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2-RIG EXTENSIONS AND THE SPLITTING PRINCIPLE

JOHN C. BAEZ, JOE MOELLER, TODD TRIMBLE

Abstract. Classically, the splitting principle says how to pull back a vector bundle
in such a way that it splits into line bundles and the pullback map induces an injection
on K-theory. Here we categorify the splitting principle and generalize it to the context
of 2-rigs. A 2-rig is a kind of categorified ‘ring without negatives’, such as a category
of vector bundles with ⊕ as addition and ⊗ as multiplication. Technically, we define
a 2-rig to be a Cauchy complete k-linear symmetric monoidal category where k has
characteristic zero. We conjecture that for any suitably finite-dimensional object r of a
2-rig R, there is a 2-rig map E : R→ R′ such that E(r) splits as a direct sum of finitely
many ‘subline objects’ and E has various good properties: it is faithful, conservative,
and the induced map of Grothendieck rings K(E) : K(R)→ K(R′) is injective. We prove
this conjecture for the free 2-rig on one object, namely the category of Schur functors,
whose Grothendieck ring is the free λ-ring on one generator, also known as the ring of
symmetric functions. We use this task as an excuse to develop the representation theory
of affine categories—that is, categories enriched in affine schemes—using the theory of
2-rigs.
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1. Introduction
The splitting principle is a fundamental concept in algebraic topology, representation
theory, and algebraic geometry. It allows us to study a complicated object by finding a
larger category in which it splits as a direct sum of simpler ones. Classically, the splitting
principle has been used to study the Grothendieck ring of vector bundles on a connected
topological space X. This is done by pulling back a vector bundle E over X along some
map ϕ : Y → X such that ϕ∗E is isomorphic to a sum of line bundles. Our aim here is to
place the splitting principle in a broader context, namely the context of 2-rigs.

A ‘2-rig’ (over a field k) is a symmetric monoidal k-linear category that is Cauchy
complete, and we consider the case where k is a field of characteristic zero. Examples of
2-rigs include categories of vector bundles, group representations, and coherent sheaves.
In the classical vector bundle case, the splitting principle can be expressed as finding for
any object E in the 2-rig Vect(X) of vector bundles over X a new 2-rig Vect(Y ) of vector
bundles over some space Y , together with a 2-rig map ϕ∗ : Vect(X)→ Vect(Y ) that sends
E to a direct sum of line objects. A splitting principle for 2-rigs would then say that any
2-rig containing a suitably finite object can be extended to a 2-rig in which the object can
be split into a sum of ‘subline objects’—a generalization of line bundles which we define.

1.1. Conjecture. [Splitting Principle for 2-Rigs] Let R be a 2-rig and r ∈ R an object
of finite subdimension. Then there exists a 2-rig R′ and a map of 2-rigs E : R→ R′ such
that:

1. E(r) splits as a direct sum of finitely many subline objects.

2. E : R→ R′ is faithful and conservative (i.e. it reflects isomorphisms).

3. K(E) : K(R) → K(R′) is injective, where K(R) denotes the Grothendieck ring of
the 2-rig R.

Items (1) and (3) are the usual splitting principle for vector bundles [Hat17, Sec. 2.3]
when R is the 2-rig Vect(X) of vector bundles over a compact Hausdorff space X. In
this case we can take E = ϕ∗ : Vect(X) → Vect(Y ) for a suitable map ϕ : Y → X where
Y is another space of this type. Item (2) is also easily seen in this special case, but it
states a form of injectivity for the 2-rig map E itself, rather than merely its action on
Grothendieck rings. Thus, the above conjecture is not only a generalization of the usual
splitting principle from 2-rigs of vector bundles to other 2-rigs, but also a categorification,
in that we are lifting results from rings to 2-rigs.

In this paper we prove a related result for the universal example, namely the free 2-rig
on one generating object. This is equivalent to the category of Schur functors [BMT23],
but we call it kS since it can be obtained by the following three-step process:



966 JOHN C. BAEZ, JOE MOELLER, TODD TRIMBLE

• First form the free symmetric monoidal category on one generating object x. This
is equivalent to groupoid of finite sets and bijections, which we call S, with disjoint
union providing the symmetric monoidal structure.

• Then form the free k-linear symmetric monoidal category on S by freely forming
k-linear combinations of morphisms. This is called kS.

• Then Cauchy complete kS. The result, kS, is the coproduct, as Cauchy complete
k-linear categories, of the categories of finite-dimensional representations of all the
symmetric groups Sn.

We describe a 2-rig map
F : kS→ A⊠∞

from kS to the limit
A⊠∞ := lim

←−
A⊠N

where A⊠N is our name for the free 2-rig on N subline objects, say s1, . . . , sN . The
2-rig A⊠∞ contains infinitely many subline objects s1, s2, s3, . . . , and the 2-rig map F
is characterized by the fact that it sends the generating object x ∈ kS to the infinite
coproduct s1 ⊕ s2 ⊕ · · · . One of our main results, Theorem 14.1, analyzes the properties
of this 2-rig map:

1.2. Theorem. The 2-rig map F : kS→ A⊠∞ is an extension of 2-rigs: it is a map of
2-rigs that is faithful, conservative and essentially injective, i.e., injective on isomorphism
classes.
This categorifies a classical result, namely that the free λ-ring on one generator can be
identified with the λ-ring Λ of symmetric functions: elements of Z[[x1, x2, . . . ]] that
are of bounded degree and invariant under all permutations of the variables.

It is worth recalling how this classical result is connected to the splitting principle for
vector bundles. The classifying space BU of the infinite-dimensional unitary group

U = lim
−→

U(n)

has the property that K(BU) is the free λ-ring on one generator. But if one defines a
subgroup T ⊂ U by

T = lim
−→

Tn

where Tn is the maximal torus of U(n), then one can show K(T) is the subring of
Z[[x1, x2, . . . ]] consisting of power series of bounded degree. Furthermore, the inclusion of
T in U gives a map ϕ : BT→ BU for which the map of λ-rings K(ϕ) : K(BU)→ K(BT) is
injective and its image is Λ. In this situation we can also take the universal n-dimensional
vector bundle over BU, pull it back along ϕ, and split the resulting bundle into a sum of
line bundles whose K-theory classes are x1, . . . , xn.

Hazewinkel [Haz09] has written of Λ that “It seems unlikely that there is any object
in mathematics richer and/or more beautiful than this one.” But the λ-ring structure on
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symmetric functions is often described using rather complicated and unintuitive formulas
in terms of symmetric functions. Our theorem above lets us prove that symmetric func-
tions form the free λ-ring on one generator in a more conceptual way. The Grothendieck
group K(R) of any 2-rig R is a λ-ring, and any map of 2-rigs induces a map of λ-rings. In
[BMT23] we used the fact that kS is the free 2-rig on one generator to prove that K(kS)
is the free λ-ring on one generator. The 2-rig map F : kS→ A⊠∞ induces an inclusion of
λ-rings

K(F ) : K(kS)→ K(A⊠∞).
In Theorem 15.1 we prove that K(A⊠∞) is the subring of Z[[x1, x2, . . . ]] consisting of
power series of bounded degree. In Theorem 15.4 we show that K(F ) is an injection and
its range consists of symmetric functions. Thus, symmetric functions form the free λ-ring
on one generator.

However, proving this classical result is not our main goal. More important is to
categorify this result, and arguably still more important is to set the categorified result
into a broader theory of 2-rig extensions. We prove that the map F fits into this diagram
of 2-rig maps, which commutes up to natural isomorphism:

A⊠∞

kS Rep(M(N, k)) Rep(kN) ≃ A⊠N

Rep(GL(N, k)) Rep(k∗N)

πN

A

F

B

D C

E

Here kN is the multiplicative monoid of diagonal N ×N matrices with entries in k, while
k∗N is the multiplicative group of invertible diagonal N × N matrices. The representa-
tion categories in this diagram are 2-rigs of algebraic representations of ‘affine monoids’:
monoids in the category of affine schemes. Thus, a substantial part of our work consists of
developing the representation theory of affine monoids, and more general affine categories,
from the viewpoint of 2-rigs.

We prove that all the maps in the above square are 2-rig extensions. We then prove
that F is an extension using all the other maps in this diagram. For a more thorough
overview of this aspect of the paper, see Section 9.

Notation. We use sans-serif font for 1-categories such as Vect, and bold serif font for
2-categories such as 2-Rig.

2. Line and subline objects
To proceed we need a general theory of subline objects in any 2-rig. However, it is helpful
to start with line objects. These can be defined in any symmetric monoidal category:
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2.1. Definition. An object ℓ in a symmetric monoidal category is called a line object
if there exists an object ℓ∗ such that ℓ ⊗ ℓ∗ ∼= I, where I is the unit object for the tensor
product.

Such objects are also called ‘invertible’ [EGNO15]. For example, the line objects in
Vect are the 1-dimensional vector spaces, the line objects in VB(X) for a topological space
X are the line bundles, the line objects in Coh(X) for a varietyX are the invertible sheaves,
and the line objects in Rep(G) for a group G are the 1-dimensional representations.

It is well known [BL04, Sec. 5] that if ℓ is a line object we can always find morphisms
ev : ℓ∗ ⊗ ℓ→ I and coev : I → ℓ⊗ ℓ∗ such that the following diagrams commute:

ℓ⊗ ℓ∗ ⊗ ℓ

ℓ ℓ

1⊗evcoev⊗1

1

ℓ∗ ℓ∗

ℓ∗ ⊗ ℓ⊗ ℓ∗

1

1⊗coev ev⊗1

Here we are mainly concerned with line objects in 2-rigs. The situation is simplest for
‘connected’ 2-rigs. Note that for any 2-rig R, the monoid of endomorphisms of the unit
object I ∈ R is commutative by the Eckmann–Hilton argument, and a k-algebra because
2-rigs are linear categories.

2.2. Definition. A 2-rig is connected if the commutative k-algebra R(I, I) has exactly
two distinct idempotents, 0 and 1.

For example, the 2-rig VB(X) is connected if and only if the topological space X
is connected because I ∈ VB(X) is the trivial line bundle, and all the idempotents in
VB(X)(I, I) are given by multiplication by continuous functions that take on only the
values 0 and 1. For any 2-rig R, splitting an idempotent p ∈ R(I, I) lets us write I ∼= I1⊕I2
and then write R as a product of two 2-rigs, one with I1 serving as its unit and one with
I2 as its unit.

There are two kinds of line object in a connected 2-rig. To see this, recall from [BMT23]
that any Young diagram λ gives a functor

SR,λ : R→ R

called a Schur functor. In particular, the two 2-box Young diagrams give Schur functors
called the second symmetric power Sym2 and second exterior power Λ2, and there is a
natural isomorphism x⊗2 ∼= Sym2(x)⊕ Λ2(x) for any x ∈ R.

2.3. Proposition. Let x be a line object in a connected 2-rig. Of Λ2(x) and Sym2(x),
one is zero and the other is x⊗2.
Proof. If ℓ is any line object in a 2-rig, then

R(ℓ, ℓ) ∼= R(I, ℓ∗ ⊗ ℓ) ∼= R(I, I)
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and one can check that the isomorphism is not just one of vector spaces, but of k-algebras.
Suppose x is a line object. Then so is x⊗ x, since x∗ ⊗ x∗ is an inverse for x⊗ x. Thus,
we have

R(x⊗2, x⊗2) ∼= R(I, I)
as k-algebras. If R is connected it follows that there are exactly two distinct idempotents
in R(x⊗2, x⊗2), namely 0 and 1. But there are two idempotents coming from projection
onto the two summands in

x⊗2 ∼= Sym2(x)⊕ Λ2(x)
and these idempotents sum to the identity. Thus, one of Sym2(x) and Λ2(x) must be
zero, and the other must be isomorphic to x⊗2.

In a 2-rig, an object x has Λ2(x) ∼= 0 if and only if the symmetry

σx,x : x⊗ x→ x⊗ x

is the identity, and Sym2(x) ∼= 0 if and only if σx,x is minus the identity. However,
objects x that satisfy Λ2(x) ∼= 0 or S2(x) ∼= 0 need not be line objects: for example, the
initial object 0 obviously satisfies both properties but is not invertible; more generally,
any retract of an object satisfying one or the other property also satisfies that property
but might not be invertible. In many of the examples of 2-rigs that can be considered
‘classical’, like Repk(G) for a finite group G, or vector bundles over a space X, it happens
that short exact sequences split, whence subobjects of line objects are indeed retracts,
and therefore any subobject of a line object satisfying one of these two properties again
satisfies that property. This partially justifies the following terminology.

2.4. Definition. An object x in a 2-rig is an bosonic subline object if σx,x : x⊗x→
x⊗ x is the identity, and a fermionic subline object if σx,x is minus the identity.

2.5. Definition. An object in a 2-rig is an bosonic line object if it is a bosonic subline
object and also a line object. Similarly, it is a fermionic line object if it is a fermionic
subline object and also a line object.
In this language, Proposition 2.3 says that in a connected 2-rig, every line object is either
bosonic or fermionic, but not both.

We must warn against some traps. Not every subline object is a subobject of a
line object: we shall see in Examples 3.2 and A.2 that this fails in the free 2-rig on a
bosonic or fermionic subline object. Further, not every subobject of a bosonic or fermionic
subline object is another such subline object. For example, in the 2-rig of modules of the
commutative algebra k[x, y], and regarding k[x, y] as a bosonic line object in the obvious
way, the ideal (x, y) regarded as a submodule of k[x, y] is not a bosonic subline object:
for the symmetry map σ on its tensor square, σ(x⊗ y) ̸= x⊗ y.

Bosonic line and subline objects are common in mathematics. For example, in the
category VB(X) of vector bundles on a topological space X a bosonic line object is the
same as a line bundle, while a bosonic subline object is the same as a subobject of a
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line bundle: that is, a vector bundle each whose fibers has dimension 0 or 1. In the
category Rep(G) of finite-dimensional representations of a group, a bosonic line object is
a 1-dimensional representation of G. For example, Rep(Sn) has two bosonic line objects
whenever n > 1: the trivial representation and the sign representation.

Fermionic line objects and fermionic subline objects are a bit more esoteric: there are
never any in VB(X) or Rep(G). They appear in ‘supermathematics’, where we replace
vector spaces by super vector spaces. A super vector space is simply a Z/2-graded vector
space, i.e., a vector space V = V0 ⊕ V1 that is split into a ‘bosonic part’ V0 and a
‘fermionic part’ V1. We can define a category of super vector bundles SVB(X) over a
topological space X, where a super vector bundle is a vector bundle E → X equipped
with a splitting E ∼= E0 ⊕ E1 into a bosonic and fermionic part, and a map is a vector
bundle map preserving this splitting. This category SVB(X) is a 2-rig in which the
symmetry introduces a sign change when permuting two homogeneous elements that are
both of odd degree. A super vector bundle E is a line object if and only if all the fibers of
E are 1-dimensional. If all the fibers of E0 are 1-dimensional, E is a bosonic line object,
but if all the fibers of E1 are 1-dimensional, E is a fermionic line object. If X is not
connected, there are also line objects in SVB(X) that are neither bosonic nor fermionic.

3. The free 2-rig on a bosonic subline object
We now describe the free 2-rig on a bosonic subline object, which we call A. We can guess
what this should be. It should contain a bosonic subline object s and its tensor powers
s⊗n for all integers n ≥ 0. We expect that

A(s⊗m, s⊗n) ∼=
{
k if m = n
0 if m ̸= n.

with composition being multiplication in k. The monoidal structure should have

s⊗m ⊗ s⊗n ∼= s⊗(m+n)

and the symmetry should behave in a trivial way, since

σs,s : s⊗ s→ s⊗ s

must be the identity, given that the projection from s⊗2 to Sym2(s) is the identity.
Not all the objects in A will be of the form s⊗n, since a 2-rig must have finite direct

sums, and all idempotents must split. However, once we adjoin finite direct sums of the
objects s⊗n, all idempotents will split.

This leads us to the following simple definition of A. As a category, it is the category
of N-graded vector spaces with finite total dimension, and linear maps preserving the
grading. We give this category its usual linear structure. We also give it the usual
monoidal structure, where

(V ⊗W )n =
⊕

i+j=n

Vi ⊗Wj.
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We let s ∈ A be the graded vector space with

sn =
{
k if n = 1
0 if n ̸= 1.

There are two possible symmetries compatible with the monoidal structure described. For
our purposes we need s to be a bosonic subline object, so we need

σs,s = 1s⊗s.

Thus, we use the symmetry on A where

σV,W : V ⊗W → W ⊗ V

is defined using the usual symmetry in Vect on each homogeneous component:

(V ⊗W )n =
⊕

i+j=n

Vi ⊗Wj −→
⊕

i+j=n

Wj ⊗ Vi = (W ⊗ V )n.

In Theorem A.1 we discuss another choice of symmetry, which gives the free 2-rig on a
fermionic subline object.

3.1. Theorem. A is the free 2-rig on a bosonic subline object. That is, given a 2-rig R
containing a bosonic subline object x, there is a map of 2-rigs F : A→ R with F (s) = x,
and F is determined uniquely up to isomorphism by this property.

Before giving the proof, we recall some notation. The category FinVect of finite-
dimensional vector spaces is the initial 2-rig, so for any 2-rig R, we have a unique 2-rig
map iR : FinVect→ R. Given a vector space V and an object R of R, we let V ·R denote
the tensor product iR(V )⊗R.
Proof. An object V of A is given by its homogeneous components, V = (Vn)n≥0. We
define the 2-rig map F by

F (V ) =
⊕
n≥0

Vn · x⊗n

In particular, F (s) = x, and it is straightforward to check that we have canonical isomor-
phisms

F (V ⊗W ) ∼=
∑
n≥0

 ⊕
j+k=n

Vj ⊗Wk

 · x⊗n

∼=
⊕

j≥0
Vj · x⊗j

⊗
⊕

k≥0
Wk · x⊗k


= F (V )⊗ F (W )
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making F into a strong monoidal functor. One can check that F is symmetric monoidal,
and that F is unique up a monoidal natural isomorphism. In other words, this definition
of F as a 2-rig map is forced on us: writing an arbitrary object of A as⊕

n≥0
Vn · s⊗n ∼=

⊕
n≥0

iA(Vn)⊗ s⊗n,

we have

F

⊕
n≥0

iA(Vn)⊗ s⊗n

 ∼= ⊕
n≥0

F (iA(Vn)⊗ s⊗n) F preserves coproducts

∼=
⊕
n≥0

F (iA(Vn))⊗ F (s)⊗n F preserves tensor products

∼=
⊕
n≥0

iR(Vn)⊗ F (s)⊗n FinVect is the initial 2-rig

∼=
⊕
n≥0

Vn · x⊗n F (s) = x.

While this result is straightforward, it is interesting to set it in a larger context. The
concept of ‘bosonic subline object’ makes sense in any symmetric monoidal category: it is
an object x with σx,x = 1x⊗x. One can show that the free symmetric monoidal category
on a bosonic subline object is the discrete category on N with addition as its monoid
operation. We call this symmetric monoidal category simply N. Then, to obtain A, we
can apply two left 2-adjoints introduced in [BMT23, Thm. 3.5]:

SMCat SMLin 2-Rig

k(−)

⊥
U1

(−)

⊥
U2

The functor k(−) : SMCat→ SMLin performs base change, freely turning any symmet-
ric monoidal category C into a symmetric monoidal k-linear category k(C), which has the
same objects as C but with hom-spaces being the the free vector spaces on the homsets of
C. The functor (−) : SMLin→ 2-Rig performs Cauchy completion, freely endowing any
symmetric monoidal k-linear category with absolute colimits. Given that N ∈ SMCat is
the free symmetric monoidal category on a bosonic line object, it follows that kZ is the
free 2-rig on a bosonic line object. One can then check that kZ is equivalent, as a 2-rig,
to A.

Finally, we note a counterexample:

3.2. Example. Not every bosonic subline object is a subobject of a line object. For since
the tensor product in A is the usual tensor product of N-graded vector spaces, the only
line object in A is the tensor unit I. Thus, the bosonic subline object s ∈ A is not a
subobject of any line object.
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4. The free 2-rig on a bosonic line object
Having described the free 2-rig on a bosonic subline object, it is easy to adapt our treat-
ment to describe the free 2-rig on a bosonic line object, which we call T. This should
contain a bosonic line object ℓ and all its tensor powers ℓ⊗n, but because a line object has
an inverse object, n can now be negative as well as positive.

Thus, we define T to be the category of Z-graded vector spaces of finite total dimension.
We give this category its usual linear structure and its usual monoidal structure, where

(V ⊗W )n =
⊕

i+j=n

Vi ⊗Wj.

We let ℓ ∈ T be the graded vector space with

ℓn =
{
k if n = 1
0 if n ̸= 1.

As before, there are two possible symmetries compatible with the monoidal structure. To
ensure that ℓ is a bosonic line object, we use the symmetry

σV,W : V ⊗W → W ⊗ V

defined using the usual symmetry in Vect on each homogeneous component:

(V ⊗W )n =
⊕

i+j=n

Vi ⊗Wj −→
⊕

i+j=n

Wj ⊗ Vi = (W ⊗ V )n.

4.1. Theorem. T is the free 2-rig on a bosonic line object. That is, given a 2-rig R
containing a bosonic line object x, there is a map of 2-rigs F : T→ R with F (ℓ) = x, and
F is determined uniquely up to natural isomorphism by this property.
Proof. An object V of T is given by its homogeneous components, V = (Vn)n∈Z. We
define the 2-rig map F by

F (V ) =
⊕
n∈Z

Vn · x⊗n

where a negative tensor power of x is defined to be the corresponding positive tensor power
of the inverse object x∗. In particular, F (ℓ) = x, and as in the proof of Theorem 3.1 there
are canonical isomorphisms

F (V ⊗W ) ∼−→ F (V )⊗ F (W )



974 JOHN C. BAEZ, JOE MOELLER, TODD TRIMBLE

making F into a strong monoidal functor. One can check that F is symmetric monoidal,
and also that F is unique up a monoidal natural isomorphism:

F

⊕
n∈Z

iT(Vn)⊗ ℓ⊗n

 ∼= ⊕
n∈Z

F (iT(Vn)⊗ ℓ⊗n) F preserves coproducts

∼=
⊕
n∈Z

F (iT(Vn))⊗ F (ℓ)⊗n F preserves tensor products

∼=
⊕
n∈Z

iR(Vn)⊗ F (ℓ)⊗n FinVect is the initial 2-rig

∼=
⊕
n∈Z

Vn · x⊗n F (ℓ) = x.

5. Algebraic representations
We shall be studying 2-rigs of representations of various monoids, such as the monoid of
n×n matrices, the group of invertible n×n matrices, and so on. However, we will typically
not consider general representations, only so-called ‘algebraic’ ones. This restriction lets us
avoid the vast wilderness of representations that arise from automorphisms of the ground
field k. For example, the multiplicative monoid of k has a 1-dimensional representation
coming from any automorphism of the field k, but only for the identity automorphsm is
this representation algebraic.

To define this concept of ‘algebraic’ representation, we use the fact that the monoids
we are considering are actually monoid objects in the category of affine schemes. Following
Milne [Mil12, Chap. I.4] we call such things ‘affine monoids’.

5.1. Definition. The category of affine schemes over k, AffSch, is the opposite of the
category CommAlg of commutative algebras over k. Since AffSch has cartesian products
we can define monoids internal to it, and an affine monoid is a monoid internal to
AffSch.

5.2. Lemma. The category of affine monoids is equivalent to the opposite of the category
of commutative bialgebras over k.
Proof. An affine monoid is a monoid in (AffSch,×) ≃ (CommAlg,⊗)op, where ⊗ denotes
the tensor product of commutative algebras over k, which is the coproduct in CommAlg.
But a monoid in (CommAlg,⊗)op is the same as a comonoid in (CommAlg,⊗), which is a
commutative bialgebra over k.

5.3. Definition. If M is an affine monoid, we call the corresponding commutative bial-
gebra its coordinate bialgebra O(M).
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5.4. Example. Any commutative monoid M gives rise to an affine monoid Spec(kM)
whose coordinate bialgebra is the monoid algebra kM . In more detail, the free vector
space functor

Set → Vect
X 7→ kX

is strong symmetric monoidal, hence takes cocommutative comonoids in (Set,×), which
are simply sets, to cocommutative comonoids in (Vect,⊗), which are cocommutative coal-
gebras. By the same reasoning, it takes bicommutative bimonoids in (Set,×), which are
the same as commutative monoids M , to bicommutative bimonoids kM in (Vect,⊗),
which are bicommutative bialgebras. We have

k(M ×N) ∼= kM ⊗ kN

where the right side is the coproduct in the category of bicommutative bialgebras. Mean-
while, M × N is the biproduct, hence coproduct, of the commutative monoids M,N .
Thus we have a coproduct preserving functor M 7→ kM from commutative monoids to
(bi)commutative bialgebras. Taking opposites of categories, where commutative bialge-
bras are opposite to affine monoids, the induced functor

Spec(k−) : CMonop → AffMon

preserves products.

5.5. Example. Any finite-dimensional algebra over k gives rise to an affine monoid. We
shall need more general facts of a related nature, so it is worth going into some detail
here. First notice that there is a symmetric lax monoidal functor

Φ: (FinVect,⊗)→ (AffSch,×)

given as the composite

(FinVect,⊗) (−)∗

−−→ (FinVect,⊗)op Symop
−−−→ (CommAlg,⊗)op = (AffSch,×)

In the first step, taking the dual is a symmetric strong monoidal functor from (FinVect,⊗)
to (FinVect,⊗)op. In the second step, Sym: (FinVect,⊗)→ (CommAlg,⊗) sends any finite-
dimensional vector space V to the free commutative algebra on V , also known as the sym-
metric algebra Sym(V ). Being left adjoint to the forgetful functor U : (CommAlg,⊗) →
(FinVect,⊗) which is strong symmetric monoidal, Sym is symmetric oplax monoidal, so
Symop : (FinVect,⊗)op → (CommAlg,⊗)op is symmetric lax monoidal.

Since Φ is symmetric lax monoidal we can use it to convert monoid objects in (FinVect,⊗),
which are simply finite-dimensional algebras, into affine monoids.

More generally we can use the symmetric lax monoidal functor

Φ: (FinVect,⊗)→ (AffSch,×)

to convert categories enriched in finite-dimensional vector spaces into categories enriched
in affine schemes.
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5.6. Definition. Let FinLinCat be the 2-category of categories, functors and natural
transformations enriched over FinVect. We call these finite-dimensional linear cate-
gories, linear functors and natural transformations.

5.7. Definition. Let AffSchCat be the 2-category of categories, functors and natural
transformations enriched over AffSch. We call these affine categories, algebraic func-
tors and natural transformations.

The following lemma is then a routine consequence of the theory of base change for
enriched categories [Kel05]:

5.8. Lemma. Base change along Φ gives a 2-functor

(−)∼ : FinLinCat→ AffSchCat

sending any finite-dimensional linear category C to the affine category C∼ with the same
objects, and with hom-objects defined by

C∼(x, y) = Φ(C(x, y)),

and composition and units defined using the functoriality of Φ.
Crudely put, the hom-sets of C∼ are ‘the same’ as those of C, but instead of treating

them as vector spaces we treat them as affine schemes, which gives them greater flexi-
bility: now we allow not just linear maps between them, but maps defined by arbitrary
polynomials in any linear coordinates on these spaces. In particular, a one-object linear
category C is just a way of thinking about an algebra over k, and the one-object affine
category C∼ is a way of thinking about the corresponding affine monoid.

5.9. Definition. Given an affine category C let

Rep(C) = AffSchCat(C, FinVect∼).

The objects of Rep(C) are algebraic functors F : C → FinVect∼, which we call algebraic
representations of C, and the morphisms are natural transformations between these.

We are especially interested in representations of affine monoids, which can be seen as
one-object affine categories. Four examples play a major role in what follows. Two arise
from algebras over k:

5.10. Example. Let M(N, k) be the affine monoid arising from the algebra of N × N
matrices over k. The coordinate bialgebra of this affine monoid is the polynomial algebra
on elements eij (1 ≤ i, j ≤ N) with comultiplication

∆(eij) =
N∑

k=1
eik ⊗ ekj.

This example also has a useful basis-independent description. Let V be a finite-
dimensional vector space. The monoid (i.e. k-algebra) FinVect(V, V ) can be regarded as
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the dual FinVect(V ⊗ V ∗, k) of a comonoid structure on V ⊗ V ∗. The comultiplication on
V ⊗ V ∗ is given by a composite

V ⊗ V ∗ ∼= V ⊗ k ⊗ V ∗ 1⊗η⊗1−−−−→ V ⊗ V ∗ ⊗ V ⊗ V ∗

with η a canonical map of the form k → hom(V, V ) ∼= V ∗⊗V , where k → hom(V, V ) takes
1 ∈ k to 1V : V → V . The element η(1) is ∑N

k=1 f
k ⊗ ek ∈ V ∗⊗ V where e1, . . . , eN is any

basis of V and f 1, . . . , fN is the dual basis (but η(1) itself is independent of basis). Note
that the ‘matrix element’ eij in the prior description of the comultiplication corresponds
to ei ⊗ f j; comultiplication on the commutative bialgebra O(M(N, k)) (now recast as
S(V ⊗ V ∗)), as described above, takes

ei ⊗ f j 7→ ei ⊗ η(1)⊗ f j =
N∑

k=1
ei ⊗ fk ⊗ ek ⊗ f j

but in basis-free form, this is just v ⊗ f 7→ v ⊗ η(1)⊗ f .
In this way, we may speak directly of the affine monoid hom(V, V )∼ for a finite-

dimensional vector space V .

5.11. Example. When N = 1 we call the affine monoid M(N, k) simply k, since it arises
by applying Φ to the 1-dimensional algebra k. We thus define Rep(k) to be Rep(M(N, k))
for N = 1. This affine monoid k is also Spec(kN) as defined in Example 5.4.

Two other examples arise from affine groups:

5.12. Example. There is a well-known way to treat the group GL(N, k) of invertible
N ×N matrices as an affine group [Mil17], and we use this to define Rep(GL(N, k)).

5.13. Example. When N = 1 we call the affine group GL(N, k) simply k∗, and we use
this to define Rep(k∗). This affine monoid k∗ is also Spec(kZ) as defined in Example 5.4.

For any affine monoid M it is useful to have concrete descriptions of its algebraic
representations in terms of its coordinate bialgebra.

5.14. Lemma. The category Rep(M) of algebraic representations of an affine monoid M
is equivalent to the category of finite-dimensional comodules of its coordinate bialgebra
O(M), and the usual tensor product of comodules makes Rep(M) into a 2-rig.
Proof. An algebraic representation of M on a finite-dimensional vector space V is an
affine monoid map M → hom(V, V )∼ where the affine monoid hom(V, V )∼ was described
in Example 5.10. Any such affine monoid map is the same as a map of commutative
bialgebras from Sym(V ⊗ V ∗) to O(M). This gives a natural transformation of monoid-
valued functors

CommAlg(O(M),−)→ CommAlg(Sym(V ⊗ V ∗),−)
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By the adjunction Sym ⊣ U in the 2-category of symmetric monoidal categories and oplax
symmetric monoidal functors, this corresponds to a comonoid map

V ⊗ V ∗ → U(O(M))

in FinVect, i.e., to a comodule structure η : V → V ⊗ U(O(M)) over the underlying
coalgebra of O(M). Thus, all such categories Rep(M) may be regarded as categories of
comodules over coalgebras. Compare also [Mil12, Sec. VIII.6].

Comodule categories are evidently Cauchy complete linear categories. The tensor
product on Rep(M) involves the full commutative bialgebra structure on O(M): if (V, η)
and (W, θ) are comodules, then their tensor product is the vector space V ⊗W equipped
with the comodule structure given by the evident composite

V ⊗W η⊗θ−−→ V ⊗O(M)⊗W ⊗O(M) ∼= V ⊗W ⊗O(M)⊗O(M) 1⊗1⊗m−−−−→ V ⊗W ⊗O(M)

where m denotes the algebra multiplication. Commutativity of m ensures that the sym-
metry isomorphism V ⊗W ∼= W ⊗ V of vector spaces is indeed a comodule isomorphism,
and thus Rep(M) becomes a 2-rig.

Some important examples arise from this commutative square of inclusions of affine
monoids:

M(N, k) kN

GL(N, k) k∗N .

Restriction of representations gives a commutative square of 2-rig maps:

Rep(M(N, k)) Rep(kN)

Rep(GL(N, k)) Rep(k∗N).

This square of 2-rigs plays a key role in what follows: see Section 9 for an overview.
To conclude this section, we prove that for any affine category C, the representation

category
Rep(C) = AffSchCat(C, FinVect∼)

can be given the structure of a 2-rig. We can state this result more strongly using the
2-category 2-Rig studied in [BMT23], in which

• objects are symmetric monoidal Cauchy complete k-linear categories (that is, 2-rigs),

• morphisms are symmetric monoidal k-linear functors (that is, maps of 2-rigs),

• 2-morphisms are monoidal k-linear natural transformations.
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5.15. Theorem. FinVect is an ‘internal 2-rig’ in AffSchCat, meaning that the 2-functor

AffSchCat(−,FinVect∼) : AffSchCatop → Cat

canonically lifts through the forgetful functor 2-Rig→ Cat.
Proof. The 2-rig structure on AffSchCat(C, FinVect∼) can be defined pointwise once
we transfer the 2-rig structure of FinVect to the AffSchCat-enriched category FinVect∼.
This 2-rig structure consists of an ‘additive’ part (enrichment in Vect, biproducts, and
splitting of idempotents), and a ‘multiplicative’ part (the symmetric monoidal structure);
we consider these structures separately.

To add morphisms f, g : V → W in FinVect∼, form the composite

V
∆−→ V × V f×g−−→ W ×W ∇−→ W

where the codiagonal∇ is the addition operator, obtained from the corresponding addition
operator W×W → W in FinVect by applying change of base FinVect→ AffSch. Similarly,
to multiply f : V → W by a scalar r ∈ k, form the composite

V
f−→ W

λr−→ W

and then apply change of base to a scalar operator λr : W → W in FinVect to obtain the
corresponding operator in FinVect∼. Writing the vector space axioms diagrammatically
in FinVect (using ∇ and the λr) and applying change of base, the same axioms hold
in FinVect∼, hence FinVect∼ carries Vect-enrichment. Similarly, to obtain biproducts of
FinVect considered as an AffSch-category, simply apply change of base FinLinCat →
AffSchCat to the biproduct structure on FinVect, which consists of a 1-morphism or
FinVect-enriched functor

⊕ : FinVect× FinVect→ FinVect

together with various 2-morphisms needed to capture the biproduct structure, such as
product projections pX : X ⊕ Y → X and coproduct injections iX : X → X ⊕ Y , subject
to the required 2-cell equations such as iXpX + iY pY = 1X⊕Y . Splitting of idempotent
1-cells in FinVect∼ derives from splitting of idempotents in FinVect. (Remember: 1-cells
V → W in the underlying category of FinVect∼ ‘are’ k-linear maps; they are not general
maps Φ(V ) → Φ(W ) between V and W considered as affine schemes.) This completes
the description of the additive structure of FinVect∼.

The multiplicative structure

⊗ : FinVect∼ × FinVect∼ → FinVect∼

is obtained as a composite

FinVect∼ × FinVect∼ → (FinVect⊗ FinVect)∼ ⊗∼
−−→ FinVect∼.
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The first arrow is a component of the laxator for the base change functor

(−)∼ : FinLinCat→ AffSchCat

induced by the lax symmetric monoidal functor

Φ: (FinVect,⊗)→ (AffSch,×)

defined in Example 5.5. The second arrow is (−)∼ applied to ⊗ : FinVect ⊗ FinVect →
FinVect in FinLinCat. In other words, we use the lax symmetric monoidal 2-functor
FinLinCat→ AffSchCat to map the symmetric pseudomonoid (FinVect,⊗) in FinLinCat
to a symmetric pseudomonoid (FinVect∼,⊗) in AffSchCat. That this multiplicative
structure distributes over the additive structure boils down to its preserving FinVect-
enrichment, which in turn follows from applying change of base to the corresponding
equational statement holding in FinLinCat.

This completes the desired lift on objects. On morphisms, the lift maps any algebraic
functor F : C → D to the 2-rig map Rep(F ) : Rep(D) → Rep(C) given by precomposing
with F . On 2-morphisms, it maps any natural transformation α : F ⇒ G between alge-
braic functors F,G : C → D to the natural transformation given by left whiskering with
α. One can check that this lift is indeed a 2-functor.

Henceforth we use Rep to denote the lifted 2-functor in Theorem 5.15. We spell out
its description for future reference.

5.16. Corollary. The 2-functor Rep : AffSchCatop → 2-Rig has the following prop-
erties:

• It maps any affine category C to Rep(C) made into a 2-rig as in Theorem 5.15.

• It maps any algebraic functor F : C→ D to the 2-rig map Rep(F ) : Rep(D)→ Rep(C)
given by precomposing with F .

• It maps any natural transformation α : F ⇒ G between algebraic functors F,G : C→
D to the natural transformation given by left whiskering with α.

6. The free 2-rig on several bosonic subline objects
We are now in a position to describe the free 2-rig on several bosonic subline objects in
two ways: an ‘abstract’ way using 2-rig theory, and a ‘concrete’ way using representation
theory. They are, however, just slightly different outlooks on the same idea.

For the abstract description, recall from [BMT23, Lem. 4.2] that the 2-category of
2-rigs has coproducts, with the coproduct of 2-rigs R and S denoted R ⊠ S because it
behaves analogously to the coproduct of commutative rings, which is their usual tensor
product.
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6.1. Lemma. The N-fold tensor product A⊠N is the free 2-rig on N bosonic subline objects
s1, . . . , sN . That is, given any 2-rig R containing bosonic subline objects x1, . . . , xN , there
is a 2-rig map F : A⊠N → R with F (si) = xi for 1 ≤ i ≤ N , and F is determined uniquely
up to isomorphism by this property.
Proof. As a coproduct, A⊠N comes equipped with coprojections ik : A → A⊠N for k =
1, . . . , N . Let sk = ik(s) where s ∈ A is the generating bosonic subline object. By
Theorem 3.1, the bosonic subline object xk in R induces a 2-rig map Fk : A → R that
sends s to xk, uniquely up to isomorphism. By the coproduct property, all these 2-rig
maps give a 2-rig map F : A⊠N → R with F (sk) = xk, and F is determined uniquely up
to isomorphism by this property.

In fact the free 2-rig on a bosonic subline object is familiar, not only as the cate-
gory of N-graded vector spaces of finite total dimension, but as the category of algebraic
representations of the affine monoid k with multiplication as its monoid operation. The
reason is that an algebraic representation of k on a vector space V corresponds to a way
of making V into a comodule of its coordinate bialgebra k[x] by Lemma 5.14. Given such
a comodule

η : V → V ⊗ k[x]
we can take any vector v ∈ V and extract its homogeneous part vn in each grade n ∈ N
by writing

η(v) =
∑
n∈N

vn ⊗ xn.

In the converse direction, we can make any N-graded vector space into a comodule of k[x]
by this formula.

In more detail, following Example 5.4, we have the following result.

6.2. Lemma. For any commutative monoid M , the 2-rig Rep(Spec(kM)) is equivalent
to the 2-rig of M-graded vector spaces of finite total dimension, which is also the free
2-rig kM on the discrete symmetric monoidal category with elements of M as objects and
multiplication in M as its tensor product.
Proof. By Lemma 5.14 we know that Rep(Spec(kM)) is equivalent to the category of
finite-dimensional comodules of its coordinate bialgebra, namely the monoid algebra kM
equipped with the comultiplication δ : kM → kM ⊗ kM specified by δ(m) = m ⊗ m
and counit ε : kM → k specified by ε(m) = 1 for all m ∈ M . A comodule is given by
a finite-dimensional vector space V and a map η : V → V ⊗ kM . This map takes any
element v to an expression of type ∑

m∈M vm ⊗m, and the counit law for the comodule
amounts to the condition that v = ∑

m vm, while the coassociative law amounts to the
conditions that (vm)n = 0 if m ̸= n and (vm)m = vm. These are exactly what is needed
to say that V is the total space of an M -graded vector space, where the homogeneous
component of a vector v in grade m ∈ M is vm. The same line of thought prescribes the
grade of vp ⊗ wq for homogeneous elements vp, wq in two comodules V and W to be pq,
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so that
(V ⊗W )m =

⊕
m=pq

Vp ⊗Wq,

and the symmetry isomorphism is the usual (unsigned) switch of tensor factors, Vp⊗Wq →
Wq ⊗ Vp.

This 2-rig of M -graded vector spaces of finite total dimension is equivalent to the 2-rig
obtained by starting from M viewed as a discrete symmetric monoidal category with one
object for each element of M , then forming the k-linear symmetric monoidal category (also
denoted kM) by applying the free vector space functor to the hom-sets for M , and finally
closing up under biproducts and retracts to form the k-linear Cauchy completion kM .
The final assertion is that strong symmetric monoidal functors from M to the underlying
symmetric monoidal category of any 2-rig R are equivalent to 2-rig maps kM → R. This
follows from Lemmas 14 and 15 of [BMT23].

We can use this result to describe the 2-rig of representations of the algebraic monoid
k ∼= Spec(kN) introduced in Example 5.11.

6.3. Lemma. The 2-rig Rep(k) is the free 2-rig on a bosonic subline object, A.
Proof. By Lemma 6.2, Rep(k) ≃ Rep(Spec(kN)) is the 2-rig of N-graded vector spaces
of finite total dimension, or more precisely A, which according to Theorem 3.1 is the free
2-rig on a bosonic subline object.

We now describe the free 2-rig on N bosonic sublines in two different ways. The proof
would be quick if we knew

Rep(C× D) ≃ Rep(C) ⊠ Rep(D)

for all affine categories C and D, or even just all affine monoids. So far we have only shown
this for affine monoids arising from commutative monoids via the recipe in Example 5.4.
Luckily this is all we need.

6.4. Lemma. For any commutative monoids M,N there is an equivalence of 2-rigs

Rep(Spec(kM)× Spec(kN)) ≃ Rep(Spec(kM)) ⊠ Rep(Spec(kN)).

Proof. By Lemma 6.2 we know Rep(Spec(kM)) ≃ kM for any commutative monoid M ,
so it suffices to show

k(M ×N) ≃ kM ⊠ kN.

We establish this by showing that both sides have the same universal property. By
Lemma 6.2, 2-rig maps of the form k(M ×N) → R are equivalent to strong symmetric
monoidal functors M × N → R, where we identify M and N with discrete symmetric
monoidal categories. Since M × N is the coproduct of M and N in the 2-category
of symmetric monoidal categories, such symmetric monoidal functors M × N → R are
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equivalent to pairs of symmetric monoidal functors M → R, N → R. These in turn are
equivalent to pairs of 2-rig maps

Rep(Spec(kM))→ R, Rep(Spec(kN))→ R,

again by Lemma 6.2. Finally, such pairs are equivalent to 2-rig maps

Rep(Spec(kM)) ⊠ Rep(Spec(kN))→ R

because ⊠ is the coproduct of 2-rigs.

6.5. Theorem. The free 2-rig on N bosonic subline objects is Rep(kN) ≃ A⊠N , or equiv-
alently the 2-rig of NN -graded vector spaces of finite total dimension, with the symmetry
defined using the usual symmetry on Vect in each homogeneous component.
Proof. Since the affine monoid k is Spec(kN), Lemma 6.4 implies that

Rep(kN) ≃ Rep(k)⊠N

as 2-rigs. Lemma 6.3 implies that

Rep(k)⊠N ≃ A⊠N

where A is the free 2-rig on one bosonic subline object. Lemma 6.1 says that A⊠N is
the free 2-rig on N bosonic subline objects. By Lemma 6.2, Rep(kN) is also the 2-rig of
finite-dimensional NN -graded vector spaces, with the symmetry defined using the usual
symmetry on Vect in each homogeneous component.

7. The free 2-rig on several bosonic line objects
Just as we can describe the free 2-rig on N bosonic subline objects in two slightly different
ways, we can do the same for free 2-rig on N bosonic line objects. The only difference is
that throughout the discussion the multiplicative monoid k is replaced by its submonoid
k∗ consisting of nonzero elements, and the 2-rig A of finite-dimensional N-graded vector
spaces is replaced by the 2-rig T of finite-dimensional Z-graded vector spaces, as intro-
duced in Section 4.

We begin with a new description of the 2-rig of algebraic representations of the affine
group k∗ ∼= Spec(kZ) introduced in Example 5.13.

7.1. Lemma. The 2-rig Rep(k∗) is the free 2-rig on a bosonic line object, T.
Proof. By Lemma 6.2, Rep(k∗) ≃ Rep(Spec(kZ)) is the 2-rig of Z-graded vector spaces
of finite total dimension, or more precisely A, which according to Theorem 3.1 is the free
2-rig on a bosonic subline object.
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7.2. Theorem. The free 2-rig on N bosonic line objects is Rep(k∗N) ≃ T⊠N , or equiv-
alently the 2-rig of ZN -graded vector spaces of finite total dimension, with the symmetry
defined using the usual symmetry on Vect in each homogeneous component.
Proof. The proof follows the same argument as that for Theorem 6.5, but with k∗

replacing k, Z replacing N and T replacing A.

8. Dimension and subdimension
A line object can be thought of as having dimension 1, and a subline object as having
dimension at most 1. In fact, these are special cases of more general concepts: we can
say what it means for an object in a 2-rig having dimension d, or dimension at most d.
These again come in ‘bosonic’ and ‘fermionic’ forms.

The symmetric group Sn has two one-dimensional representations: the trivial repre-
sentation, which we call triv, and the sign representation, where each permutation σ ∈ Sn

acts as multiplication by its sign sgn(σ). These give Schur functors, which act on any
2-rig R sending any object x ∈ R to its nth symmetric power

Symn(x) = triv⊗k[Sn] x
⊗n

and its nth exterior power
Λn(x) = sgn⊗k[Sn] x

⊗n

respectively.

8.1. Definition. An object x in a 2-rig has bosonic subdimension n if Λn+1(x) ∼= 0,
and fermionic subdimension n if Symn+1(x) ∼= 0.

8.2. Definition. An object x in a 2-rig has bosonic dimension n if Λn(x) is a bosonic
line object, and fermionic dimension n if Symn(x) is a fermionic line object.

Note that an object has bosonic (resp. fermionic) subdimension 1 if and only if it is a
bosonic (resp. fermionic) subline object, and it has bosonic (resp. fermionic) dimension 1
if and only if it is a bosonic (resp. fermionic) line object.

8.3. Lemma. If an object x in a 2-rig has bosonic (resp. fermionic) subdimension n, it
has bosonic (resp. fermionic) subdimension m for all m ≥ n.
Proof. For the first, note that the canonical epimorphism x⊗n+1 → Λn+1(x) factors
through x⊗ Λn(x), so

Λn(x) ∼= 0 =⇒ Λn+1(x) ∼= 0
and thus an object of subdimension n has subdimension n+ 1. For the second, similarly
note that the canonical epimorphism x⊗n+1 → Symn+1(x) factors through x⊗ Symn(x).



2-RIG EXTENSIONS AND THE SPLITTING PRINCIPLE 985

8.4. Lemma. If x and y are objects in a 2-rig with bosonic subdimensions m and n,
respectively, then x ⊕ y has bosonic subdimension m + n. Similarly if x and y have
fermionic subdimension m and n, respectively, then x ⊕ y has fermionic subdimension
m+ n.
Proof. Assume x has bosonic subdimension m and y has bosonic subdimension n. By
Lemma 8.3 we have Λm(x) ∼= 0 for M > m and Λn(y) ∼= 0 for N > n. Using the
well-known isomorphism

Λk(x⊕ y) ∼=
⊕

m+n=k

Λm(x)⊗ Λn(x)

it follows that Λk(x ⊕ y) ∼= 0 for k > m + n, so x ⊕ y has bosonic subdimension m + n.
The same argument works for fermionic subdimension using the isomorphism

Symk(x⊕ y) ∼=
⊕

m+n=k

Symm(x)⊗ Symn(x).

8.5. Corollary. If s1, . . . , sN are bosonic sublines, then the coproduct s1 ⊕ · · · ⊕ sN is
of bosonic subdimension N .

The following trio of conjectures, if true, would clarify the overall picture laid out in
the next section. However, we do not strictly need them in what follows.

8.6. Conjecture. If an object in a 2-rig has bosonic dimension n, it has bosonic sub-
dimension n. If it has fermionic dimension n, it has fermionic subdimension n.

8.7. Conjecture. The 2-rig Rep(M(N, k)) is the free 2-rig on an object of bosonic sub-
dimension N , namely the tautologous representation of M(N, k) on kN .

8.8. Conjecture. The 2-rig Rep(GL(N, k)) is the free 2-rig on an object of bosonic
dimension N , namely the tautologous representation of GL(N, k) on kN .

9. A network of 2-rigs
Our main results concern a number of 2-rigs important in representation theory, and maps
between these:

kS Rep(M(N, k)) Rep(kN) ≃ A⊠N

Rep(GL(N, k)) Rep(k∗N) ≃ T⊠N

A B

D C

E

The objects in this diagram are as follows:
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• kS is the category of finitely supported and finite-dimensional representations of the
groupoid of finite sets, S, with its Day tensor product. In [BMT23, Thm. 3.3] we
proved that kS is the free 2-rig on one object.

• Rep(M(N, k)) is the 2-rig of algebraic representations of M(N, k), the affine monoid
of N × N matrices with entries in k. Conjecture 8.7 claims that Rep(M(N, k)) is
also the free 2-rig on an object of bosonic subdimension N , namely kN .

• Rep(kN) is the 2-rig of algebraic representations of kN , which becomes an affine
monoid under pointwise multiplication. We described this 2-rig in several different
ways in Theorem 6.5. It is the free 2-rig on N bosonic subline objects s1, . . . , sN . It
is also the N -fold tensor power T⊠N of the free 2-rig on one bosonic subline object,
and the 2-rig of NN -graded vector spaces of finite total dimension.

• Rep(GL(N, k)) is the 2-rig of algebraic representations of GL(N, k), the affine group
of invertibleN×N matrices with entries in k. Conjecture 8.8 claims that Rep(GL(N, k))
is also the free 2-rig on an object of bosonic dimension N , namely kN .

• Rep(k∗N) is the 2-rig of algebraic representations of k∗n, which becomes an affine
group under pointwise multiplication. We described this 2-rig in several ways in
Theorem 7.2. It is the free 2-rig on N bosonic line objects ℓ1, . . . , ℓN . It is also the
N -fold tensor power A⊠N of the free 2-rig on one bosonic line object, and the 2-rig
of ZN -graded vector spaces of finite total dimension.

The arrows in this diagram can be defined using representation theory:

• The 2-rig map A : kS→ Rep(M(N, k)) sends the generator x ∈ kS to the tautologous
representation of the affine monoid M(N, k) on the vector space kN .

• The 2-rig map B : Rep(M(N, k))→ Rep(kN) is given by restricting algebraic repre-
sentations of M(n) to the submonoid consisting of diagonal matrices.

• The 2-rig map C : Rep(kN)→ Rep(k∗N) restricts algebraic representations of kN to
the subgroup k∗N .

• The 2-rig map D : Rep(M(N, k)) → Rep(GL(N, k)) restricts algebraic representa-
tions of M(N, k) to GL(N, k).

• The 2-rig map E : Rep(GL(N, k))→ Rep(k∗N) restricts representations of GL(N, k)
to the subgroup consisting of invertible diagonal matrices.

We expect that all these arrows can also be defined using the universal properties of the
various 2-rigs involved:

• The 2-rig map A : kS→ Rep(M(N, k)) sends the generator x of the free 2-rig on one
generator to the object kN .
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• Given Conjecture 8.7, the 2-rig map B : Rep(M(N, k)) → Rep(kN) sends the gen-
erator of the free 2-rig on an object of bosonic subdimension n, namely kN , to the
direct sum of bosonic subline objects s1 ⊕ · · · ⊕ sn.

• The 2-rig map C : Rep(kN)→ Rep(k∗N) sends each bosonic subline object si to the
bosonic line object ℓi.

• Given Conjectures 8.6–8.8, the 2-rig map D : Rep(M(N, k))→ Rep(GL(N, k)) maps
the generator of the free 2-rig on an object of bosonic subdimension n to the gener-
ator of the free 2-rig on an object of bosonic dimension n.

• Given Conjecture 8.8, the 2-rig map E : Rep(GL(N, k)) → Rep(k∗n) maps the gen-
erator of the free 2-rig on an object of bosonic dimension N , namely kN , to the
direct sum of bosonic line objects ℓ1 ⊕ · · · ⊕ ℓN .

The technical heart of this paper is to prove that all these maps are ‘extensions’, in
the following sense:

9.1. Definition. A functor F : C → D is an extension if the underlying functor has
the following three properties:

• (Fa) F is faithful: if f, g : c → c′ are morphisms in R such that F (f) = F (g), then
f = g.

• (Co) F is conservative: if F (f) is an isomorphism, then f is an isomorphism.

• (Es) F is essentially injective: if c, c′ are objects of C such that F (c) ∼= F (c′), then
c ∼= c′.

If F : R→ S is a 2-rig map and also an extension, we call it a 2-rig extension.
All three properties above can be seen as forms of ‘injectivity’. The third is generally the
hardest to check. For all three, we will repeatedly use the following easy lemma:

9.2. Lemma. Let G : C→ D and F : D→ E be functors. Then:

• If F and G both satisfy one of the conditions (Fa), (Co) or (Es), then F ◦G satisfies
that condition.

• If F ◦G satisfies one of (Fa), (Co) or (Es), then G satisfies that condition.

• If F ◦G satisfies one of (Fa), (Co) and G is full, then F satisfies that condition.

• If F ◦G satisfies (Es) and G is essentially surjective, then F satisfies (Es).

Another easy lemma concerns the case where C is a k-linear semisimple category:



988 JOHN C. BAEZ, JOE MOELLER, TODD TRIMBLE

9.3. Lemma. If C,D are k-linear categories and C is semisimple, then a k-linear functor
F : C → D is faithful if and only if for any map f : c → c′ between simple objects in C,
the condition F (f) = 0 implies f = 0. The functor F is conservative if and only if for
any f : c→ c′ between simple objects, f is invertible whenever F (f) is invertible.

10. Splitting an object of finite dimension
As a prelude to more general ‘splitting principles’ we study the process of splitting an
object of bosonic dimension N into N bosonic line objects, and show that in one key case
this process gives an extension of 2-rigs.

For any field k of characteristic zero and any natural number N there is a map

j : k∗N → GL(N, k)

(x1, . . . , xN) 7→


x1 0 · · · 0
0 x2 · · · 0
... ... . . . ...
0 0 · · · xN


This map is an algebraic homomorphism between affine groups, so by Corollary 5.16,
restricting representations along it induces a 2-rig map

E = Rep(j) : Rep(GL(N, k))→ Rep(k∗N).

This 2-rig maps sends the representation kN to the sum s1 ⊕ · · · ⊕ sN . So, we can say it
splits kN into a sum of N bosonic line objects.

We now show that E is a 2-rig extension in the sense of Definition 9.1. This fact
can be proved using Young tableaux for instance. More in the spirit of this paper, this
fact is also important in the theory of algebraic groups, since GL(N, k) is perhaps the
most fundamental example of a ‘split reductive’ algebraic group, and k∗N is its ‘maximal
torus’. The algebraic representations of any split reductive algebraic group are determined
up to isomorphism by their restriction to its maximal torus, and this gives the essential
injectivity of E. We spell this out below.

10.1. Lemma. The 2-rig map E : Rep(GL(N, k))→ Rep(k∗N) is a 2-rig extension.
Proof. That E is faithful and conservative follows from Lemma 9.2 because we have a
commutative diagram

Rep(M(N, k)) Rep(GL(N, k))

Set.

E
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where the downwards arrows, the obvious forgetful functors to Set, are both faithful and
conservative.

To prove that E is essentially injective, recall that E pulls back representations along
the inclusion of algebraic groups

j : k∗N → GL(N, k).

In characteristic zero, an algebraic group G is reductive if and only if it is connected and
Rep(G) is semisimple [Mil17, Thm. 22.42]. In fact the algebraic group GL(N, k) together
with its subgroup im(j) ∼= k∗N is split reductive [Mil17, Ex. 21.6]. This subsumes the
fact that GL(N, k) is reductive, and it also implies [Mil17, Thm. 22.48] that E induces
an injection of Grothendieck groups

K(Rep(GL(N, k)))→ K(Rep(k∗N)).

Now, suppose that a, b ∈ Rep(GL(N, k)) have E(a) ∼= E(b). It follows that [E(a)] =
[E(b)] in K(Rep(k∗N)), so we must have [a] = [b] in K(Rep(GL(N, k))). This means that
a ⊕ c ∼= b ⊕ c for some c ∈ Rep(GL(N, k)), but since Rep(GL(N, k)) is semisimple this
implies a ∼= b. Thus E is essentially injective.

The use of results on reductive algebraic groups would be disappointing if one were hop-
ing for a more elementary proof of Lemma 10.1. We know of no such proof. We have pro-
vided detailed references to Milne’s textbook because he proves everything from scratch,
but the path to what we use above is not a short one. The detour into Grothendieck
groups, at least, can be shortcut: Milne really proves the essential injectivity of E, but
he only states the injectivity of K(E), so to extract the result we need, we used the
semisimplicity of Rep(GL(n, k)).

However, we really only need Lemma 10.1 in the special case k = C; see the discussion
following Lemma 11.9. Here the essential injectivity of E can be proved more easily, using
Lie theory. Since this is the case relevant to the classical splitting principle for complex
vector bundles, we sketch the argument here.

The key is Weyl’s ‘unitarian trick’, which exploits this commutative diagram of 2-rigs:

Rep(GL(N,C)) Rep(U(N))

Rep(C∗N) Rep(U(1)N)

F

E G

H

Here U(N) is the subgroup of GL(N,C) consisting of unitary matrices, C∗n is the subgroup
consisting of invertible diagonal matrices and U(1)N = U(N) ∩ C∗N . Here Rep denotes
the category of complex-algebraic representations for GL(N,C) and C∗N , as usual in this
paper, but for U(N) and U(1)N it stands for the category of continuous finite-dimensional
complex representations. All the maps in the diagram arise from restricting representa-
tions.
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An algebraic representation ρ : GL(N,C) → End(V ) is determined by its restriction
to U(N) since U(N) is Zariski dense in GL(N,C). A continuous finite-dimensional rep-
resentation ρ : U(N) → End(V ) is determined up to isomorphism by its character since
U(N) is a compact Lie group, and its character is determined by its restriction to the
diagonal subgroup U(1)N since characters are class functions and every unitary matrix
is conjugate to a diagonal one. Thus, a representation ρ ∈ Rep(GL(N, k)) is determined
up to isomorphism by G(F (ρ)) ∈ Rep(U(1)N). In other words, the composite G ◦ F is
essentially injective. This implies that H ◦ E and thus E is essentially injective.

11. Splitting an object of finite subdimension
Next we study the process of splitting an object of subdimension N into N subline objects.
We do this in one key case, namely the object kN ∈ Rep(M(N, k)), and we show that the
2-rig map

B : Rep(M(N, k))→ Rep(kN)
sending kN to s1 ⊕ · · · ⊕ sN is an extension of 2-rigs.

To prove this fact, we recall a portion of our main diagram:

Rep(M(N, k)) Rep(kN)

Rep(GL(N, k)) Rep(k∗N).

B

D C

E

We have already seen that E is an extension; we now prove this for the two vertical arrows
and then B.

11.1. Lemma. The 2-rig map C : Rep(kN)→ Rep(k∗N) is a 2-rig extension.
Proof. This follows from Theorems 6.5 and 7.2: Rep(kN) is the category of finite-
dimensional NN -graded vector spaces, Rep(k∗N) is the category of finite-dimensional ZN -
graded vector spaces, and B is the forgetful functor from the former to the latter. This
functor is not only faithful but full, so it is conservative and essentially injective.

11.2. Lemma. The 2-rig map D : Rep(M(N, k))→ Rep(GL(N, k)) is a 2-rig extension.
Proof. That D is faithful and conservative follows from same argument as in Lemma
10.1. For essential injectivity, suppose that D(ρ) ∼= D(ρ′) where ρ : M(N, k) → End(V ),
ρ : M(N, k)→ End(V ′) are algebraic representations. Concretely this means that for some
isomorphism ϕ : V → V ′ we have ρ′(g) = ϕρ(g)ϕ−1 for all g ∈ GL(N, k). Since GL(N, k)
is Zariski dense in M(N, k) the same equation holds for all g ∈ M(N, k), so ρ′ ∼= ρ.

11.3. Lemma. The 2-rig map B : Rep(M(N, k))→ Rep(kN) is a 2-rig extension.
Proof. By Lemma 9.2 it suffices to show the composite C ◦B is a 2-rig extension. Since
this composite is naturally isomorphic to E ◦D, this follows from the fact that D and E
are 2-rig extensions (Lemmas 11.2 and 10.1).
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We conclude this sections with some results, relying on those above, that we shall use
to prove the splitting principle. For these we slightly extend our main diagram:

kS≤n kS Rep(M(N, k)) Rep(kN)

Rep(GL(N, k)) Rep(k∗N)

i A B

D C

E

Here kS≤n is the category of finite-dimensional representations of the groupoid of sets
with at most n elements, which we call S≤n. The functor

i : kS≤n −→ kS

extends any finite-dimensional representation of S≤n to one that assigns the zero-dimensional
space to any set of cardinality > n. Note that i is not a 2-rig map, just a k-linear functor
between Cauchy complete linear categories.

11.4. Theorem. The following composite functor is an extension when n ≤ N :

kS≤n kS Rep(M(N, k)).i A

The proof will be broken up into a series of lemmas. First we introduce kSm, which is
the category of finite-dimensional representations of the groupoid of m-element sets—or
equivalently, the category of finite-dimensional representations of the group Sm. Whenever
m ≤ n, we have an inclusion of Cauchy complete linear categories

kSm −→ kS≤n

extending any such representation to one that assigns the zero-dimensional space to any
set of cardinality ̸= m.

11.5. Lemma. Suppose that the restriction of A ◦ i : kS≤n → Rep(M(N, k)) to kSm is an
extension when m ≤ n ≤ N . Then A ◦ i is an extension when n ≤ N .
Proof. Lemma 9.3 implies that if for each m ≤ n ≤ N the restriction of A ◦ i to kSm

is faithful and conservative, then the same holds for A ◦ i. Thus we only need to show
this: if for each m ≤ n ≤ N the restriction of A ◦ i to kSm is essentially injective, then
the same holds for A ◦ i.

Let ρ, π be objects of kS≤n. Write ρ = ρ0 ⊕ · · · ⊕ ρn where ρj is an Sj-representation
for 1 ≤ j ≤ n, and similarly write π = π0 ⊕ · · · ⊕ πn. Let V = kN be the tautological
M(N, k)-representation. Then

(A ◦ i)(ρ) =
⊕

1≤j≤n

ρj ⊗kSj
V ⊗j
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with a similar expression for (A ◦ i)(π). Abbreviating the summands in the display above
as ρ̃j(V ), suppose we have an M(N, k)-equivariant map

f : ρ̃0(V )⊕ · · · ⊕ ρ̃n(V )→ π̃0(V )⊕ · · · ⊕ π̃n(V ),

and denote the block components as fij : ρ̃i(V ) → π̃j(V ). We now show that fij = 0 if
i ̸= j. For a scalar λ ∈ k, abuse notation slightly by letting λ ∈ M(N, k) also denote the
corresponding scalar multiple of the identity on V . Then

ρ̃i(λ) = λi : ρ̃i(V )→ ρ̃i(V )

and similarly π̃j(λ) = λj. By equivariance, λjfij = fijλ
i = λifij. For i ̸= j, this forces

fij = 0.
Thus, an equivariant map f must be in block diagonal form f11⊕· · ·⊕fnn. As a result,

f is an isomorphism if and only if each of its block components fmm is an isomorphism.
Thus, if the restriction of A ◦ i to kSm is essentially injective for each m ≤ n, then the
same holds for A ◦ i.

Thanks to the preceding lemma, to prove Theorem 11.4 it suffices to show that the
restriction of A◦ i to kSm is an extension whenever m ≤ n ≤ N . This amounts to showing
that under these conditions, the functor sending ρ ∈ kSm to

ρ̃(V ) = ρm ⊗kSj
V ⊗m ∈ [M(N, k),Vect]

is an extension. In fact we prove a stronger result: this functor is fully faithful. We need
to show this statement whenever m ≤ n ≤ N , but n does not appear in this statement
so there is no loss of generality in taking n = m, which we do below.

Let [M(N, k),Vect] denote the category of all linear representations of the monoid
M(N, k). The forgetful functor

Rep(M(N, k))→ [M(N, k),Vect]

is clearly faithful, which leads to the following lemma.

11.6. Lemma. If the composite functor

kSn → Rep(M(N, k))→ [M(N, k),Vect]

is fully faithful, then kSn → Rep(M(N, k)) is fully faithful.
Proof. In any category, k : A → B is an isomorphism if h ◦ k : A → C is an iso for
some mono h : B → C. The result follows by applying this observation to the evident
maps between hom-sets, where full faithfulness corresponds to such maps being isos, and
faithfulness corresponds to such maps being monos.



2-RIG EXTENSIONS AND THE SPLITTING PRINCIPLE 993

By this last lemma, the proof of Theorem 11.4 has now been reduced to showing the
functor kSn → [M(N, k),Vect] is fully faithful. The category kSn is the Cauchy completion
of the one-object linear category kSn. Here, the endo-hom of this object is the regular
representation of Sn, and applying the functor ρ 7→ ρ̃(V ) to this representation we obtain

kSn ⊗kSn V
⊗n ∼= V ⊗n.

11.7. Lemma. If the restriction of kSn → [M(N, k),Vect] to kSn is fully faithful, i.e., if
the canonical map

R : kSn → [M(N, k),Vect](V ⊗n, V ⊗n)
is an isomorphism, then kSn → [M(N, k),Vect] is fully faithful.
Proof. More generally, if F : C→ D is a fully faithful k-linear functor and D is Cauchy
complete, then the functor F ′ : C→ D obtained by extending F to the Cauchy completion
C is also fully faithful. Indeed, this is a general fact in enriched category theory. To prove
it in the k-linear case, first note that we have a square of enriched functors, commuting
up to isomorphism

C [Cop
,Vect] [Cop,Vect]

D [Dop,Vect]

F ′

yC ∼

P F

yD

of functors, commuting up to isomorphism, where PF is obtained by left Kan extending
the composite

C F−−→ D yD−−→ [Dop,Vect]
along the Yoneda embedding yC : C → [Cop,Vect]. In the above square the horizontal
arrows are fully faithful by the enriched Yoneda lemma. Thus, if we can show PF is fully
faithful, we can conclude that F ′ is fully faithful as well.

Using the adjunction PF ⊣ F ∗ = [F op,Vect], the theory of coreflective enriched sub-
categories implies that PF is fully faithful if the unit of this adjunction is an isomorphism.
For any W ∈ [Cop,Vect] the unit acts as follows:

W ∼=
∫ c

Wc · C(−, c)→
∫ c

Wc ·D(F−, F c) ∼= (F ∗ ◦ PF )W.

The middle arrow is an isomorphism by the full faithfulness of F , so the unit is indeed
an isomorphism.

The proof of Theorem 11.4 then follows from Schur–Weyl duality. We prove the
relevant fact about this to make this paper self-contained:

11.8. Lemma. If V = kN and n ≤ N , the canonical map

kSn → [M(N, k),Vect](V ⊗n, V ⊗n)

is an isomorphism.
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Proof. Let e1, . . . , eN be the standard basis of V . There are Nn basis elements for V ⊗n,
indexed by functions f : [n]→ [N ] where [n] := {1, . . . , n}. Thus a typical basis element is
ef(1)⊗· · ·⊗ef(n), and a typical element is uniquely representable as a k-linear combination∑

f : [n]→[N ]
af ef(1) ⊗ · · · ⊗ ef(n)

Let g = e1 ⊗ · · · ⊗ en (a ‘generic element’ of V ⊗n). An element σ ∈ Sn is uniquely
determined by its action on g, since of course σ · g = eσ(1) ⊗ · · · ⊗ eσ(n). Thus, the map

kSn → [M(N, k),Vect](V ⊗n, V ⊗n)

is injective. It remains to prove the claim that it is surjective.
First, notice that if ψ : V ⊗n → V ⊗n is a M(N, k)-equivariant map, where M(N, k) acts

diagonally on V ⊗n by

L · (v1 ⊗ · · · ⊗ vn) = L⊗n(v1 ⊗ · · · ⊗ vn) = L(v1)⊗ · · · ⊗ L(vn),

then ψ is uniquely determined by the value ψ(g). Indeed, if ef(1) ⊗ . . . ⊗ ef(n) is any
basis element, then taking L ∈ M(N, k) to be any linear map such that L(ei) = ef(i) for
1 ≤ i ≤ n, equivariance forces the equation

ψ(ef(1) ⊗ · · · ⊗ ef(n)) = L · ψ(g).

Given such a map ψ, write the element ψ(g) as

ψ(g) =
∑

f

afef(1) ⊗ · · · ⊗ ef(n),

summing over functions f : [n]→ [N ]. The claimed surjectivity will follow if af = 0 unless
f is a permutation on [n], for in that case we have

ψ(g) = ψ(e1 ⊗ · · · ⊗ en) =
∑

σ∈Sn

aσeσ1 ⊗ · · · ⊗ eσn = (
∑

σ∈Sn

aσσ) · (e1 ⊗ · · · ⊗ en)

and thus
ψ(v1 ⊗ · · · ⊗ vn) = (

∑
σ∈Sn

aσσ) · (v1 ⊗ · · · ⊗ vn)

for all vi ∈ V , by applying the MN(k)-equivariance of ψ to any linear map L with
L(ei) = vi. The last displayed equation shows that ψ is indeed in the image of the map
kSn → [M(N, k),Vect](V ⊗n, V ⊗n).

To see af = 0 unless f(i) ∈ [n] for all i ∈ [n], consider the linear map L : V → V
defined by the rule L(ei) = ei if 1 ≤ i ≤ n, and L(ei) = 2ei if n < i ≤ N . Then

(ψ ◦ L⊗n)(e1 ⊗ · · · ⊗ en) = ψ(e1 ⊗ · · · ⊗ en) =
∑

f

afef(1) ⊗ · · · ⊗ ef(n)
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whereas

(L⊗n ◦ ψ)(e1 ⊗ · · · ⊗ en) = L⊗n

 ∑
f : [n]→[N ]

afef(1) ⊗ · · · ⊗ ef(n)


=

∑
f : [n]→[N ]

2mfafef(1) ⊗ · · · ⊗ ef(n)

where mf is the size of {i ≤ n| f(i) > n}. Matching coefficients, we have af = 2mfaf , so
that af = 0 unless f(i) ≤ n for all i ≤ n. Thus, under equivariance, ψ(g) is of the form∑

f : [n]→[n] afef(1) ⊗ · · · ⊗ ef(n).
To see af = 0 unless f is surjective, pick any non-surjective f , and define a linear map

L by the rule L(ei) = ei if i ∈ im(f), and L(ei) = 2ei if i /∈ im(f). Then

(L⊗n ◦ ψ)(g) = L⊗n

 ∑
h : [n]→[n]

aheh(1) ⊗ · · · ⊗ eh(n)


where the summand at index f is afL(ef(1)) ⊗ · · · ⊗ L(ef(n)) = afef(1) ⊗ · · · ⊗ ef(n). On
the other hand, letting m be the size of [n] \ im(f),

(ψ ◦ L⊗n)(g) = ψ(L(e1)⊗ · · · ⊗ L(en)) = ψ(2me1 ⊗ · · · ⊗ en) =
∑

h

2maheh(1) ⊗ · · · ⊗ eh(n)

where the summand at the index f is 2mafef(1) ⊗ · · · ⊗ ef(n). These summands agree by
equivariance, and this forces af = 0. This shows that the sum in

ψ(g) =
∑

f

afef(1) ⊗ · · · ⊗ ef(n)

may be taken over surjective functions f : [n]→ [n], in other words permutations f ∈ Sn,
and the proof is complete.

11.9. Corollary. The following composite functor is an extension when N ≥ n:

kS≤n kS Rep(M(N, k)) Rep(kN) ≃ A⊠N .i A B

Proof. Assume N ≥ n. By Theorem 11.4 we know that A ◦ i is an extension, and by
Lemma 11.3 we know the same for B. Thus their composite is an extension.

As noted in the discussion after Lemma 10.1, we can use ideas from Lie theory to
show B is essentially injective in the special case k = C. Thus, it is interesting that we
can prove the essential injectivity B ◦A ◦ i for any field k of characteristic zero using the
essential injectivity of B only for k = C. The trick is to use a kind of ‘up-and-down’
argument.

It is well known that Q is a splitting field for the symmetric groups [Lor18, Corollary
4.16]. In our language, this implies that for any field of k of characteristic zero, the functor

QS≤n kS≤n
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given by tensoring representations with k is both essentially injective and essentially
surjective. Clearly, changing coefficients along the field map Q ↪→ k induces an essentially
injective map VectQ → Vectk, and the same is true for graded vector spaces of these types.
Taking k = C it follows that the two vertical maps in

QS≤n Rep(QN)

CS≤n Rep(CN)

B◦A◦i

B◦A◦i

are essentially injective, as is the bottom horizontal map. It follows from Lemma 9.2 that
the top horizontal map is essentially injective as well.

Now let k be any field of characteristic zero. Consider the diagram

QS≤n Rep(QN)

kS≤n Rep(kN).

B◦A◦i

B◦A◦i

We have seen that the right vertical map and the top horizontal map are essentially
injective. On the other hand, because Q is a splitting field for the symmetric groups,
the left vertical map is essentially surjective. It follows from Lemma 9.2 that the bottom
horizontal map is essentially injective.

12. Graded 2-rigs
We are now close to proving the main result of this paper. In Lemma 11.9 we constructed
an extension of linear categories whenever N ≥ n:

kS≤n → Rep(kN) ≃ A⊠N .

We now wish to study this extension in the limit where N, n → ∞. To do this, we use
the inclusions of linear categories

kS≤0
i0−−→ · · · in−1−−→ kS≤n

in−−→ · · ·

and the 2-rig maps
A⊠ 0 π0←−− · · · πN−1←−−−− A⊠N πN←−− · · ·

where πN sends the generating subline objects s1, . . . , sN to themselves and sends sN+1
to zero. Using the former, it is easy to see that kS is the colimit of the linear categories
kS≤n. Using the latter, we can define a 2-rig A⊠∞ that is some kind of limit of the 2-rigs
A⊠N . There are some subtleties here that we must address! But in the end, we shall
obtain a map of 2-rigs

F : kS→ A⊠∞



2-RIG EXTENSIONS AND THE SPLITTING PRINCIPLE 997

and prove in Theorem 14.1 that it is an extension.
Let us address the subtleties. Clearly we need to decide whether to define A⊠∞ as a

1-categorical or 2-categorical limit of the 2-rigs A⊠N—and if the latter, what kind. It turns
out that a 1-categorical limit suffices. However, we need to take gradings into account.
Most of the 2-rigs and 2-rig maps that we have been discussing are in fact graded in an
appropriate sense. By taking the limit in the category of graded 2-rigs, we avoid getting
a limit that is ‘too large’.

To get a sense for why, note that this issue shows up already at the level of Grothendieck
rings. Since A⊠N is the 2-rig of NN -graded vector spaces of finite total dimension, we have

K(A⊠N) ∼= Z[x1, . . . , xN ].

The ring homomorphism

K(πN) : Z[x1, . . . , xN+1]→ Z[x1, . . . , xN ]

sends the generators x1, . . . , xN to themselves and sends xN+1 to zero. Homomorphisms
of this sort give a diagram

Z← · · · ← Z[x1, . . . , xN ]← Z[x1, . . . xN , xN+1]← · · ·

Practically by definition, the limit of this diagram in the category of rings, say R, consists
of sequences of polynomials PN ∈ Z[x1, . . . , xN ] such that setting xN+1 equal to zero in
PN+1 gives PN . We can describe any such sequence as a possibly infinite formal sum of
monomials in the variables xi, for example

P (x1, x2, . . . ) = x1 + 2x1x2 + 3x1x2x3 + · · · .

We recover the polynomial PN from such a formal sum by setting all variables xi with
i > N equal to zero. In this description, the ring R consists of all formal sums of
monomials in the xi containing only finitely many monomials in any chosen finite set of
variables.

However, the rings Z[x1, . . . , xN ] are all graded by degree, and the maps in the above
diagram are homomorphisms of graded rings, so we can also take its limit in the category
of graded rings. The result is some graded ring S. One can show that S is a proper
subring of R: it contains only those sequences PN that have bounded degree. Thus, we
may think of S as the ring of formal sums of monomials of bounded degree in the variables
xi. For example, S does not contain the formal sum P shown above, but it does contain
all the symmetric functions, such as the nth power sum

pn(x1, x2, . . . ) =
∞∑

i=1
xn

i ,

the nth elementary symmetric function

en(x1, x2, . . . ) =
∑

i1<···<in

xi1 · · · xin ,
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and the nth complete symmetric function

hn(x1, x2, . . . ) =
∑

i1≤···≤in

xi1 · · · xin

for all n ∈ N. In fact, the elements of S fixed by all permutations of the variables xi form
precisely the ring of symmetric functions [Mac95, Sec. I.2].

All this suggests that we should take the limit of the diagram

A⊠ 0 π0←−− · · · πN−1←−−−− A⊠N πN←−− · · ·

not in the category of 2-rigs, but in the category of graded 2-rigs.
We present a careful treatment of graded 2-rigs in Section B. Here we merely describe

the 2-category of N-graded 2-rigs, and give the key examples we need. We begin with
some facts about Cauchy complete k-linear categories.

12.1. Definition. Define CauchLin to be the 2-category with

• Cauchy complete k-linear categories as objects,

• k-linear functors as morphisms,

• k-linear natural transformations as 2-morphisms.

12.2. Lemma. The 2-category CauchLin has coproducts in the 2-categorical sense.
Proof. We need to show that given an indexed family (Cα)α∈A with Cα ∈ CauchLin,
there is a Cauchy complete k-linear category ⊕

α Cα equipped with k-linear functors

iβ : Cβ →
⊕

α

Cα

such that for all D ∈ CauchLin there is an equivalence of categories

p : CauchLin(
⊕

α

Cα,D)→
∏
α

CauchLin(Cα,D)

whose αth component, say pα, is obtained by precomposing with iα.
The objects of ⊕

α Cα are tuples (cα)α∈A where cα ∈ Cα and all but finitely many of
the cα are zero objects. A hom-set for ⊕

α Cα is the vector space defined by

(
⊕

α

Cα)(cα)α∈A), (dα)α∈A) =
⊕

α

Cα(cα, dα).

Composition and units are defined using those in the categories Cα. It is routine to check
that (cα ⊕ dα)α∈A is the biproduct of (cα)α∈A and (dα)α∈A, and that idempotents split in
the underlying ordinary category of ⊕

α Cα since idempotents split in each category Cα.
Thus ⊕

α Cα is Cauchy complete.
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There are k-linear functors iβ : Cβ →
⊕

α Cα defined by iβ(c) = (cα)α∈A where

cα =
{
c if α = β
0 if α ̸= β.

To show that the resulting k-linear functor

p : CauchLin(
⊕

α

Cα,D)→
∏
α

CauchLin(Cα,D)

defined as above is an equivalence, we can check that it has an pseudo-inverse (meaning
an inverse up to isomorphism)

q :
∏
α

CauchLin(Cα,D)→ CauchLin(
⊕

α

Cα,D)

which sends any tuple of k-linear functors F = (Fα : Cα → D)α∈A to the k-linear functor
F∨ : ⊕

α Cα → D defined by

F∨ ((cα)α∈A) =
⊕

α

Fα(cα).

We use these coproducts to define graded 2-rigs:

12.3. Definition. A graded 2-rig is a 2-rig R equipped with Cauchy complete linear
subcategories Rn, called grades, for which the inclusions in : Rn → R induce an equivalence
of linear categories, and thus of Cauchy complete linear categories:⊕

n∈N
Rn

∼−−→ R,

and such that the tensor product and unit of R respect this decomposition as follows:

⊗ : Rm ⊠ Rn → Rm+n, I ∈ R0.

We are mainly interested in two examples:

12.4. Example. We give the 2-rig kS the grading whose nth grade is kSn, the linear
category of all finite-dimensional representations of Sn, which is naturally a k-linear sub-
category of kS. For details, see Example B.11.

12.5. Example. We give the 2-rig A⊠N the grading whose nth grade, A⊠N
n , is the full

subcategory on all n-fold tensor products of the generating bosonic sublines si. For
details, see Example B.12. In Theorem 6.5 we saw how to identify A⊠N with the 2-rig of
NN -graded vector spaces of finite total dimension: the object

s⊗m1
1 ⊗ · · · ⊗ s⊗mN

N ∈ A⊠N
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corresponds to the NN -graded vector space with the field k in grade (m1, . . . ,mN) and 0
in every other grade. If we make this identification, we obtain not just an equivalence but
an isomorphism of k-linear categories

A⊠N
n
∼= [NN(n), FinVect]

where NN(n) is the set of N -tuples of natural numbers whose sum is n. This nuance
becomes important in Section 13.

We can similarly define morphisms and 2-morphisms between graded 2-rigs, obtaining
a 2-category of graded rigs.

12.6. Definition. A map of graded 2-rigs F : R→ R′ is a 2-rig map that sends each
grade Rn into the corresponding grade R′n. A 2-morphism of graded 2-rigs is a linear
natural transformation α : F ⇒ F ′ between maps of N-graded 2-rigs F, F ′ : R→ R′.

Again, we are mainly interested in two examples:

12.7. Example. The 2-rig map

ϕN−1 : A⊠N → A⊠N−1

sending the generating sublines s1, . . . , sN−1 to themselves and sending sN to zero is a
map of graded 2-rigs.

12.8. Example. The 2-rig map

FN : kS→ A⊠N

sending the generating object x ∈ kS to the object s1⊕· · ·⊕ sN is a map of graded 2-rigs.
This map is isomorphic to the composite

kS Rep(M(N, k)) Rep(kN) ≃ A⊠N .A B

In Lemma 11.9 we saw that precomposing this map with the inclusion i : kS≤n → kS gives
an extension when N ≥ n.

13. The 2-rig A⊠∞

Now we turn to the 2-rig that plays the starring role in our splitting principle. We take
the liberty of calling it A⊠∞, for just as S∞ is sometimes used in topology to denote the
colimit of the topological spaces SN , this 2-rig is the limit of the graded 2-rigs A⊠N .

To obtain an explicit description of A⊠∞, we shall define it as a strict limit rather
than a fully 2-categorical limit. For this to make sense, we must choose models of the
graded 2-rigs A⊠N where they are specified up to isomorphism rather than merely up to
equivalence. Following Example 12.5, we henceforth define A⊠N to be the graded 2-rig of
NN -graded vector spaces of finite total dimension.
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13.1. Definition. A⊠∞ is the strict limit of the diagram of graded 2-rigs

A⊠ 0 ϕ0←−−− · · · ϕN−2←−−−− A⊠N−1 ϕN−1←−−−− A⊠N ϕN←−− · · ·

where ϕN−1 sends the generating sublines s1, . . . , sN−1 ∈ A⊠N to the like-named objects in
A⊠N−1 and sends sN to zero.

To describe A⊠∞ explicitly, we introduce the following sets:

• N(∞) is the set of sequences (m1,m2, . . . ) of natural numbers (including 0) whose
sum m1 +m2 + · · · is finite.

• N(∞)(m) is the subset of N(∞) with sequences (m1,m2, . . .) whose sum is m.

• NN(m) is the set of N -tuples of natural numbers whose sum is m.

There are inclusions
iN,m : NN(m) → NN+1(m)

(m1, . . . ,mN) 7→ (m1, . . . ,mN , 0)

and N(∞)(m) is the colimit in Set of this sequence of inclusions:

N(∞)(m) ∼= lim
−→

NN(m).

Precomposing with iN,m gives a k-linear functor

ϕN,m : [NN+1(m), FinVect]→ [NN(m), FinVect]

with
ϕN,m(G)(m1, . . . ,mN) = G(m1, . . . ,mN , 0)

Recalling from Example 12.5 the isomorphism

A⊠N
m
∼= [NN(m), FinVect],

we see that ϕN,m in fact is the restriction of the graded 2-rig map ϕN : A⊠(N+1) → A⊠N to
the mth grade.

13.2. Lemma. As a Cauchy complete linear category, the mth grade of A⊠∞ is isomorphic
to [N(∞)(m), FinVect].
Proof. Taking the limit as N →∞ we have

A⊠∞
m

∼= lim
←−

A⊠N
m

∼= lim
←−

[NN(m), FinVect]
∼= [lim

−→
NN(m), FinVect]

∼= [N(∞)(m), FinVect].



1002 JOHN C. BAEZ, JOE MOELLER, TODD TRIMBLE

To flesh out the graded 2-rig structure in this description of A⊠∞, we need to describe
its monoidal structure in terms of k-linear functors

⊗ : A⊠∞
p ⊠ A⊠∞

q → A⊠∞
p+q.

Let F ∈ A⊠∞
p and G ∈ A⊠∞

q , and put m = p+q. Given (m1,m2, . . .) ∈ N(∞)(m), there are
only finitely many (p1, p2, . . .) ∈ N(∞)(p) and (q1, q2, . . .) ∈ N(∞)(q) such that mi = pi + qi

for all i. Accordingly, define

(F ⊗G)(m1,m2, . . .) =
⊕

(mi)=(pi)+(qi)
F ((pi))⊗G((qi))

where the (pi) and (qi) appearing in the coproduct indexing belong to N(∞)(p) and N(∞)(q),
respectively. This gives the graded 2-rig structure on A⊠∞.

In A⊠∞, there is for each n ∈ N an object of grade 1 that we shall call sn, arising from
the like-named objects of grade 1 in all the 2-rigs A⊠N for N ≥ n. Alternatively, we can
use Lemma 13.2 to describe sn as the functor Ln : N∞(1)→ FinVect that sends the object

(0, . . . , 0, 1︸︷︷︸
nth place

, 0, . . . ) ∈ N∞(1)

to k and sends all other objects to zero. One can check by explicit calculation that each
object sn ∈ A⊠∞ is a bosonic subline.

13.3. Lemma. The 2-rig A⊠∞ contains an object of grade 1 that is the coproduct of all
the bosonic sublines s1, s2, . . . ∈ A⊠∞.
Proof. By Lemma 13.2, we have an isomorphism of Cauchy complete linear categories

A⊠∞
1
∼= [N∞(1), FinVect].

In the latter, the coproduct of the functors Ln exists: it is the constant functor L : N(∞)(1)→
FinVect with value k. Thus, the coproduct of all the objects sn exists in A⊠∞

1 . Since A⊠∞

is the coproduct in CauchLin of the grades A⊠∞
m for m ∈ N, this coproduct of the objects

sn is also their coproduct in A⊠∞.
We denote the coproduct of all the bosonic sublines sn ∈ A⊠∞ by s1 ⊕ s2 ⊕ · · · . By

the universal property of kS, up to isomorphism there exists a unique graded 2-rig map

F : kS→ A⊠∞

that takes the generator x to this object s1 ⊕ s2 ⊕ · · · . This 2-rig map fits into a triangle

A⊠∞

kS A⊠N

πN

FN

F

which commutes when applied to the generator x, and therefore commutes up to a unique
natural isomorphism. We next turn to the key properties of F .
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14. The splitting principle
Our ‘splitting principle’ says that we can extend the free 2-rig on one object to a 2-rig in
which this object becomes an infinite coproduct of bosonic sublines. More precisely:

14.1. Theorem. The 2-rig map F : kS → A⊠∞ sending the generator x ∈ kS to the
coproduct s1 ⊕ s2 ⊕ · · · ∈ A⊠∞ is an extension.
Proof. First, we show that for each n ∈ N, the composite

kS≤n kS A⊠∞i F

is an extension. By Lemma 9.2 it suffices to show that following this composite with any
further map gives an extension, so let us use πN : A⊠∞ → A⊠N for N ≥ n. But this further
composite

kS≤n kS A⊠∞ A⊠Ni F πN

is naturally isomorphic to

kS≤n kS A⊠Ni FN

which in turn is naturally isomorphic to the composite

kS≤n kS Rep(M(N, k)) Rep(kN) ≃ A⊠Ni A B

because both FN and B ◦ A send the generating object x ∈ kS to s1 ⊕ · · · ⊕ sN . Finally,
this last composite is an extension because we saw in Lemma 11.3 that B is an extension
and we saw in Theorem 11.4 that A ◦ i is an extension when N ≥ n.

Next we show that F itself is an extension. We have just seen that F is faithful,
conservative and essentially injective when restricted to each subcategory kS≤n. We need
to show that F itself has these three properties. For this, the key is that kS is the colimit
of the subcategories kS≤n, so any finite set of objects and morphisms of kS lies in some
kS≤n. The three properties of F are then straightforward:

(Fa) To show F is faithful, assume f, g : y → z in kS have F (f) = F (g). We know
f and g are in kS≤n for some n. Since F is faithful restricted to this subcategory we
conclude f = g. Thus F is faithful.

(Co) To show F is conservative, assume f : y → z in kS is such that F (f) is an
isomorphism. We know f is in kS≤n for some n. Since F is conservative when restricted
to this subcategory, we conclude f is an isomorphism. Thus F is conservative.

(Es) To show F is essentially injective, assume x, y ∈ kS have F (x) ∼= F (y). We know
x, y ∈ kS≤n for some n. Since F is essentially injective when restricted to this subcategory,
we conclude x ∼= y. Thus F is essentially injective.
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We hope that Theorem 14.1 may be helpful in proving the following conjectured split-
ting principle.

14.2. Conjecture. Let R be a 2-rig and r ∈ R an object of finite bosonic subdimension.
Then there exists a 2-rig R′ and a map of 2-rigs E : R→ R′ such that:

1. E(r) splits as a direct sum of finitely many bosonic subline objects.

2. E : R→ R′ is faithful and conservative.

3. K(E) : K(R)→ K(R′) is injective.

Item (3) is one of the main classical applications of the splitting principle: to prove an
equation involving λ-ring operations applied to some element r ∈ K(R) of finite bosonic
subdimension, it suffices to prove the corresponding equation for E(r) ∈ K(R′), where
E(r) splits as a sum of bosonic subline objects.

Here is a possible strategy for proving Conjecture 14.2. Because kS is the free 2-rig
on one object x, there is a 2-rig map r̂ : kS→ R with r̂(x) = r, and this map is unique up
to isomorphism. Suppose that the following ‘2-pushout’—or more precisely, iso-cocomma
object—exists in 2-Rig:

kS A⊠∞

R R′

F

r̂

⌜
G

E

Then the conjecture will follow if we can show:

1. E(r) is a finite coproduct of bosonic subline objects.

2. E : R→ R′ is a 2-rig extension.

3. If for some r1, r2 ∈ R, r′ ∈ R′ we have E(r1) ⊕ r′ ∼= E(r2) ⊕ r′ then for some n we
have E(r1)⊕ In ∼= E(r2)⊕ In.

Note that now item (2) has been strengthened to include the essential injectivity of E.
With the help of this, thanks to Lemma 15.5, item (3) implies that E : R → R′ induces
an injection of λ-rings, K(E) : K(R) ↪→ K(R′).

15. Symmetric functions
In [BMT23] we showed that the Grothendieck group K(R) of any 2-rig R becomes a λ-ring
in a functorial way, and that just as kS is the free 2-rig on one generator, K(kS) is the
free λ-ring on one generator. The 2-rig map

F : kS→ A⊠∞
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gives a λ-ring homomorphism

K(F ) : K(kS)→ K(A⊠∞).

Now we conclude this paper by proving that:

• K(F ) is injective, so its image is isomorphic to K(kS).

• K(A⊠∞) is the ring of formal power series of bounded degree on countably many
variables x1, x2, x3, . . . .

• The image of K(F ) is the ring of ‘symmetric functions’, meaning those formal power
series of bounded degree on countably many variables xi that are invariant under
all permutations of these variables.

It follows that the ring of symmetric functions is the free λ-ring on one generator. This
is, of course, well-known [Haz09], but here we see it as a decategorified spinoff of results
on 2-rigs.

15.1. Theorem. As a graded ring, K(A⊠∞) is isomorphic to the ring of formal power
series of bounded total degree in countably many variables, graded by total degree.
Proof. We calculate K(A⊠∞) graded by grade. We have isomorphisms of abelian groups

K(A⊠∞
m ) ∼= K([N(∞)(m), FinVect])
∼= K

(∏
(mi)∈N(∞)(m)FinVect

)
∼=

∏
(mi)∈N(∞)(m)K(FinVect)

∼=
∏

(mi)∈N(∞)(m)Z
∼= Z[[x1, x2, . . .]]m

where xi represents the isomorphism class [si] of the functor si : N(∞)(1) → FinVect that
takes the sequence (0, . . . , 0, 1, 0, . . .) (with 1 in the ith place) to k, and all other sequences
to 0. By Lemma 15.2, K preserves coproducts. Thus we have

K(A⊠∞) = K(
⊕
m

A⊠∞
m ) ∼=

⊕
m

K(A⊠∞
m ) ∼=

⊕
m

Z[[x1, x2, . . .]]m.

At right we have the graded ring of formal power series of bounded degree in countably
many variables. K(A⊠∞) is isomorphic to this not only as graded abelian group, but as a
graded ring, thanks to our description of the graded 2-rig structure on A⊠∞ near the end
of Section 13.
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In [BMT23, Sec. 6] we explained how taking the Grothendieck group defines a 2-functor

K : CauchLin0 → Ab

where CauchLin0 is the 2-category with

• Cauchy complete k-linear categories as objects,

• k-linear functors as morphisms,

• k-linear natural isomorphisms as 2-morphisms,

and we treat the category Ab of abelian groups as a 2-category with only identity mor-
phisms. In particular we described K as the composite

CauchLin0 CMon Ab
J

K

Z⊗N−

where J sends any Cauchy complete k-linear category to its set of isomorphism classes of
objects, which is a commutative monoid with binary coproduct as addition, and Z⊗N −
is group completion.

15.2. Lemma. K : CauchLin0 → Ab preserves coproducts.
Proof. It is clear that Z⊗N− preserves coproducts. Now we argue that J takes coprod-
ucts in CauchLin0 to coproducts in CMon. For this we must show that given a tuple of
objects (Cα)α∈A in CauchLin, the evident comparison map⊕

α

J(Cα)→ J(
⊕

α

Cα)

is an isomorphism.
To see this, note from Lemma 12.2 that an isomorphism in ⊕

α Cα is a tuple (fα : cα →
dα)α∈A where each fα is an isomorphism in Cα and all but finitely many of the objects
cα, dα ∈ Cα are nonzero. Thus, an element of J(⊕

α Cα) amounts to the same thing as a
tuple ([cα])α∈A where [cα] is an isomorphism class in Cα and all but finitely many of the
objects cα are nonzero. But this is an element of ⊕

α J(Cα), so the comparison map is an
isomorphism.

15.3. Definition. The ring of symmetric functions, Λ, is defined to be the subring
of ⊕

m

Z[[x1, x2, . . .]]m

consisting of elements that are invariant under all permutations of the variables xi.
Thus, we have an inclusion of graded rings Λ ⊆ K(A⊠∞), and using this we can show

Λ is isomorphic to K(kS):
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15.4. Theorem. The 2-rig map F : kS → A⊠∞ induces an injective homomorphism of
λ-rings

K(F ) : K(kS)→ K(A⊠∞)
whose image is Λ.
Proof. The injectivity of K(F ) follows from Lemmas 15.5 and 15.6. Here we show that
the image of K(F ) is Λ.

Let S∞ be the group of all permutations of {1, 2, 3, . . . }. This group acts on the
set N(∞)(m) of sequences of natural numbers whose sum is m. This in turn gives a strict
action of S∞ as automorphisms of the Cauchy complete linear category [N(∞)(m), FinVect],
which by Lemma 13.2 is isomorphic to the mth grade of A⊠∞. By the explicit description
of the graded 2-rig structure on A⊠∞ appearing directly after that lemma, it follows that
these actions on each grade fit together to give a strict action of S∞ on A⊠∞ as graded
2-rig automorphisms. Applying the functor K, this action becomes the action of S∞ on

K(A⊠∞) ∼=
⊕
m

Z[[x1, x2, . . . ]]m

given by permuting variables. The elements of K(A⊠∞) fixed by this action of S∞ are
precisely the symmetric functions.

The object F (x) = s1 ⊕ s2 · · · ∈ A⊠∞ is fixed up to isomorphism by S∞. Since kS
is generated as a 2-rig by x, it follows that every object a in the essential image of F is
fixed up to isomorphism by S∞. It follows that [a] ∈ K(A⊠∞) is fixed by S∞, and is thus
a symmetric function. Thus, the image of K(F ) is contained in Λ.

For the reverse inclusion we can use the Fundamental Theorem of Symmetric Functions
[Mac95, Sec. I.2], which implies that Λ is generated as a ring by the elementary symmetric
functions

en(x1, x2, . . . ) =
∑

i1<···<in

xi1 · · · xin .

Each elementary symmetric function is in the image of K(F ), because

en = [Λn(s1 ⊕ s2 ⊕ · · · )].

Thus, Λ is contained in the image of K(F ).
We state the following lemma in more generality than needed for Theorem 15.4, with

a view to making item (3) in Conjecture 14.2 as weak as possible while still giving an
injection of Grothendieck groups.

15.5. Lemma. Suppose M : R→ S is a 2-rig map with the following properties:

1. M is essentially injective

2. If for some r, r′ ∈ R, s ∈ S we have M(r)⊕ s ∼= M(r′)⊕ s then for some n we have
M(r)⊕ In ∼= M(r′)⊕ In.

Then K(M) : K(R)→ K(S) is injective.
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Proof. Two elements a, b of a commutative monoid A give equal elements a = b in
the group completion A if and only if there exists an element c ∈ A such that a + c =
b + c. Given an element r of a 2-rig R, write [r] for its isomorphism class and [r] for
the corresponding element in K(R). Suppose r, r′ ∈ R have [M(r)] = [M(r′)]. Then
there exists an object s ∈ S such that [M(r)] + [s] = [M(r′)] + [s], or equivalently
[M(r) ⊕ s] = [M(r′) ⊕ s], or equivalently M(r) ⊕ s ∼= M(r′) ⊕ s. Condition (2) implies
M(r) ⊕ In ∼= M(r′) ⊕ In for some n. Since M is a 2-rig map, we have M(r ⊕ In) ∼=
M(r′ ⊕ In). Since M is essentially injective, we have r ⊕ In ∼= r′ ⊕ In, which gives
[r] = [r′] in J(R), which in turn gives [r] = [r′], as desired.

Condition (2) is always true when S is the 2-rig of finitely generated projective modules
of a commutative ring since then every s ∈ S is a summand of a finitely generated free
module In. Condition (2) is implied by the stronger condition one might call ‘cancellability
in the image of M ’:

• If for some r, r′ ∈ R, s ∈ S we have M(r)⊕ s ∼= M(r′)⊕ s then M(r) ∼= M(r′).

This in turn is implied by cancellability in S:

• If for some t, t′, s ∈ S we have t⊕ s ∼= t′ ⊕ s, then t ∼= t′.

This last condition holds in the case of present interest, S = A⊠∞.

15.6. Lemma. If for some t, t′, s ∈ A⊠∞ we have t⊕ s ∼= t′ ⊕ s, then t ∼= t′.
Proof. Since A⊠∞ is the coproduct in CauchLin of its grades A⊠∞

m , it suffices to prove
this grade by grade, where by Lemma 13.2 we can use the isomorphism of Cauchy complete
linear categories

A⊠∞
m
∼= [N(∞)(m), FinVect].

Since coproducts are computed pointwise in [N(∞)(m), FinVect], the desired result then
follows from the corresponding result in FinVect.

A. The fermionic story
Our treatment has largely neglected the role of supersymmetry in the theory of 2-rigs,
which should ultimately be taken into account. Given any Young diagram we can reflect
it across the diagonal and get a new Young diagram, with rows of the original diagram
becoming columns of the new one and vice versa. As we shall see, this reflection symmetry
arises from a kind of involution on kS. This involution switches the two 1-dimensional
irreducible representations of Sn:

7→
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whose corresponding Schur functors are Sn and Λn, respectively. Since Sn and Λn are used
to define the bosonic and fermionic versions of line objects, subline objects, dimension and
subdimension, this suggests that these pairs of concepts should be treated on an equal
footing, but we have not yet done so. As a small step in this direction, here we describe
the free 2-rig on a fermionic subline object, the free 2-rig on a fermionic subline object,
and the involution on kS.

In Theorem 3.1 we saw that the free 2-rig on a bosonic subline object is the monoidal
k-linear category of N-graded vector spaces of finite total dimension, equipped with the
symmetry where Ss,s : s ⊗ s → s ⊗ s is the identity for any 1-dimensional vector space
s of grade 1. But the same monoidal k-linear category also admits another symmetry,
determined by the fact that Ss,s = −1s⊗s. This gives a 2-rig we call Â.

A.1. Theorem. Â is the free 2-rig on a fermionic subline object. That is, given a 2-rig R
containing a fermionic subline object x, there is a map of 2-rigs F : Â→ R with F (s) = x,
and F is unique up to isomorphism.
Proof. As a monoidal k-linear category Â is the same as A, and we again take s to
be any 1-dimensional vector space in grade 1. However the symmetry on Â introduces
a sign change when permuting homogeneous elements of odd degree. Thus, the functor
F : Â→ R defined by

F (V ) =
⊕
n≥0

Vn · x⊗n

is monoidal and k-linear as in Theorem 3.1, but it is symmetric monoidal because the
extra sign in the symmetry of Â matches the sign change that occurs for the symmetry on
x⊗j⊗x⊗k when both j and k are odd. One can also check that F is unique up a monoidal
natural isomorphism.

A.2. Example. Not every fermionic subline object is a subobject of a line object. For
since the tensor product in Â is the usual tensor product of N-graded vector spaces, the
only line object in Â is the tensor unit I. Thus, the fermionic subline object s ∈ Â is not
a subobject of any line object.

There is a similar story for line objects. In Theorem 4.1 we saw that the free 2-rig on
a bosonic line object is the monoidal k-linear category of Z-graded vector spaces of finite
total dimension, with the symmetry where Sℓ,ℓ is the identity for any 1-dimensional vector
space ℓ of grade 1. This monoidal k-linear category admits another symmetry determined
by the fact that Sℓ,ℓ = −1ℓ⊗ℓ. This gives a 2-rig we call T̂.

A.3. Theorem. T̂ is the free 2-rig on a fermionic line object.
Proof. The proof follows the same pattern as that of Theorem A.1.
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We conclude by explaining the ‘supersymmetry’ involution on kS. In [BMT23, Sec.
7] we defined a 2-rig G of Z2-graded Schur objects. The underlying category of G is the
product kS × kS. We write objects of G as C = (C0, C1), and we call C0 and C1 the
bosonic and fermionic parts of C. The tensor product on G is graded tensor product

(C0, C1)⊗ (D0, D1) = ((C0 ⊗D0)⊕ (C1 ⊗D1), (C0 ⊗D1)⊕ (C1 ⊗D0)).

and the symmetry inserts a minus sign when switching two fermionic parts:

(SC,D)0 = SC0,D0 ⊕−SC1,D1 , (SC,D)1 = SC0,D1 ⊕ SC1,D0 .

There is an essentially unique 2-rig map

ϕ− : kS→ G

that sends the generating object x ∈ kS to the graded object (0, x) ∈ G. There is also a
functor

T : G→ kS

sending any object (C0, C1) ∈ G to the direct sum C0 ⊕ C1 ∈ kS, and similarly for
morphisms. This functor T is monoidal and k-linear, but not a 2-rig map because it is
not symmetric monoidal. The composite

Ω = T ◦ ϕ− : kS→ kS

is also a monoidal k-linear functor but not a 2-rig map.
To see that Ω is an involution, and better understand its properties, note from [BMT23,

Thms. 9, 10] that we can identify kS with the category of polynomial species, i.e. functors

F : kS→ FinVect

for which all but finitely many values F (n) are zero. If we describe Ω in these terms, a
calculation shows that we have a natural isomorphism

(ΩF )(n) ∼= det(n)⊗ F (n)

where det(n) is the sign representation of Sn. This shows that Ω sends the object cor-
responding to any Young diagram to the object corresponding to the reflected version of
that Young diagram. Furthermore, since det(n)⊗ det(n) is the trivial representation, we
have

Ω2 ≃ 1kS

as monoidal k-linear functors.
These facts suggest that most of our main theorems should have fermionic analogues.
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B. More on graded 2-rigs
We gave a quick treatment of N-graded 2-rigs in Section B. Here we put the theory of
graded 2-rigs on a firmer and more general footing.

We start with some ordinary algebra. Let M be a commutative monoid with identity
element e. An M -graded vector space is a collection of vector spaces Vm, one for each
m ∈ M ; the category of M -graded vector spaces is a 2-rig. An M -graded algebra is a
monoid with respect to the tensor product ⊗ of this 2-rig; equivalently, an M -graded
algebra R is an M -graded vector space (Rm)m∈M together with linear maps

Rm ⊗Rn → Rmn, k → Re

for all m,n ∈ M , satisfying appropriate associativity and unit conditions. As shown in
Lemma 6.2, the 2-rig of M -graded vector spaces of finite total dimension is equivalent to
the 2-rig of finite-dimensional comodules of the bicommutative bialgebra kM , where the
commutative multiplication is used to give this 2-rig its symmetric monoidal structure.
We can also drop the finite-dimensionality conditions here.

These ideas can be categorified in a straightforward way. For example, we have the
following definition, which we state roughly on a first pass. As before, let M be a commu-
tative monoid with unit e. We define an ‘M -graded 2-rig’ R to be a collection of Cauchy
complete linear categories Rm, one for each m ∈M , together with linear functors

Rm ⊠ Rn → Rmn, FinVect→ Re

for all m,n ∈ M , together with appropriate associators and unitors satisfying the usual
coherence laws in a symmetric monoidal category.

A deeper approach is to categorify the notion of comodule over a bialgebra, and
describe gradings in terms of 2-comodules over 2-bialgebras. Interestingly, just as M -
graded vector spaces are the same as comodules of the bialgebra kM , M -graded Cauchy
complete linear categories turn out to be the same as 2-comodules of the 2-bialgebra kM .

To pursue this approach, we must recall from [BMT23, Sec. 3] that the 2-category
CauchLin is symmetric monoidal with the tensor product ⊠ described in the proof of
Lemma 15 of that paper. A symmetric pseudomonoid in (CauchLin,⊠) is the same as
a 2-rig.

Schäppi proved that given symmetric pseudomonoids R and R′ in a symmetric monoidal
2-category, there is a natural way to make their tensor product R ⊠ R′ into a symmetric
pseudomonoid that is the coproduct of R and R′ [Sch14, Thm. 5.2]. He showed this con-
struction gives a symmetric monoidal 2-category of symmetric pseudomonoids, which is
cocartesian in the 2-categorical sense. Applying this construction to (CauchLin,⊠), it
follows that (2-Rig,⊠) is cocartesian symmetric monoidal. Alternatively we can treat ⊠
as the product in 2-Rigop, which is cartesian symmetric monoidal.

B.1. Definition. A 2-bialgebra B is a pseudomonoid in (2-Rigop,⊠). We say a 2-
bialgebra B is cocommutative if this pseudomonoid is symmmetric.
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More concretely, a 2-bialgebra is a 2-rig B equipped with linear functors called a
comultiplication δ : B → B ⊠ B and counit ε : B → FinVect obeying the laws of a
bialgebra up to coherent linear natural isomorphisms.

Next we introduce 2-comodules of 2-bialgebras. In general, any pseudomonoid M in a
symmetric monoidal 2-category (K,⊠) induces a pseudomonad −⊠M on the underlying
2-category K. Similarly, a pseudomonoid M in (Kop,⊠) induces a pseudomonad − ⊠ M
on Kop, which we can also call a ‘pseudocomonad’ on K. In particular, any 2-bialgebra
B induces a pseudocomonad −⊠ B on CauchLin.

B.2. Definition. A 2-comodule of a 2-bialgebra B is a pseudocoalgebra of the pseudo-
comonad −⊠ B on CauchLin.

Unpacking this a bit, a 2-comodule of a 2-bialgebra B is a Cauchy complete linear
category C equipped with a linear functor called a coaction

η : C→ C ⊠ B

obeying the usual axioms for a comodule up to ‘coassociator’ and ‘right counitor’ natural
isomorphisms that obey versions of the pentagon and unitor equations.

We will be especially interested in 2-comodules that are also 2-rigs, where η and the
other structures just mentioned are compatible with the 2-rig structure. We can define
these ‘2-rig 2-comodules’ as follows. Suppose B is a 2-bialgebra. Then − ⊠ B defines a
pseudocomonad, not only on CauchLin, but on 2-Rig.

B.3. Definition. A 2-rig 2-comodule of a 2-bialgebra B is a pseudocoalgebra of the
pseudocomonad −⊠ B on 2-Rig.

In other words, a 2-rig 2-comodule of B is a 2-rig R that is a 2-comodule of B for which
the coaction

η : R→ R ⊠ B
is a morphism in 2-Rig and the coassociator and right counitor are 2-morphisms in 2-Rig.

B.4. Example. For a commutative monoid M , the 2-rig kM discussed in Lemma 6.2
acquires a 2-bialgebra structure from the diagonal ∆: M →M ×M and the map to the
terminal commutative monoid, ! : M → 1. The diagonal induces the comultiplication δ
on kM given by the composite

kM k(M ×M) kM ⊠ kMk∆

δ

∼

where the equivalence comes from the proof of Lemma 6.4. The map to the terminal
commutative monoid induces the counit ε on kM given by the composite

kM k1 FinVectk!

ε

∼
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The resulting 2-bialgebra kM is cocommutative.
We may thus make the following definitions for any commutative monoid M :

B.5. Definition. An M -graded Cauchy complete linear category is a 2-comodule
of kM .

B.6. Definition. An M -graded 2-rig is a 2-rig 2-comodule of kM .
It is worth spelling out these definitions in a more down to earth way.

B.7. Lemma. For a Cauchy complete k-linear category C to be M-graded is equivalent to
it being equipped with Cauchy complete k-linear subcategories Cm, one for each m ∈ M ,
such that the inclusions im : Cm → C induce an equivalence in CauchLin:⊕

m∈M

Cm
∼−−→ C.

Proof. For a Cauchy complete k-linear category C to be M -graded means that it is
equipped with a coaction

η : C→ C ⊠ kM.

There is an equivalence of Cauchy complete k-linear categories

α : C ⊠ kM
∼−−→

⊕
m∈M

C

given as the composite

C ⊠ kM
∼−−→ C ⊠ (

⊕
m∈M

FinVect) ∼−−→
⊕

m∈M

(C ⊠ FinVect) ∼−−→
⊕

m∈M

C.

We denote the composite of η and α by η′:

C C ⊠ kM
⊕

m∈M

C.η

η′

α

This map η′ is an equivalent, more tractable version of the comultiplication η.
Composing η′ and the projection πm : ⊕

m∈M C → C, we obtain a linear functor
pm : C → C which takes any object or morphism of C to its homogeneous component
in degree m:

C
⊕

m∈M

C C.
η′

pm

πm

We define Cm to be the full image of pm, which is a Cauchy complete k-linear subcategory
of C.
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By definition of the functors pm, the map η′ takes an object c ∈ C to the tuple
(pm(c))m∈M . Thus, the linear functor

θ : C −→
⊕

m∈M

Cm

c 7→ (pm(c))m∈M

followed by the evident inclusion

ι :
⊕

m∈M

Cm →
⊕

m∈M

C

is isomorphic to η′:
η′ ∼= ι ◦ θ.

We now show that θ is an equivalence of Cauchy complete linear categories. We do
this by introducing the linear functor

σ :
⊕

m∈M

C −→ C

(cm)m∈M 7→
⊕

m∈M

cm

and showing that σ ◦ ι is a pseudo-inverse of θ: that is, an inverse up to linear natural
isomorphism.

To show that σ ◦ ι is a left pseudo-inverse of ι ◦ θ, consider the following diagram:
⊕

m∈M

Cm

C C ⊠ kM
⊕

m∈M

C

C ⊠ FinVect

C

ι

η

1

θ η′

1⊠ ε

α
∼

σ

∼

where C ⊠ FinVect ∼−→ C is the right unitor in CauchLin. Because C is a comodule of
kM , the triangle at left involving the coaction η of kM on C and the counit ε of kM
commutes up to an isomorphism called the ‘counitor’. The triangle at right commutes up
to isomorphism thanks to the description of the counit ε in Example B.4. We have already
seen that the two triangles involving η′ commute up to isomorphism. The diagram thus
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shows that σ is a left pseudo-inverse of ι ◦ θ. In terms of our concrete formulas for these
functors, this fact says precisely that for c ∈ C there is a natural isomorphism

c ∼=
⊕

m∈M

pm(c).

In a similar way we can use the coassociator for the coaction of kM on C to show
σ ◦ ι is a right pseudo-inverse of θ. To begin with, note using Example B.4 that the linear
functor

1 ⊠ δ : C ⊠ kM → C ⊠ kM ⊠ kM

induced by the comultiplication δ of kM corresponds to the map

∆:
⊕

m∈M

C→
⊕

(m,n)∈M×M

C

that sends the tuple (cm) to (δmncm)(m,n). Again exploiting the equivalence α, the coas-
sociator gives a natural isomorphism filling in this square:

C
⊕

m∈M

C

⊕
n∈M

C
⊕

(m,n)∈M×M

C.

η′

η′
∆

⊕
n∈M

η′

This directly translates to an M ×M -indexed array of natural isomorphisms

δmnpm(c) ∼= pmpn(c).

In other words, pmpm(c) ∼= pm(c) and pmpn(c) ∼= 0 if m ̸= n. We then obtain, for
(cm)m∈M ∈

⊕
m pm(C), a series of isomorphisms

(θ ◦ σ ◦ ι)(cm)m∈M
∼= θ(⊕

m cm) (definition of σ, ι)
∼= (pn(⊕

m cm))n∈M (definition of θ)
∼= (⊕

m pn(cm))n∈M (pn preserves finite coproducts)
∼= (cn)n∈M (cm ∈ pm(C), pnpm

∼= 0 if n ̸= m,
pmpm

∼= pm)

so that σ ◦ ι is a right pseudo-inverse of θ.
Conversely, suppose C is equipped with Cauchy complete k-linear subcategories Cm,

one for each m ∈M , such that the inclusions im : Cm → C induce an equivalence

C ≃
⊕

m∈M

Cm.
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We wish to define a coaction η of kM on C. To do this, let pm : C→ Cm be the projections
onto these summands, and define η′ : C→ ⊕

m∈M C by

η′(c) = (pm(c))m∈M .

Define η : C→ C ⊠ kM by
η = β ◦ η′

where β is any pseudo-inverse of the equivalence

α : C ⊠ kM
∼−→

⊕
m∈M

C

defined earlier. To make η into a coaction of kM on C, we use the natural isomorphism

c ∼=
⊕

m∈M

pm(c)

to provide a counitor, and use the natural isomorphisms

pmpn(c) ∼=
{
pn(c) if m = n

0 if m ̸= n

to prove a coassociator, reversing the constructions above. Finally, one can check that the
counitor and coassociator obey the required coherence laws, and that this construction is
inverse to the one described earlier, up to equivalence.

B.8. Lemma. For a 2-rig R to be M-graded is equivalent to it being equipped with Cauchy
complete k-linear subcategories Rm, one for each m ∈M , such that the inclusions im : Rm →
R induce an equivalence in CauchLin:⊕

m∈M

Rm
∼−−→ R

and the tensor product and unit of R respect this decomposition:

⊗ : Rm ⊠ Rn → Rm+n, I ∈ R0.

Proof. Since an M -graded 2-rig R is an M -graded Cauchy complete k-linear category,
we get a decomposition

R ≃
⊕

m∈M

Rm

as in Lemma B.7. Using the fact that the coaction η of kM on R is a 2-rig map, one can
show that

⊗ : Rm ⊠ Rn → Rm+n, I ∈ R0.

Conversely, any 2-rig equipped with this extra structure can be made into a 2-comodule
of kM as in Lemma B.7. Using the fact that the tensor product and unit of R respect the
grading, we can make the coaction η into a 2-rig map.
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B.9. Example. Any commutative 2-bialgebra B is a 2-rig 2-comodule of itself, with its
comultiplication δ : B → B ⊠ B as the coaction. We saw in Example B.4 that for any
commutative monoid M , the 2-rig kM is a commutative 2-bialgebra. Thus kM is an
M -graded 2-rig.

B.10. Example. Recall from Theorem 6.5 that the free 2-rig on a bosonic subline is
A ≃ kN. It follows that 2-rig 2-coalgebras over A are the same as N-graded 2-rigs. By
Example B.9, A itself is an N-graded 2-rig.

To see how various 2-rigs studied in this paper are N-graded, we can exploit their
universal properties.

B.11. Example. The canonical N-grading on the free 2-rig on one generator, kS, comes
from the coaction

kS→ kS ⊠ A
that is the unique 2-rig map sending the generator x to x⊗ s, where s is the generating
bosonic subline object of A. The nth grade of kS is precisely the k-linear Cauchy comple-
tion of xn, or in other words, the linear category kSn of finite-dimensional representations
of Sn.

This grading induces a filtration of kS where the nth stage of the filtration is kS≤n,
consisting of finite coproducts (within kS) of objects belonging to any grade kSm with
m ≤ n. We have already seen this filtration play an important role in Theorem 11.4,
which is a key step toward the splitting principle.

B.12. Example. Each 2-rig A⊠N has a unique N-grading

γN : A⊠N → A⊠N ⊠ A

taking each generating bosonic subline si of A⊠N to the subline si ⊗ s ∈ A⊠N ⊠ A. From
this point of view, the 2-rig map

ϕN : A⊠(N+1) → A⊠N ,

which sends si to itself for 1 ≤ i ≤ N and sN+1 to 0, is actually a map of graded 2-rigs,
since each path through the square

A⊠(N+1) A⊠(N+1) ⊠ A

A⊠N A⊠N ⊠ A

γN+1

ϕN ϕN⊠1

γN

takes si to si ⊗ s for 1 ≤ i ≤ N and takes sN+1 to 0.
By a similar argument, the 2-rig map kS → A⊠N sending x to s1 ⊕ · · · ⊕ sN also

preserves the grading. This is essentially the map we called B ◦ A in Section 9:

kS Rep(M(N, k)) Rep(kN) ≃ A⊠NA B
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We conclude with a more speculative notion, suggested by the idea that kS is the
‘true’ categorification of the polynomial algebra k[x], since kS is the free 2-rig on one
generator just as k[x] is the free k-algebra on one generator. It might play a natural role
in extensions of the current work.

B.13. Definition. Let C be a Cauchy complete linear category. A Young-grading on
C is a 2-comodule structure on C over the 2-bialgebra kS, where the comultiplication is
the co-operation identified as ‘comultiplication’ in [BMT23, Thm. 4.4].

The idea would be that for each Young diagram D, there is a corresponding homoge-
neous component of C in ‘degree’ D.
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