter on a finite set is principal, it is easy to see
that i♯β is the identity monad, thus giving the unit map ν : β → i♯1. For a set X, an
ultrafilter F on X, and a function g : X → Y into a finite set, we have that (⟨g⟩ · νX)(F)
is the element at which βg(F) is principal, i.e. the unique y ∈ Y such that {y} ∈ βg(F),
or equivalently such that g−1{y} ∈ F . The inverse of νX sends φ ∈ i♯1(X) to the set
of those subsets A ⊆ X such that ⟨χA⟩(φ) = ⊤, where χA : X → 2 = {⊥,⊤} is the
characteristic function of A. Note that νX(↑{x}) is given by evaluation at x, in the sense
that (⟨g⟩ · νX)(↑{x}) = g(x).

4.1. The exception and M-set monads. The cases of P f
E = (·)+E and Af

M =M×(·)
are similar, so we treat them together. We will need the following standard fact about
the ultrafilter monad.

4.1.1. Proposition. The functor β preserves finite coproducts. In particular, for any
set X, and finite sets E and M , we have isomorphisms

β(X + E) ∼= βX + E and β(M ×X) ∼= M × βX

natural in X.

Proof. Let X and Y be sets. For F ∈ β(X + Y), either X ∈ F or Y ∈ F , but not
both. If X ∈ F , then F ∩PX is an ultrafilter on X, and similarly for Y . This gives an
inverse to the canonical map βX + βY → β(X + Y).

In fact, these isomorphisms turn out to be distributive laws of β over PE and AM ,
respectively. In reality, there is no need to specify them as being of one monad over the
other, since, being invertible, their inverses are distributive laws in the opposite direction.

4.1.2. Proposition. The isomorphisms of Proposition 4.1.1 are distributive laws of β
over PE, and over AM , respectively.

Proof. We check this for the PE case, the other being similar. Let δ denote the iso-
morphism βPE

∼= PEβ of Proposition 4.1.1. We need to prove the commutativity of four

956 ADRIÁN DOÑA MATEO

diagrams:

β

βPE PEβ

PE

βη ηβ

δ

ηPE PEη

βP 2
E PEβPE P 2

Eβ

βPE PEβ

β2PE βPEβ PEβ
2

δPE

βµ

PEδ

µβ

δ

βδ

µPE

δβ

PEµ

The commutativity of the two triangles and the top pentagon is direct from the definitions;
we spell out that of the bottom pentagon. Let X be a set, and F ∈ β2PEX. Since E is
finite, an ultrafilter F on PEX contains E iff F = ↑{e} for some e ∈ E. Hence,

E♯ ∩ βPEX = {↑{e} | e ∈ E},

with the notation from (14). There are two cases:

(i) If E ∈ µPEX(F), then E
♯ ∩ βPEX ∈ F. This in turn means that F = ↑{↑{e}} for

some e ∈ E, and that δXµPEX(F) = e. For the bottom composite, we have

↑{↑{e}} ↑{e} e e.
βδX δβX PEµX

(ii) If E /∈ µPEX(F), then δXµPEX(F) = µPEX(F) ∩ PX. In this case, E♯ ∩ βPEX /∈ F.
But δ−1

X E = E♯ ∩ βPEX, so E /∈ βδX(F). In turn,

δβX(βδX(F)) = βδX(F) ∩ PβX ∈ β2X.

Applying µX to this, we get an ultrafilter on X that contains A ⊆ X iff

A♯ ∩ βX ∈ βδX(F) ∩ PβX ⇐⇒ A♯ ∩ βX ∈ βδX(F) ⇐⇒ δ−1
X (A♯ ∩ βX) ∈ F.

On the other hand,

A ∈ µPEX(F) ∩ PX ⇐⇒ A♯ ∩ βPEX ∈ F.

But an ultrafilter F on PEX contains A iff δX(F) is an ultrafilter on X containing
A, so δ−1

X (A♯ ∩ βX) = A♯ ∩ βPEX.

These distributive laws give the composite functors PEβ and AMβ monad structures.
We will show that these are the pushforwards of P f

E and Af
M .

4.1.3. Theorem. Let E be a finite set and M be a finite monoid. We have isomorphisms
of monads

PEβ ∼= i♯P
f
E and AMβ ∼= i♯A

f
M ,

where the monad structures on the left are those induced by the distributive laws of Propo-
sition 4.1.2.

PUSHFORWARD MONADS 957

Proof. Note that, since β restricts along i to the identity, PEβ and AMβ restrict to P f
E

and Af
M respectively. This gives unit maps ν : PEβ → i♯P

f
E and ξ : AMβ → i♯A

f
M . We

show that these are isomorphisms.
For convenience, we will use the codensity monad description of β. For the remainder

of this proof, Y will always denote a finite set. Let us spell out what νX is doing: given
g : X → Y , we have ⟨g⟩ · νX = ⟨g⟩+ E : βX + E → Y + E.

We now describe an inverse for νX . Let ψ ∈ i♯P
f
E(X), and let !X : X → 1 be the

unique morphism into the terminal object, so ⟨!X⟩(ψ) ∈ 1 + E. For any f : X → Y , the
cone condition applied to the commutative triangle

X Y

1

f

!X
!Y

implies that ⟨!X⟩ = PE!Y · ⟨f⟩. Thus, ⟨!X⟩(ψ) ∈ E iff ⟨f⟩(ψ) ∈ E, and both are equal
if this is the case. Otherwise, ⟨f⟩(ψ) ∈ Y for all f , and the cone condition shows that
ψ ∈ βX. This gives a function i♯P

f
E(X) → PEβX, which is clearly the inverse of νX .

The construction of an inverse to ξX is largely similar. One checks that for ψ ∈
i♯A

f
M(X), the value of ⟨!X⟩(ψ) ∈M determines what M -indexed component ⟨f⟩(ψ) lands

in for any f . Thus, ψ amounts to the data of an ultrafilter on X and an element of M .

The fact that these monads come from distributive laws allow us to easily say what
their algebras are. The category of algebras of i♯P

f
E will be isomorphic to the category of

algebras of the lift of PE to CHaus, and similarly for i♯A
f
M .

4.1.4. Corollary. Let E be a finite set and M be a finite monoid. Then:

(i) Seti♯P
f
E is the category of E-pointed compact Hausdorff spaces, or, equivalently,

E/CHaus where E is given the discrete topology;

(ii) Seti♯A
f
M is the category of compact Hausdorff spaces equipped with a discrete left

M-action and M-equivariant continuous maps.

4.2. Extending the powerset monad. We now turn our attention to the powerset
monad P f on FinSet. This time there is no known distributive law between P and β,
although there is a weak distributive law of P over β described by Garner [17, p. 349].
Weak distributive laws were introduced by Street [28] and Böhm [8] as a generalisation of
distributive laws where one of the unit axioms is dropped. Under certain conditions on
the base category (which Set satisfies), weak distributive laws correspond to weak liftings
of one of the monads to the category of algebras of the other. In our case, Garner’s weak
distributive law gives a weak lifting of P to CHaus, which is the Vietoris monad. It sends
a compact Hausdorff space X to its Vietoris hyperspace: the set of closed subspaces of X
equipped with a compact Hausdorff topology. Its algebras coincide with the algebras of the
filter monad F , and they are the continuous lattices, which are special kinds of complete

958 ADRIÁN DOÑA MATEO

lattices with a compact Hausdorff topology. This makes them the perfect candidates for
the algebras of i♯P f , and indeed they will turn out to be. This subsection is devoted to
proving that i♯P f is the filter monad.

4.2.1. Lemma. The filter monad F on Set restricts along i : FinSet → Set to P f .

Proof. Recall that if F is a filter on a finite set Y , then
⋂

F =
⋂

A∈F A is a finite
intersection of elements of F , and hence is a least element of F , at which F is principal.
This shows that the map σY : iP f(Y) → Fi(Y) sending A ⊆ Y to ↑A is an isomorphism.
It is easily seen to be natural in Y , so that P f is a lift of F along i. Checking that the
monad structures agree amounts showing that σ is a colax transformation (see (3)). The
condition involving the units is immediate, while the other one follows from a routine
calculation.

This ensures that we have a unit map F → i♯P f = i♯i
♯F . The following lemma will

allow us to show that it is invertible.

4.2.2. Lemma. Let X be a set and φ ∈ i♯P f(X). The following are equivalent for A ⊆ X:

(i) ⟨f⟩(φ) ⊆ B for all f : X → Y with Y finite, and B ⊆ Y such that f−1B = A,

(ii) ⟨f⟩(φ) ⊆ B for some f : X → Y with Y finite, and B ⊆ Y such that f−1B = A,

(iii) ⟨χA⟩(φ) ⊆ {⊤}.

Proof. If f : X → Y is such that Y is finite and f−1B = A, then the triangle

X Y

2
χA

f

χB

commutes. The cone condition implies that ⟨χA⟩ = PχB · ⟨f⟩, so that ⟨χA⟩(φ) ⊆ {⊤} iff
⟨f⟩(φ) ⊆ B. Since f was arbitrary, and such an f always exists (e.g. χA), this shows the
equivalence between the three conditions.

4.2.3. Theorem. The monad i♯P f is isomorphic to the filter monad.

Proof. Lemma 4.2.1 and Theorem 3.2.3 give a canonical monad map ν : F → i♯P f .
Explicitly, given a set X, a filter F on X, and f : X → Y with Y finite, we get a filter
Ff(F) on Y , which is principal at

⋂
Ff(F). Then, (⟨f⟩ · νX)(F) =

⋂
Ff(F). We now

construct an inverse to νX .
Given φ ∈ i♯P f(X), we get a filter Fφ on X by declaring that A ∈ Fφ iff it satisfies

any of the equivalent conditions of Lemma 4.2.2. Certainly, X ∈ Fφ by condition (iii),
since χX factors through {⊤}. For A,B ⊆ X, consider the commutative diagram:

X

2 2× 2 2

χA χBp

π2π1

PUSHFORWARD MONADS 959

The cone conditions ensures that ⟨χA⟩ = Pπ1 · ⟨p⟩ and ⟨χB⟩ = Pπ2 · ⟨p⟩. Thus,
⟨p⟩(φ) ⊆ {(⊤,⊤)} iff ⟨χA⟩(φ) and ⟨χB⟩(φ) are contained in {⊤}. As p−1{(⊤,⊤)} = A∩B,
conditions (ii) and (iii) show that A,B ∈ Fφ iff A ∩B ∈ Fφ.

Lastly, we check that this provides an inverse to νX . Given φ ∈ i♯P f(X), for f : X →
Y with Y finite, (⟨f⟩ ·νX)(Fφ) is the smallest B ⊆ Y such that f−1B ∈ Fφ. But we have

f−1B ∈ Fφ ⇐⇒ ⟨f⟩(φ) ⊆ B,

the forward implication coming from Lemma 4.2.2 part (i), and the backwards one from
part (ii). Therefore, (⟨f⟩ · νX)(Fφ) = ⟨f⟩(φ), as needed. In the other direction, for
F ∈ FX and A ⊆ X we have

A ∈ FνX(F) ⇐⇒ (⟨χA⟩ · νX)(F) ⊆ {⊤}
⇐⇒ {⊤} ∈ FχA(F)

⇐⇒ χ−1
A {⊤} = A ∈ F .

The category of F -algebras was identified by Day [10, Thms. 3.3 and 4.5] as the
category of continuous lattices and maps preserving directed joins and arbitrary meets.

4.2.4. Corollary. Seti♯P
f

is the category of continuous lattices.

The facts that a continuous lattice is a special kind of complete lattice, and that it
has a canonical compact Hausdorff topology are then automatic from the pushforward
construction, by taking T = P in (13).

4.3. The rank of pushforwards. It is common for codensity monads to not be fini-
tary. For example, it follows from Di Liberti [13, Thm. 4.4] that if C is a locally finitely
presentable category, and the codensity monad T of the inclusion Cfp ↪→ C is finitary,
then T must be the identity. In this last subsection we show that, at least when taken
along i : FinSet ↪→ Set, pushforward monads have a similar tendency. In fact, with the
exception of Examples 4.0.1(i) and (ii), namely the cases of the two inconsistent monads,
pushforwards along i never have rank.

This will be an easy consequence of the result that, for any regular cardinal λ, any
subfunctor of a λ-accessible endofunctor of Set is λ-accessible. This can be proved from
the fact that Set is strictly locally finitely presentable in the sense of Adámek, Milius,
Sousa and Wißmann [2, Def. 3.9], and that, between such categories, λ-accessible functors
coincide with λ-bounded ones [2, Thm. 4.11]. However, we give an elementary direct proof
here.

4.3.1. Proposition. Let λ be a regular cardinal, and T : Set → Set be a λ-accessible
functor. Any subfunctor of T is λ-accessible.

960 ADRIÁN DOÑA MATEO

Proof. We will use the fact that a functor out of Set is λ-accessible iff, for all sets X,
it preserves the colimit of the canonical diagram DX : Subλ(X) → Set, where Subλ(X) is
the poset of subobjects of X of cardinality less than λ. A proof of this (in the finitary
case) can be found in [2, Cor. 2.7]. Recall that a colimit cocone for DX is (p : Y ↪→ X)
indexed by p ∈ Subλ(X).

Let m : S → T be a monic natural transformation, and consider the commutative
square

colimSDX SX

colimTDX TX.

colimmDx
mX

∼=

The injectivity of the function on the left follows the construction of λ-filtered colimits in
Set, and the fact that mDX is pointwise injective. Hence, the map on the top is injective,
so it suffices to show that it is surjective.

This is trivial if X = ∅, so we assume otherwise. Let s ∈ SX. Then mX(s) = Tp(t)
for some p : Y ↪→ X in Subλ(X) and t ∈ TY . Without loss of generality, we may assume
that Y is nonempty, so that p has a retraction, say rp = 1Y . We get two commuting
squares, the inside and the outside faces of this diagram:

SY SX

TY TX

Sp

mY mX

Sr

Tp

Tr

Then

mX · Sp · Sr(s) = Tp ·mY · Sr(s)
= Tp · Tr ·mX(s)

= Tp · Tr · Tp(t)
= Tp(t)

= mX(s),

and hence Sp · Sr(s) = s. This shows that s is in the image of colimSDX → SX, and,
since s was arbitrary, that this map is surjective.

4.3.2. Remark. This proposition is crucially limited to functors whose domain is Set.
For example, the inclusion Z → Q is an epimorphism in Ring, and since y : Ringop →
[Ring, Set] preserves limits, it gives a monomorphism Ring(Q,−) → Ring(Z,−). However,
as rings, Z is finitely presentable, while Q is not even finitely generated, so Ring(Z,−) is
ℵ0-accessible, but Ring(Q,−) is not.

4.3.3. Theorem. Let T be a consistent monad on FinSet (i.e. ηT is monic). Then i♯T
does not have rank.

PUSHFORWARD MONADS 961

Proof. Since FinSet and Set have kernel pairs, monomorphisms in MndFinSet and MndSet
are exactly those whose underlying natural transformation is monic (see Remark 2.2.5),
which coincide with those which are pointwise monic. As i preserves monomorphisms,
both i∗ : [FinSet, FinSet] → [FinSet, Set] and Rani (being a right adjoint) preserve monomor-
phisms, and then so does i♯. It follows that i♯η

T : β → i♯T is a monic natural transforma-
tion. Since the ultrafilter monad does not have rank, Proposition 4.3.1 then implies that
neither does i♯T .

That the ultrafilter monad does not have rank is stated in several sources, e.g. in
Borceux’s book [9, Vol. II, p. 235], but seemingly always without proof. Here is a sketch
of one: for a regular cardinal λ and a set X of cardinality at least λ, the collection of
subsets of X whose complement has cardinality less than λ is a proper filter. By the
ultrafilter lemma, it is contained in some ultrafilter F . One checks that F is not in the
image of βm for any m ∈ Subλ(X). It follows that the map colim βDX → βX in the
proof of Proposition 4.3.1 is not surjective, and hence that β is not λ-accessible.

References

[1] J. Adámek, S. Milius, N. Bowler, and P. B. Levy. Coproducts of monads on Set. In
27th Annual IEEE Symposium on Logic in Computer Science, pages 45–54, 2012.

[2] J. Adámek, S. Milius, L. Sousa, and T. Wißmann. On finitary functors. Theory and
Applications of Categories, 34(35):1134–1164, 2019.

[3] J. Adámek and L. Sousa. D-ultrafilters and their monads. Advances in Mathematics,
377(107486), Jan. 2021.

[4] H. Appelgate and M. Tierney. Iterated cotriples. In Reports of the Midwest Category
Seminar IV, volume 137 of Lecture Notes in Mathematics, pages 56–99. Springer,
1970.

[5] T. Avery. Codensity and the Giry monad. Journal of Pure and Applied Algebra,
220(3):1229–1251, 2016.

[6] T. Avery and T. Leinster. Isbell conjugacy and the reflexive completion. Theory and
Applications of Categories, 36(12):306–347, 2021.

[7] M. Barr and C. Wells. Toposes, Triples and Theories, volume 278. Springer, New
York, 1985.

[8] G. Böhm. The weak theory of monads. Advances in Mathematics, 225(1):1–32, 2010.

[9] F. Borceux. Handbook of Categorical Algebra. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1994.

[10] A. Day. Filter monads, continuous lattices and closure systems. Canadian Journal
of Mathematics, 27(1):50–59, 1975.

962 ADRIÁN DOÑA MATEO

[11] B. J. Day and S. Lack. Limits of small functors. Journal of Pure and Applied Algebra,
210(3):651–663, 2007.

[12] B. Devlin. Codensity, compactness and ultrafilters. PhD thesis, University of Edin-
burgh, 2016.

[13] I. Di Liberti. Codensity: Isbell duality, pro-objects, compactness and accessibility.
Journal of Pure and Applied Algebra, 224(10):106379, 2020.

[14] Y. Diers. Multimonads and multimonadic categories. Journal of Pure and Applied
Algebra, 17(1):153–170, 1980.

[15] Y. Diers. Complétions monadiques de quelques catégories sans produit. Rend. Mat.,
7(1):659–669, 1981.

[16] Y. Diers. Some spectra relative to functors. Journal of Pure and Applied Algebra,
22(1):57–74, 1981.

[17] R. Garner. The Vietoris Monad and Weak Distributive Laws. Applied Categorical
Structures, 28(2):339–354, 2020.

[18] G. M. Kelly. Basic Concepts of Enriched Category Theory. Number 64 in Lecture
Notes in Mathematics. Cambridge University Press, 1982. Reprinted in Reprints in
Theory and Applications of Categories.

[19] J. F. Kennison and D. Gildenhuys. Equational completion, model induced triples
and pro-objects. Journal of Pure and Applied Algebra, 1(4):317–346, 1971.

[20] S. Lack and R. Street. The formal theory of monads II. Journal of Pure and Ap-
plied Algebra, 175(1):243–265, 2002. Special Volume celebrating the 70th birthday of
Professor Max Kelly.

[21] T. Leinster. Codensity and the ultrafilter monad. Theory and Applications of Cate-
gories, 28(13):332–370, July 2013.

[22] E. Manes. A triple theoretic construction of compact algebras. In B. Eckmann,
editor, Seminar on Triples and Categorical Homology Theory, pages 91–118, Berlin,
Heidelberg, 1969. Springer.

[23] E. Riehl. Category Theory in Context. Dover Publications, 2017.

[24] Z. Shirazi. Commutative codensity monads and probability bimeasures. arXiv
preprint arXiv:2405.12917, 2024.

[25] A. Sipos, . Codensity and Stone spaces. Mathematica Slovaca, 68(1):57–70, 2018.

[26] R. Street. The formal theory of monads. Journal of Pure and Applied Algebra,
2(2):149–168, 1972.

PUSHFORWARD MONADS 963

[27] R. Street. Limits indexed by category-valued 2-functors. Journal of Pure and Applied
Algebra, 8(2):149–181, June 1976.

[28] R. Street. Weak distributive laws. Theory and Applications of Categories, 22(12):313–
320, 2009.

[29] R. Street and R. Walters. Yoneda Structures on 2-Categories. Journal of Algebra,
50(2):350–379, 1978.

[30] U. Tarantino and J. Wrigley. Ultracategories via Kan extensions of relative monads.
arXiv preprint arXiv:2506.09788, 2025.

[31] W. Tholen. Pro-categories and multiadjoint functors. Canadian Journal of Mathe-
matics, 36(1):144–155, 1984.

[32] R. Van Belle. Probability monads as codensity monads. Theory and Applications of
Categories, 38(21):811–842, 2022.

School of Mathematics, University of Edinburgh
Edinburgh EH9 3FD, United Kingdom
Email: adrian.dona@ed.ac.uk

This article may be accessed at http://www.tac.mta.ca/tac/

THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Nathanael Arkor, Tallinn University of Technology.

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

TEX editor emeritus. Michael Barr, McGill University: michael.barr@mcgill.ca

Transmitting editors.
Clemens Berger, Université Côte d’Azur: clemens.berger@univ-cotedazur.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu

John Bourke, Masaryk University: bourkej@math.muni.cz
Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt
Valeria de Paiva, Topos Institute: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Rune Haugseng, Norwegian University of Science and Technology: rune.haugseng@ntnu.no
Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt
Joachim Kock, Universitat Autònoma de Barcelona: Joachim.Kock (at) uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Sandra Mantovani, Università degli Studi di Milano: sandra.mantovani@unimi.it
Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Giuseppe Metere, Università degli Studi di Palermo: giuseppe.metere (at) unipa.it

Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
Jiri Rosický, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@unige.it
Michael Shulman, University of San Diego: shulman@sandiego.edu
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
Christina Vasilakopoulou, National Technical University of Athens: cvasilak@math.ntua.gr

	Introduction
	Pushforward monads
	Pushforwards in CAT
	Pushing forward monads on finite sets

