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FOAMS, ITERATED WREATH PRODUCTS, FIELD EXTENSIONS
AND SYLVESTER SUMS

MEE SEONG IM AND MIKHAIL KHOVANOV
(WITH AN APPENDIX BY LEV ROZANSKY)

Abstract. Certain foams and relations on them are introduced to interpret functors
and natural transformations in categories of representations of iterated wreath prod-
ucts of cyclic groups of order two. We also explain how patched surfaces with defect
circles and foams relate to separable field extensions and Galois theory and explore a
relation between overlapping foams and Sylvester double sums. In the appendix, joint
with Lev Rozansky, we compare traces in two-dimensional TQFTs coming from matrix
factorizations with those in field extensions.
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1. Introduction

The goal of this work is to explore possible interactions between the theory of decorated
2-dimensional complexes and parts of representation theory of finite groups, Galois theory
and the theory of resultants. We refer to decorated 2-dimensional complexes as foams,
usually imposing local structure requirements on these foams, including labeling of its
zero, one, and two-dimensional facets and the presence of defects, such as zero and one-
dimensional defects on facets and one-dimensional defects on seams of a foam.

The existence of foam interpretation has been missing from these fields, and the present
paper is a largely informal introduction to such an interpretation. This approach can be
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motivated by the multitude of biadjoint functors present in these theories, existence of
many interesting natural transformations between compositions of these functors, and
possibility to form exterior tensor products (i.e., via the direct product of groups). To-
gether, these properties hint at an interpretation of natural transformations between the
suitable functors in the above theories via two-dimensional topological structures with
additional decorations and singularities.

Induction and restriction functors between categories of representations of finite groups
are biadjoint and natural transformations between their compositions have a graphical
presentation via systems of oriented arcs and circles in the plane, see [Kh3]. In these
diagrams regions are labeled by finite groups and lines by inclusions of groups. More
generally, two-sided adjoint functors have a graphical interpretations via isotopies of arcs
in the plane [Kh1, La1, La2, KL, KQ].

In Section 2 we explain how such planar diagrams can be refined to foams when some
of the groups have a direct product decomposition. Sections 3 and 4 treat a special case
when the groups are iterated wreath products of the symmetric group S2 (equivalently,
cyclic group C2).

Iterated wreath products have been extensively studied in the last several decades. For
some background on wreath products, see, for example, [Me, Chapter 1] and [Ro, Chapter
7]. For representation-theoretic aspects of wreath products, see [Ke, CST, OOR, IW1,
IW2, IO]. Natural transformations between compositions of induction and restriction
functors between iterated wreath products of S2 can be depicted by suitable foams. Facets
of this foam labeled n correspond to the n-th iterated wreath product group Gn, the group
of symmetries of a full binary tree of depth n. Seams correspond to the induction and
restriction for the inclusion Gn×Gn ⊂ Gn+1 as an index two subgroup. Graphical calculus
for these foams and its relation to representation theory of Gn are developed in Sections 3
and 4.

These foams are different from SL(N) or GL(N) foams. The latter are commonly
used in link homology and categorification. In particular, they can be used to describe
the Soergel category [RWe, We, RW2] and to construct GL(N) link homology via foam
evaluation [Kh2, RW1]; they also appear in categorified quantum groups [QR].

In Section 5, we explain how automorphisms of a commutative Frobenius algebra
give rise to a decorated two-dimensional topological quantum field theory (2D TQFT)
with defect circles. A further refinement is sometimes possible, along the lines of Tu-
raev’s homotopy quantum field theories (QFTs) [Tu1, Tu2, MS], Landau–Ginzburg orb-
ifolds [IV, BH, BR, LS, KW], and orbifolded Frobenius algebras [Ka]. We describe a useful
way to encode a representation of the fundamental group of a surface, Poincaré dual to
the standard description. We explain that surfaces in decorated TQFTs that come from
separable field extensions and the standard trace on them admits a straightforward eval-
uation.

Section 6 contains a couple of curious connections of foams to Galois theory and to
polynomial interpolation. Suppose given a degree N irreducible polynomial f(x) over a
ground field k with the maximal for that degree Galois group Gal(F/k) ∼= SN , where F
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Figure 2.1: Oriented cups and caps natural transformations, for induction and restriction
between H- and G-modules, with H ⊂ G a finite index subgroup.

is the splitting field. In Section 6.1 we identify F and suitable intermediate fields of the
extension with state spaces of MOY theta-webs, upon a base change from the symmetric
functions to k via coefficients of f(x). In Section 6.5 we interpret the Sylvester double
sums [Sy] that describe subresultants and related identities and expressions in the field of
polynomial interpolation [DHKS, DKSV, KSV] via evaluation of overlapping foams.

In the appendix (Section 7), written jointly with Lev Rozansky, we connect evalua-
tions of closed surfaces in 2D TQFTs that come from matrix factorizations and Landau–
Ginzburg models with the ones discussed in the present paper coming from field exten-
sions. The connection is given by the formula (89) and depicted in Figure 7.2. It allows to
express the field extension evaluation via that for the Landau-Ginzburg model, showing
that the latter is at least as informative as the former.

Acknowledgments. The authors are grateful to Johan De Jong, Louis-Hadrien Robert,
Alvaro Martinez Ruiz and Lev Rozansky for valuable discussions. The authors also thank
the extremely thorough reports from the anonymous referee. M.S.I. was partially sup-
ported by Naval Academy Research Council (NARC) at Annapolis, MD, and M.K. was
partially supported by NSF grants DMS-1807425, DMS-2446892 and Simons Collabora-
tion Award 994328 while working on this paper.

2. Foams and representation categories of direct products of groups

2.1. Diagrammatics of induction and restriction. Given an inclusion of finite
groups H ⊂ G (or, more generally, an inclusion with H of finite index in G) and a
ground field k, induction and restriction functors IndGH and ResHG between categories of
kH-modules and kG-modules are biadjoint, that is, adjoint on both the left and the
right. Diagrammatics of biadjoint functors for induction and restriction of finite groups
is explained in [Kh3, Section 3.2] and in [Kh1, La2, KL, KQ] in general. Natural trans-
formations between compositions of these functors can be depicted by planar diagrams of
arcs and circles in the plane with regions labeled by G and H in a checkerboard fashion.

Biadjointness can be encoded by four natural transformations that can be depicted by
the four oriented cup and cap diagrams in Figure 2.1. Biadjointness is equivalent to the
isotopy invariance of diagrams or arcs and circles built from these diagrams, and the four
generating isotopy relations are shown in Figure 2.2.
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Figure 2.2: Biadjointness isotopy relations on compositions of cups and caps.
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Figure 2.3: Left: functor F . Middle: identity map idF : F ⇒ F . Right: natural
transformation α : F ⇒ F ′.

Further extension of this construction adds diagrammatics for induction and restriction
between many finite groups and additional diagrams for functor isomorphisms and other
natural transformations between compositions of these functors [Kh3, Section 3.2].

The induction functor and, more generally, a functor F : kH−mod −→ kG−mod, for
finite groups H and G, can be depicted by a dot on a horizontal line, with intervals to
the right and left of the dot labeled by H and G, respectively, see Figure 2.3 left. The
identity natural transformation idF of F is depicted by a vertical line in the plane, see
Figure 2.3 middle. A natural transformation α : F ⇒ F ′ between two such functors is
depicted by a dot on a vertical line, with intervals below and above the dot labeled by F
and F ′, respectively, see Figure 2.3 right.

In these considerations, it is natural to restrict to functors F that admit biadjoint
functors, that is, there exists a functor F which is both left and right adjoint to F ,
with biadjointness isomorphisms fixed. This allows to add “cup” and “cap” diagrams,
their compositions and suitable isotopies to our graphical calculus, see for instance [Kh3,
Section 3.2] as well as the discussion of isotopies and biadjointness in [Kh1, La1, La2]
and [KQ, Chapter 7].

2.2. Extending to foams. Starting from the planar diagrammatics of induction and
restriction functors for finite groups one easily makes one step to its extension to foam
diagrammatics for these functors, once direct products of groups are used.

Suppose that group H is the direct product, H ∼= H1 × H2. Then suitable endo-
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Figure 2.4: Diagrams of natural transformations α1, α2 and of their exterior tensor prod-
uct.

functors and natural transformations between them in the category of H-modules can be
reduced to exterior tensor products of those in categories of H1-modules and H2-modules.
Diagrammatically, the H-plane that carries information about natural transformations of
endofunctors in the category of kH-modules is converted into two parallel planes, one for
each term H1, H2 in the direct product.

For instance, a natural transformation αi : Fi −→ F ′
i between endofunctors Fi, F

′
i in

the category of Hi-modules can be depicted by a dot on a vertical line in the Hi-plane, see
Figure 2.4 left, for i = 1, 2. Bottom and top endpoints of the vertical line denote functors
Fi and F

′
i , respectively.

Then the natural transformation

α1 ⊠ α2 : F1 ⊠ F2 ⇒ F ′
1 ⊠ F ′

2

between endofunctors in the category of H1×H2-modules can be depicted by placing the
two diagrams in parallel next to each other, see Figure 2.4 right.

When some of the groups are direct products, diagrammatic presentation of functors
and their compositions as sequences of dots on a line can be refined to presentations via
suitable graphs that come with a projection on a line. Suppose we are given an inclusion
of groups H1×H2 ⊂ G. Denote the induction functor IndGH1×H2

from H1×H2-modules to
G-modules by a vertex with H1, H2 lines flowing in and G line flowing out, see Figure 2.5
left. The restriction functor is depicted by having a G-line split into H1 and H2 lines, see
Figure 2.5 middle. One can then build diagrams for compositions of these functors, see
Figure 2.5 right, for instance. These graphs come with projections onto R1, to keep track
of the order of composition of functors.

Natural transformations between these compositions can be naturally depicted by
foams that extend between such diagrams. First off, identity natural transformation
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Figure 2.5: Diagrams of the induction (a) and restriction (b) functors. Diagram (c) is a
composition of one restriction, one permutation, and one induction functor, going from
the category of G×H2-modules to that of H2 ×G-modules. The composition is depicted
and read from right to left.

from the induction functor to itself (respectively, from the restriction functor to itself)
is depicted by the direct product foam, the graph depicting this functor times the unit
interval [0, 1], see Figure 2.6.

G

H1

H2

IndGH1×H2
ResH1×H2

G

G

H1

H2

Figure 2.6: Identity natural transformations on induction and restriction functors
IndGH1×H2

and ResH1×H2
G , respectively.

Singular lines in these foams are referred to as seam lines. A natural transformation
a from the induction functor to itself may be denoted by a dot on a seam line, labeled a,
see Figure 2.7 left, and likewise for an endomorphism of the restriction functor. A central
element c ∈ Z(kG) in the center Z(kG) of the group algebra kG is denoted by a dot
floating in a facet G labeled c, see Figure 2.7 right.



1026 MEE SEONG IM AND MIKHAIL KHOVANOV (APPENDIX BY LEV ROZANSKY)

G

H1

H2

IndGH1×H2

a
c

G

Figure 2.7: Left: natural transformation a, an endomorphism of the induction functor.
Right: central element c of kG.

G V G V

V

G G γ

V1

V2

G G

Figure 2.8: Left: notation for the functor V ⊗ − of the tensor product with V . Middle:
identity natural transformation on V ⊗−. Right: natural transformation γ: V1 ⊗− −→
V2 ⊗−.

The functor V ⊗− of the tensor product with a representation V of G is denoted by a
dot on a line, with label V and the regions to the sides of the dot labeled G, see Figure 2.8
left. Identity natural transformation V ⊗− ⇒ V ⊗− is depicted by a vertical line (defect
or seam line) labeled V , see Figure 2.8 middle. A homomorphism γ : V1 −→ V2 of G-
modules induces a natural transformation V1 ⊗− −→ V2 ⊗− of the functors V1 ⊗− and
V2 ⊗ −, which we also denote by γ; it is depicted by a dot on a defect line for V , see
Figure 2.8 right, with the defect line label changing from V1 to V2.

3. Foams for the iterated wreath products of S2’s

3.1. Iterated wreath products of S2’s. For some background on the wreath prod-
uct, see [CST, OOR, IW1, IW2, IO]. Denote by Gn the n-th iterated wreath product of
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Figure 3.1: Tree T4.

the symmetric group S2. It can be defined as the group of symmetries of the full binary
tree Tn of depth n. This binary tree has a root, 2n leaf vertices, and all paths from the root
to leaf vertices have length n. The tree Tn has 2n+1 − 1 vertices. The leaf vertices can be
naturally labeled from 1 to 2n inductively on n so that the vertices of the left branch are
labeled by 1 through 2n−1 and those of the right branch are labeled by 2n−1 + 1 through
2n. See Figure 3.1 for the case when n = 4.

For small values of n, the group Gn has the following form:

� G0 = {1} is the trivial group,

� G1 = S2 is the symmetric group of order two,

� G2 = S2 ≀ S2 = (S2 × S2)⋊ S2 has order 8 and is isomorphic to the dihedral group
D4.

Note that group Gn has order 22
n−1.

The group Gn has an index two subgroup naturally isomorphic to Gn−1×Gn−1, which
we also denote by

G
(1)
n−1 := Gn−1 ×Gn−1

ιn−1

↪−−→ Gn. (1)

The embedding consists of symmetries that fix the two branches of the tree, one to the
left and the other to the right, of the root. The inclusion of this subgroup is denoted by
ιn−1. There is a coset decomposition

Gn = G
(1)
n−1 ⊔G

(1)
n−1 βn = G

(1)
n−1 ⊔ βnG

(1)
n−1, (2)
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where βn is the involution that transposes the left and right branches of Tn. Notice the
coincidence of left and right cosets

(Gn−1 ×Gn−1) βn = βn (Gn−1 ×Gn−1),

which holds for cosets of any index two subgroup. In particular, the left and right cosets
are also double cosets. Furthermore, for g1, g2 ∈ Gn−1,

(g1, g2) βn = βn (g2, g1),

that is, moving through βn switches the order of the two terms in the product Gn−1×Gn−1.

Denote by τ the transposition involution of G
(1)
n−1 = Gn−1 ×Gn−1,

τ(g1, g2) := (g2, g1), g1, g2 ∈ Gn−1. (3)

Then
τ(g) = βn g βn, g ∈ G

(1)
n−1. (4)

By induction on n, we can canonically identify Gn with a subgroup of the symmetric
group S2n . When n = 0, both G0 and S20 = S1 are the trivial group. For the induction
step, given an inclusion jn−1 : Gn−1 ↪→ S2n−1 , we realize Gn ⊂ S2n as the subgroup
generated by:

� permutations of {1, . . . , 2n−1} in Gn−1,

� permutations of {2n−1+1, . . . , 2n} in Gn−1 (obtained by shifting all indices by 2n−1),

� permutation βn = (1, 2n−1 + 1)(2, 2n−1 + 2) · · · (2n−1, 2n).

Here we inductively identify βn ∈ Gn with its image in S2n . The subgroup G
(1)
n−1 is

given by products of permutations of the first and the second type on the above list. As
we have already mentioned, it is a normal subgroup of index 2, with {1, βn} a set of coset
representatives.

3.2. A description of the center of Gn. The center of Gn is an order two subgroup,

Z(Gn) = {1, cn}, cn := (1, 2)(3, 4) · · · (2n − 1, 2n). (5)

Define G
(k)
n−k as the subgroup (Gn−k)

×2k ⊂ Gn given by permutations that fix all nodes
of the full binary tree at distance at most k−1 from the root. There is a chain of inclusions

{1} = G
(n)
0 ⊂ G

(n−1)
1 ⊂ . . . ⊂ G

(2)
n−2 ⊂ G

(1)
n−1 ⊂ G(0)

n = Gn. (6)

Each inclusion
G

(k+1)
n−k−1 ⊂ G

(k)
n−k (7)

is that of an index 22
k
normal subgroup, with the quotient isomorphic S×2k

2 .
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Figure 3.2: Diagrams for natural biadjointness transformations. Letters R and I stand
for restriction and induction functors, respectively.

3.3. Induction and restriction bimodules. We denote kGn, viewed as a bimodule
over itself, by (n). Denote kG

(1)
n−1 := k(Gn−1×Gn−1) by (n−1, n−1) and even by (n−1)(1),

to further compactify the notation, and extend these notations to tensor products of
bimodules. For instance

(n)(n−1)(1)(n) := kGn ⊗kG
(1)
n−1

kGn,

is naturally a kGn-bimodule.

Using notations from [Kh1, Section 3.2], we write down the biadjointness maps:

1. αnn−1 : (n)(n−1)(1)(n) −→ (n), where x⊗ y 7→ xy, x, y ∈ (n) = kGn,

2. γnn−1 : (n− 1)(1) −→ (n−1)(1)(n)n(n)(n−1)(1) , where x 7→ x⊗ 1 = 1⊗ x, x ∈ (n− 1)(1),

3. αn−1
n : (n−1)(1)(n)n(n)(n−1)(1)

∼= (n−1)(1)(n)(n−1)(1) −→ (n − 1)(1) takes g ∈ (n) to

pn−1(g) ∈ (n− 1)(1) by pn−1(g) =

{
g if g ∈ (n− 1)(1),

0 otherwise.

4. γn−1
n : (n) −→ (n)(n−1)(1)(n), where x 7→ 1⊗ x+ βn ⊗ βnx, and x ∈ (n).

These four bimodule maps (or morphisms of functors) are represented by the four diagrams
in Figure 3.2.

3.4. Proposition. These four natural transformations turn functors Inn−1 and R
n−1
n into

a cyclic biadjoint pair.

We refer the reader to [Kh1, Section 3.2] for details, in the general case of a finite index
subgroup. In particular, planar isotopy relations between compositions of these cups and
caps hold, see Figure 2.2, where the general case of H ⊂ G of finite index is shown.

For our specific case, we have obvious relations in Figure 3.3.

We now refine these planar diagrams to a foam description for these and related
intertwiners between compositions of induction and restriction functors Inn−1 and Rn−1

n .
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(n− 1)1

n
=

(n− 1)1

(n− 1)1

n

= 2

n

Figure 3.3: Some simple relations on diagrams.

n + 1 n

n

In+1
n

n + 1

n

n

Rn
n+1

n + 1

n

n

n + 1

n

n

Figure 3.4: Induction and restriction functors In+1
n , Rn

n+1 (top figures) and identity natural
transformation on them (bottom figures).

We denote the induction and restriction functors by trivalent vertices in graphs as shown
in Figure 3.4 left.

Identity natural transformations for these functors are shown in Figure 3.4 right. The
four biadjointness transformations are shown in Figure 3.5.

Biadjointness relations translate into the isotopy properties of foam glued from these
four foams. One out of four possible isotopy relations is shown in Figure 2.2.

3.5. Mackey induction-restriction formula and decomposition of Ind-Res
functor. To the transposition automorphism τ of Gn−1,n−1 taking g1 × g2 to g2 × g1, we
associate kGn−1,n−1-bimodule B12 given by kGn−1,n−1 with the left action twisted by τ .
Denote by T12 the invertible endofunctor of kGn−1,n−1−mod given by tensoring with B12.
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n
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Figure 3.5: The four biadjointness transformations for Inn−1, R
n−1
n .

n + 1
n

n

n

n

≃
n

n ⊕ n

n

Figure 3.6: Diagrams for the three functors in (8).

3.6. Proposition. There is a canonical decomposition of functors

Rn−1
n ◦ Inn−1

∼= Id⊕ T12. (8)

Diagrams for the three functors in this isomorphism are shown in Figure 3.6. In
Figure 3.7, we describe the direct sum decomposition via foams.

Proof. The composition Rn−1
n ◦ Inn−1 is given by tensoring with the Gn−1,n−1-bimodule

kGn. The proposition follows from the Mackey induction-restriction formula. Namely,
Gn decomposes as the disjoint union of two (Gn−1,n−1, Gn−1,n−1)-cosets. One of them
is Gn−1, giving the identity functor as a direct summand of Rn−1

n ◦ Inn−1. The other is
Gn−1τGn−1. The latter coset is represented by the transposition of the two copies of Gn−1

in Gn−1τGn−1, corresponding to the bimodule B12 above and the functor T12.

The direct sum decomposition property translates into the following relations:

y1x1 + y2x2 = idRI ,

x1y1 = id, x2y2 = id,
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x1

x2

y1

y2

n
n

n
n

Figure 3.7: Maps (foams) describing the direct sum decomposition in (8).

x1y2 = 0, x2y1 = 0.

Foam equivalents of these relations are shown in Figure 3.8.

Here and in the rest of the paper the reader should keep in mind that our foams are
pictures, in a sense, but guided by topological interpretations.

When depicted in R3, the foams for the maps x2, y2 are immersed, and contain “over-
lap” or “intersection” lines or seams. Using the biadjointness of the induction and restric-
tion functors, these immersed foams can be converted into foams in Figure 3.9, depicting
mutually-inverse natural transformations, denoted ℓ(βn) and ℓ(βn)

′, respectively, between
functors Rn−1

n and T12R
n−1
n .

Reflecting these diagrams about the yz-plane gives dual (biadjoint) mutually-inverse
natural transformations between the functors Inn−1 and Inn−1T12. Figures 3.10 and 3.11
depict relations that these two maps are mutually-inverse isomorphisms.

Endpoints of immersion seams can move freely along the (n, n − 1)-seam lines, see
Figure 3.12. Deforming intersecting facets of these foams embedded in R3 gives a number
of obvious relations, one of which is shown in Figure 3.13.

Together, these relations allow to reduce the number of immersion points along an
(n, n−1)-seam to one or none. If such a seam closes into a disk which carries no additional
decorations, it can then be reduced to either two parallel planes (top left relation in
Figure 3.8), if the original number of immersion endpoints along a seamed circle is even,
or to 0 (either one of the middle row relations in Figure 3.8), if the number of immersion
endpoints along a seamed circle is odd.

Functor T12 is just the permutation functor, induced by the transposition of two copies
of the group Gn−1 in the direct product, and satisfies the relations

T12T12 = id, T12T23T12 = T23T12T23.
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=

x1y1 = id

=

x2y2 = id

= 0

x1y2 = 0

= 0

x2y1 = 0

= +

idRI = y1x1 + y2x2

Figure 3.8: Direct sum decomposition relations.

Rn−1
n

ℓ(βn)

T12R
n−1
n Rn−1

n

ℓ(βn)
′

T12R
n−1
n

Figure 3.9: Intersection seams giving mutually-inverse functor isomorphisms T12R
n−1
n

∼=
Rn−1
n .
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=

Figure 3.10: Relation ℓ(βn)
′ℓ(βn) = id allows one to undo an immersion seam that goes

out and back into an (n, n− 1)-seam.

=

Figure 3.11: Relation ℓ(βn)ℓ(βn)
′ = id cancels two adjacent immersion points on an

(n, n− 1)-seam.

= =

Figure 3.12: Deforming an immersion seam and moving its endpoint.
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=

Figure 3.13: An isotopy of immersed surfaces in R3. Intersection lines are shown in red.

Figure 3.14: Reidemeister moves on immersed foams.

The corresponding relations on immersed foams are given in Figure 3.14. The last relation
is induced by a foam with three facets and a triple intersection point of these facets, where
three intersection seams meet. Also see [CS98, Figure 12].

For a seam C that is closed into a circle and bounds a disk D, as in the two top rows of
Figure 3.8, consider the number m of immersion points on it (points where a red segment
ends). Using the above relations preserving the parity of m we can reduce the foam to
have at most one immersion point along C. From Figure 3.8 relations we then see that a
diagram evaluates to 0 if m is odd. If m is even, diagram can be simplified to one without
C and disk D, and immersion endpoints along C matched in pairs.

There are also obvious isotopy relations, some of which can be obtained from Figure 2.2
by substituting a direct product H1 ×H2 for H and converting diagrams into foams, see
also [Kh3].

3.7. Central elements and bubbles. Recall that the center Z(Gn) ∼= S2 is the
symmetric group of order two, with the nontrivial element cn = (1, 2)(3, 4) · · · (2n−1, 2n).
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n
=

Figure 3.15: The central element cn and a relation on it: the square of the dot is the
identity.

n
= 2

n

n
=

n n
= 2

n

Figure 3.16: The simplest relations on c-bubbles. Top row: the value of the empty bubble
is 2 using the composed map x 7→ x + β2

nx = 2x, where x ∈ kGn, in Section 3.7 (here,

we do not multiply by c
(1)
n−1 since there are no defects and βn is the involution β2

n = 1).
Second row, left: a dot can be placed anywhere on the bubble. Second row, right: we use
the fact that c2n = 1; also see Figure 3.15.

Via the inclusion ιn−1 this element can be defined inductively as cn = ιn−1(cn−1 × cn−1).
We denote cn by a dot on a facet labeled n, see Figure 3.15 left. Square of the dot is the
identity, see Figure 3.15 right. Element cn can also be thought of as an endomorphism of
the identity functor on kGn−mod.

The center Z(kGn) is a commutative algebra with a basis parametrized by conjugacy
classes of Gn. Iterating the bubbles and dots construction allows us to construct various
elements of the center.

As a first example, taking an n-facet, we can create an (n− 1)-bubble on it and insert
a dot into one or both facets of the bubble, see Figures 3.16 and 3.17.

To compute the corresponding central elements, we factor these foams into a com-
position of elementary foams and compute the corresponding natural transformations.
For instance, bubble with a single dot is a composition of three elementary foams, see
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n

Figure 3.17: An example of the composition kGn → kGn ⊗ kG
(1)
n−1 ⊗ kGn → kGn.

Figure 3.17.

These three foams are local singular maximum and minimum, and adding a dot to a
facet. The corresponding bimodule map is composition

kGn
γn−1
n→ kGn ⊗n−1 kGn

cn−1×1−→ kGn ⊗n−1 kGn

αn
n−1→ kGn,

where ⊗n−1 denotes the tensor product over the subalgebra kG
(1)
n−1 and γ

n−1
n and αnn−1 are

given by formulas (1) and (4), see also Figure 3.5.

For x ∈ kGn we compute the composition

x 7→ 1⊗ x+ βn ⊗ βnx 7→ 1⊗ c
(1)
n−1x+ βn ⊗ c

(1)
n−1βnx 7→ c

(1)
n−1x+ βnc

(1)
n−1βnx.

This endomorphism of the identity functor is the multiplication by the central element

c
(1)
n−1 + βnc

(1)
n−1βn = c

(1)
n−1 + c

(2)
n−1 = cn−1 × 1 + 1× cn−1

(where we skipped the inclusion map ιn), also implying the first relation in Figure 3.16.
Another easy computation gives the second relation in Figure 3.16.

Iterating the bubble construction, one can produce more general central elements of
the group algebra kGn. One can keep splitting some facets of the bubble into thinner
facets and placing dots on some of these facets. An example is shown in Figure 3.18, with
the foam there describing the central element

c
(1)
n−2 + c

(2)
n−2 + c

(3)
n−2 + c

(4)
n−2. (9)

Here c
(i)
n−2 stands for the i-th copy of cn−2 in the direct product G⊗4

n−2 ⊂ Gn.

4. Defect lines and networks

4.1. Tensoring with induced representations. Here, k denotes the trivial repre-
sentation of H.
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n
n− 1

n− 2

n− 1

n− 2

n
n− 1

Figure 3.18: A more complicated bubble describing a central element. The middle cross-
section of this bubble is shown on the right.

4.2. Lemma. Let H ⊆ G be a subgroup, and M a G-module. There is a natural in M
isomorphism

IndGH ◦ ResHG (M)
∼→ IndGH(k)⊗M. (10)

Consequently, the composition of restriction and induction functors is isomorphic to the
functor of tensor product with the induced representation IndGH(k).

Proof. Define the map

φ : kG⊗kH M → (kG⊗kH k)⊗k M, g ⊗m 7→ (g ⊗ 1)⊗ gm. (11)

The module on the left is IndGH ◦ResHG (M), the one on the right is IndGH(k)⊗M . The map
is a module map, natural in M .

Conversely, let ψ : (kG⊗kH k)⊗kM → kG⊗kHM be given by (g⊗1)⊗n 7→ g⊗g−1n.
One can easily check that φ and ψ are inverses.

Thus H ⊆ G being a subgroup of G,

IndGH ◦ ResHG ≃ V G
H ⊗− (12)

is an isomorphism of functors. We denote by VG
H := IndGH(k) the induced representation

of G.

Isomorphism φ of functors can be represented by an invertible trivalent vertex in
Figure 4.1 going two marks on a dashed line, representing composition of induction and
restriction functors, to a single mark, labeling the tensor product functor. The inverse
isomorphism can be represented by a reflected diagram.

Although char(k) ̸= 2 is sufficient, we assume that char(k) = 0. So representations of
finite groups over k are completely reducible. Given a subrepresentation V ⊆ VG

H , choose
an idempotent endomorphism eV ∈ End(VG

H) of projection on V . Although the diagram-
matic calculus is not rich enough to have these idempotents built-in, it can be described
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Ind Res

G H G ≃
VG
H

Ind Res

G H G

VG
H

Figure 4.1: Left: diagrammatic notations for the two functors. Right: a vertex to denote
their isomorphism.

G
G

VG
H

VG
H

eV

Figure 4.2: Idempotent eV on the endomorphism of VG
H .

by a box labeled eV on the vertical line depicting the identity natural transformation of
the functor VG

H ⊗−, see Figure 4.2.

The quotient group Gn/G
(1)
n−1 is the symmetric group S2, and its two-dimensional

regular representation, viewed as a representation of Gn, will be denoted V1. The latter
representation is the induced from the trivial representation of G

(1)
n−1,

V1 ∼= IndGn

G
(1)
n−1

(k).

We depict the corresponding isomorphism of functors in Figure 4.3.

nn

n− 1

n− 1
Ind Res

≃ n n
V1

Figure 4.3: Functor isomorphism.
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βn
G

G

V1

=

Figure 4.4: Foam representation of the endomorphism of the functor V1 ⊗− ∼= Ind ◦ Res
given by multiplication by βn. Two lines on thin facets are used to better depict these
facets.

βn

βn G

G

V1

=
G

G

V1

Id

Figure 4.5: β2
n = 1, and endomorphism of V1 it induces squares to identity.

Recall the involution βn = (1, 2n−1 + 1)(2, 2n−1 + 2) · · · (2n−1, 2n) ∈ Gn at the end of
Section 3.1. Under the quotient map, βn becomes the nontrivial element of S2, which
we may also denote β

n
. Multiplication by βn is an involutive endomorphism of V1, see

Figures 4.4 left and Figure 4.5. Figure 4.4 right describes the foam that represents the
corresponding endomorphism of Ind ◦Res, under its isomorphism with the tensor product
functor. The foam consists of a flip between two (n − 1) facets, with the intersection
interval shown in red.

Relation β2
n = 1 translates into the foam identity in Figure 4.6 that can be obtained

as a composition of Figure 3.13 and 3.10 relations.

4.3. Foams for idempotents and basic relations on them. Idempotents e+ =
1+βn

2
and e− = 1−βn

2
in the group algebra kGn give corresponding idempotents, also

denoted e+, e−, in the quotient algebra kS2
∼= EndGn(V1). These idempotents produce

direct summands of representation V1, the trivial and the sign representations, that we
denote V+ and V−, so that

V1 ∼= V+ ⊕ V−.

Note that V+ ∼= k, which is our two notations for the trivial representation.

Under functor isomorphism V1⊗− ∼= Ind◦Res these idempotents become idempotents
in the endomorphism algebra of the latter functor, also denoted e+ and e−. In the foam
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β2
n

=

Id

Figure 4.6: Equality of foams corresponding to the relation β2
n = 1 (as endomorphisms of

Ind ◦ Res functor).

e+

+ =
1

2

Id

+

βn

Figure 4.7: Idempotent e+ =
1 + βn

2
.

notation, we represent these idempotents in End(Ind ◦ Res) by disks, green and blue,
respectively, that intersect two opposite seam lines, with labels + and −, respectively, see
Figures 4.7 and 4.8.

Some of the obvious relations

1 = e+ + e−, e+e− = e−e+ = 0, e2+ = e+, e2− = e−

are shown in Figures 4.9, and 4.10. Figure 4.11 shows how to convert from a planar to a
foam representation of the identity endomorphism of V−, also see Section 4.4.

Figure 4.12 shows two more immediate foam relations or simplifications for these
idempotent disks. Figure 4.13 and 4.14 relations now follow.

The last relation implies the relation in Figure 4.15. Converting into the language of
tensoring with representations, we can interpret it as saying that functor isomorphisms
between tensoring with V− ⊗ V− and V+ given by the two tubes at the top and bot-
tom halves of Figure 4.15 left are mutually-inverse on one side. Consequently, they are
mutually-inverse on the other side as well, as shown in Figure 4.16, which can also be de-
rived directly. Note that multiple blue disks along the tube in that figure can be reduced
to a single one, via Figure 4.10 top row. Similarly, multiple green disks along a tube can
be reduced to a single one, see Figure 4.10 top row.
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e−

− =
1

2

Id

−

βn

Figure 4.8: Idempotent e− =
1− βn

2
.

Id

= +

e+

+

e−

−

Figure 4.9: The sum of two idempotents e+ and e− gives the identity foam.

e2−

−
− =

e−

−

e2+

+

+ =

e+

+

e+e−

−
+ = 0

Figure 4.10: Top left: idempotency relation e2− = e− via foams. Top right: idempotency
relation e2+ = e+ via foams. Bottom: orthogonality relation e+e− = 0 via foams.
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n n−

−

=
n

e−

−
n

n− 1

Figure 4.11: Converting from the planar to the foam presentation of the identity endo-
morphism of V−.

n
+ =

n n

−
= 0

Figure 4.12: Left equality: symmetrizer e+ is the projection onto the trivial representa-
tion; the foam interpretation is shown. The second equality follows from the Figure 3.10
relation. Note also the absence of homs between the trivial and the sign representations.

n n

n

n− 1

−−

−

= 0

Figure 4.13: The only hom between irreducible representations V−⊗V− ∼= V+ and V− is 0.
This equality can also be checked by expanding three blue disks and canceling the terms.
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n n

n

n− 1

−−

=

n

−

Figure 4.14: This relation follows by expanding the “neck” on top left as in Figure 4.9
and applying relations in Figures 4.12 and 4.13.

n

n
n− 1

−
−

=

n

− −

Figure 4.15: Foam equivalent of Figure 4.20 relation.

n

n

n− 1

−

= n

Figure 4.16: Horizontal circles indicate that the two (n − 1)-facets on the left picture
constitute a 2-torus inside the foam. Figure 4.10 relation allows to duplicate the e−-disk,
if desired. Compare with Figure 4.21 below.



FOAMS, ITERATED WREATH PRODUCTS, FIELD EXTENSIONS, SYLVESTER SUMS1045

Gn

Gn

V−

Figure 4.17: The sign representation V− corresponds to the idempotent e− = (1− βn)/2.

The group G
(1)
n−1 acts trivially on V− and βn acts by −1.

Gn

Gn

V−

Id
Gn

Gn

V+

Id

= Gn

Id

Figure 4.18: V− is the sign and V+ is the trivial representation. Left: the identity endo-
morphism of the sign representation (and of the corresponding functor V−⊗•). Right: the
identity endomorphism of the trivial representation. Lines representing the identity map
of the trivial representation can be erased, simultaneously with removing dots denoting
V+ on dashed lines.

4.4. Simplified (planar) notation.Much simpler (and conventional) diagrammatics

for representations of S2 ≃ Gn/G
(1)
n−1 are shown in Figures 4.17, 4.18, 4.19, 4.20, and

4.21. Lines for the identity endomorphism of the trivial representation can be erased, see
Figure 4.18. We are essentially left with the sign representation V− and isomorphisms
given by a cup and a cap between its tensor square and the trivial representation.

To convert between the two presentations, we need to replace V− lines in the second
diagrammatics by tubes spanned by one or more blue “minus” disks, see Figure 4.22 for
the conversion of the “cap” morphism.

The correspondence on the level of objects is further clarified in Figure 4.23, with blue
dot denoting the sign representation and the green dot the trivial representation (when
it is convenient to keep track of the latter).

4.5. Dihedral groups. Consider the two diagrams in Figure 4.24. Each of them de-
scribes a summand of a composition of restriction and induction functors. In the di-
agram on the left, we first restrict from Gn to Gn−1 × Gn−1, then further restrict to
Gn−2 × Gn−2 × Gn−1. After that we induce back to Gn. The “minus” idempotent is
applied for the composition of restriction and induction between Gn−1 and Gn−2 ×Gn−2.
In the diagram on the right, a similar functor is described, but the inner induction and
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V− V−

V+ V− V−

V+

Figure 4.19: Mutually-inverse isomorphisms between V− ⊗ V− and the trivial representa-
tion V+ since V− ⊗ V− ≃ V+.

V− V−

V− V−

=

V− V−

V− V−

IdV−⊕V−

Figure 4.20: Composition of the two isomorphisms is the identity.

=

Id

Figure 4.21: Composition of isomorphisms is the identity.

V− V−

⇐⇒
n

n
n− 1

− −

Figure 4.22: This correspondence represents the isomorphism V ⊗2
−

∼= V+ given by a foam.
Two e− disks may be reduced to one, see Figure 4.10.
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n− 1

−
:=

n− 1

−
n− 2

n− 1

+
:=

n− 1

+
n− 2

Figure 4.23: Compact notations for idempotents e− and e+. For the equality on the right,
the right hand side is isomorphic to the identity functor.

n
−

≃
−

Figure 4.24: A functor isomorphism.

restriction is for the other factor of the product Gn−1 ×Gn−1.

4.6. Proposition. The isomorphism in Figure 4.24 holds.

Proof. This is easily proven algebraically. The diagrammatic interpretation of mutually-
inverse isomorphisms between these functors are given by the foam in Figure 4.25 and its
reflection about the xy-plane.

Denote by V the functor given by the diagram on the left of Figure 4.24.

The quotient group Gn/G
(2)
n−2 is naturally isomorphic to the dihedral group D4 of

symmetries of the square,
Gn/G

(2)
n−2

∼= D4. (13)

−

−
Figure 4.25: Foam for the functor isomorphism in Figure 4.24. The blue line depicts the
identity endomorphism of the “blue point” functor (direct summand of the induction-
restriction functor isomorphic to V−⊗−). The black line on the other thin facet is drawn
to help see the facet. The two thin facets intersect along the red interval.
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■

1 2 3 4

⇒

1

23

4
■

Figure 4.26: An identification of symmetries of a depth 2 full binary tree with those of a
square. Nodes 1, 2, 3, 4 of the tree are mapped to vertices of the square.

The quotient map
Gn/G

(2)
n−2 −→ Gn/G

(1)
n−1

∼= S2 (14)

corresponds to the homomorphism D4 −→ S2 where to a symmetry of D4 one associates
the induced permutation of the two diagonals. Thinking of the quotient group Gn/G

(2)
n−2

as all symmetries of a full binary tree of depth 2, to get the homomorphism we map the
tree to the square so that the two depth one branches correspond to the diagonals of the
square, see Figure 4.26.

Denote by V the unique (up to isomorphism) two-dimensional irreducible representa-
tion of D4, given by its action by isometries on R2.

4.7. Proposition. Under the above group isomorphism, the functor of tensor product
with V is isomorphic to the functor V given in Figure 4.24.

Proof. Functor V is a direct summand of the composition Ind ◦ Res for restricting from
Gn to the subgroup Gn−2 × Gn−2 × Gn−1 and inducing back. In D4, the corresponding
subgroup is H − {1, (34)}. The complement to V in the above functor is Ind ◦ Res for

the subgroup G
(1)
n−1 (since the complement is given by putting the “plus” label on the dot

in Figure 4.24 left and “+” labels may be erased). Thus, the complementary functor is
isomorphic to the direct sum of tensoring with the trivial V+ and the sign representation
V−.

The composition functor of restriction then induction for the subgroup H in D4 is
isomorphic to the functor of the tensor product with the four-dimensional representation
k[D4/H]. It is easy to decompose this representation into the direct sum

k[D4/H] ∼= V ⊕ V+ ⊕ V−, (15)

using characters (in characteristic 0, see the table below) or directly (as long as char(k) ̸=
2).

So far we have accounted for the fundamental representation V of D4 and two one-
dimensional representations: the trivial V+ and the sign representation V−, on which the
normal subgroup {1, (12), (34), (12)(34)} acts trivially.
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Denote the remaining two one-dimensional representations of D4 by V−+ and V−−. On
V−+ generators (12) and (1324) act by −1, and on V−− generators (12) and (13)(24) act
by −1. Also see Figure 4.34.

The table below lists the characters of the five irreducible representations of D4 and
of representation k[D4/H].

1 (12) (12)(34) (1324) (13)(24)

V 2 0 −2 0 0
V+ 1 1 1 1 1
V− 1 1 1 −1 −1
V−+ 1 −1 1 −1 1
V−− 1 −1 1 1 −1

k[D4/H] 4 2 0 0 0

Consider the endofunctor V ′ in the category of Gn-modules given by the diagram in
Figure 4.27 left. This functor is a direct summand of the composition of restriction toG

(2)
n−2

then induction back to Gn functor. The latter composition is isomorphic to the tensor
product with the 8-dimensional representation k[Gn/G

(2)
n−2]. The minus idempotents on

both thin edges pick out a direct summand functor given by the tensor product with a
two-dimensional representation.

One way to understand functor V ′ is by computing the composition V ◦ V , see Fig-
ure 4.29. The computation uses the relations in Figure 4.30. The square V2 decomposes
as the sum of two functors,

V2 ∼= (Indnn−1 ◦ Resn−1
n )⊕ V ′ ∼= (V+ ⊗ ∗)⊕ (V− ⊗ ∗)⊕ V ′, (16)

since Indnn−1 ◦Resn−1
n is isomorphic to the functor of tensoring with V+ ⊕ V−. At the same

time, we have decomposition of tensor product of representations

V ⊗ V ∼= V+ ⊕ V− ⊕ V−+ ⊕ V−−, (17)

(tensor square of the fundamental D4 representation V is the sum of the four irreducible
one-dimensional D4 representations).

Thus, functor V ′ is isomorphic to the functor of tensoring with V−+ ⊕ V−−,

V ′ ∼= (V−+ ⊕ V−−)⊗ ∗. (18)

The foam that transposes the two thin edges of this diagram, together with the minus
dots on them, see Figure 4.27, is an endomorphism of the diagram of order two. The
two idempotents (symmetrizer and antisymmetrired) made off this endomorphism give
functors isomorphic to functors of tensor product with V−+ and V−−, respectively.
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−

−

−
−

−
−

Figure 4.27: Left: An endofunctor V ′ of Gn−mod. Right: an order two endomorphism
β′ of V ′ (the flip). Symmetrizing or antisymmetrizing via β′ decomposes V ′ into a direct
sum of two functors.

n

n
≃

⊕
Figure 4.28: Direct sum decomposition of Res◦ Ind into the identity and the transposition
functors, see Proposition 3.6 and Figure 3.6.

− −
≃

− −

≃
− −

⊕
− −

≃
⊕ −

−

≃
⊕ −

−
Figure 4.29: We apply relations in Figures 4.28 and 4.30 to decompose the square of the
functor V . Figure 4.28 relation is applied inside the dotted red rectangle.

− − ≃ ≃

Figure 4.30: Left: tensor square of V− is the trivial representation, V ⊗2
−

∼= V+. Right:
functor isomorphism Ind ◦ T12 = Ind, where T12 is the transposition, given by Figure 3.9
foams reflected in the vertical plane.
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−

−
≃ (V−+

⊕
V−−) ⊗ ∗

Figure 4.31: Functor V ′ is isomorphic to the functor of tensoring with V−+ ⊕ V−−.

Figure 4.28 gives a direct sum decomposition of Res ◦ Ind as the identity and the
transposition functors, and Figure 4.31 shows that functors V ′ and tensoring with V−+ ⊕
V−− are isomorphic.

Each of the five irreducible D4-representations: trivial rep V+, sign rep V−, fundamen-
tal two-dimensional representation V and the two other one-dimensional representations
V−+, V−− can be described by a suitable graph, together with an idempotent linear com-
bination of foams assigned to it. The graphs together with the idempotents, in our
notations, are shown in Figure 4.32.

The computation in Figure 4.29, together with direct decompositions for the two terms
at the bottom line of the figure, can be translated into the direct sum decomposition (17)
for the tensor square V ⊗2. Decompositions of tensor products of other pairs of irreducible
representations of D4 can be derived in a similar way. For instance, an isomorphism
V ⊗ V− ∼= V can be related to the identity in Figure 4.33 and a similar identity obtained
by reversing the order of the two halves of the left picture and changing the right hand
side to the identity natural transformation of the functor Res ◦ Ind ◦ Res. This provides
a foam interpretation and lifting of decompositions of tensor products of irreducible D4-
representations.

4.8. Rooted trees and higher depth representations. Consider the chain of
inclusions

Gn ⊃ G
(1)
n−1 ⊃ G

(2)
n−2 ⊃ . . . ⊃ G

(n)
0 = {1}.

In particular, Gn/G
(1)
n−1 ≃ S2, the symmetric group of order 2, and Gn/G

(2)
n−2 ≃ D4, the

dihedral group of order 4. To describe irreducible representations of D4 via foams we had
to use foams that go between n-facets but in the middle may have facets of thickness n−2
(a dot labeled − on an (n−1)-facet, as in Figure 4.32, requires descending to (n−2)-facets
to define it).

Let us say that a representation of Gn has depth k if the subgroup G
(k)
n−k acts non-

trivially on it, while G
(k+1)
n−k−1 acts trivially. To create functors of tensoring with depth

k representations using foams, apply enough restriction functors to get from a line of
thickness n to a line of thickness n − k − 1 in at least one location of the diagram, and
then go back to a single line of thickness n. Denote the resulting graph by Γ. There is
a composition F (Γ) of restriction and induction functors associated with Γ, and F (Γ) is
isomorphic to tensoring with a suitable induced representation W of Gn. One can then
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n

n− 1

V

=
k+ + −k−

−

−

symmetric

+

V−+

−

−

antisymmetric

−

V−−

Figure 4.32: This figure lists foam idempotents for all 5 irreducible representations of
D4 ≃ Gn/G

(2)
n−2. Top to bottom and left to right, these correspond to representations V

(fundamental), V+ (trivial), V− (sign), V−+ and V−−, respectively.

n

− =

Id

n

Figure 4.33: The two vertical halves of the image on the left are mutually inverse isomor-
phisms.
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−

− −

−

+ +

+

+ +

+

− −

+

+ −
≃

+

− +

Figure 4.34: Above are the labeled trees corresponding to the irreducible representations
of the dihedral group D4, with the labeling as in [OOR]. Representations corresponding to
these trees, going from left to right, are V−−, V−, V+, V−+, V , respectively. The rightmost
two labeled trees are isomorphic via the swap at the root of the tree.

introduce some idempotent e ∈ End(F (Γ)) given by a linear combination of foams with
boundary Γ on bottom and top. Idempotent e defines a direct summand of F (Γ) as well
as a direct summand of W once an isomorphism between F (Γ) and W ⊗− is fixed.

Irreducible representations of the wreath product G ≀ Sn over an algebraically closed
field, where G is a finite group, was studied by Kerber [Ke, Chapter 2] and the represen-
tations of the wreath product G ≀ H of two permutation groups G and H are discussed
in Meldrum [Me]. The irreducible representations of the (iterated) n-th wreath product
Gn over a field k of characteristic different from 2 were classified by Orellana, Orrison,
and Rockmore [OOR, Proposition 3.1], as a special case of their classification of iterated
wreath products of the cyclic group Cm, for m = 2. Their classification gives a bijection
between isomorphism classes of irreducible representations and isomorphism classes of
complete binary trees of depth n−1 with vertices labeled by signs +,− and an additional
assumptions that at each vertex v labeled by the minus sign − the standard symmetry
βk, see Section 3.1, applied to the subtree at the vertex v, preserves signs of vertices.

When depth n = 2, the five labeled trees corresponding to irreducible representations
of the dihedral group D4

∼= G2 are shown in Figure 4.34.

Let us write an irreducible representation of D4 in the notation of [OOR] as V (βαγ),
where α, β, γ ∈ {+,−}. The two-dimensional irreducible representation is V (++−) which
corresponds to the tree on the left in Figure 4.35, By [OOR], notation V (+−−) cor-
responding to the labeled tree on the right in Figure 4.35 does not correspond to any
representation since there is a minus sign at the root; if there is a minus sign at the
root, then the two subtrees must be identical, via a swap of the subtrees that preserves
the order of lowest nodes (from left to right). If the sign at the root is +, then the two
subtrees do not need to be identical. So the irreducible representations of the dihedral
group D4 are given in Figure 4.34. Note that V (++−) ≃ V (−++) since the two subtrees
are canonically isomorphic (via a swap at the root of the tree).

4.9. Remark. Consider the profinite limit

Ĝ = lim
n→∞

Gn. (19)

The profinite limit has an open subgroup isomorphic to (Ĝ)×2n , with the quotient Gn,
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α

β γ

−

+ −

Figure 4.35: A labeled tree of height 1, where α, β, γ ∈ {+,−}. The labeled tree on the
right corresponds to the notation +−−.

for each n ≥ 1. One can then consider foams as above without any restrictions on the
number of times a facet can be split into a pair of “thinner” facets. Such foams will encode
natural transformations between induction and restriction functors for suitable inclusions
between direct products of groups Ĝ.

5. Patched surfaces, separable extensions, and foams

5.1. Defect circles and Frobenius algebra automorphisms.

5.1.1. Commutative Frobenius algebras and 2D TQFTs. A commutative Frobe-
nius algebra A over a field k is a commutative k-algebra together with a nondegener-
ate linear functional (trace map) ε : A −→ k. Algebra A is necessarily finite dimen-
sional. Such algebra gives rise to a two-dimensional TQFT, a tensor functor F from
the category of oriented two-dimensional cobordisms to the category of k-vector spaces,
see [Ab, Kc1, Kc2, LP]. This functor F associates A⊗k to the 1-manifold which is the
union of k circles. To the generating morphisms cup, cap, pants, copants, and transpo-
sition, it associates the unit, counit (trace), multiplication, comultiplication maps and
transposition of factors in A⊗2, respectively, see Figure 5.1.

Given A, two-dimensional cobordisms can be refined by allowing elements of A, which
are represented by dots, to float on surfaces. Functor F is extended to such cobordisms
by associating to a tube with a dot labeled by a ∈ A the multiplication map ma : A −→
A,ma(b) = ab. Dots a, b floating on a component may be merged into a single dot ab.
Dots can also be called 0-dimensional defects.

A closed surface of genus g (possibly with elements of A floating on it) evaluates to
an element of k. One way to compute the evaluation and, more generally, simplify the
topology of the cobordism (at the cost of working with linear combinations of cobordisms)
is via the neck-cutting relation. That is, pick a basis x1, . . . , xn of A and let y1, . . . , yn be
the dual basis, with ε(xiyj) = δi,j for 1 ≤ i, j ≤ n. Then a tube can be “cut” to a sum of
decorated cups and caps, see Figure 5.2, right.

The neck-cutting relation can be written algebraically:

IdA =
n∑
i=1

xiε(yi∗), or a =
n∑
i=1

xiε(yia), a ∈ A. (20)
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cup (unit)

i : k → A

cap (trace)

ε : A→ k

pants

m : A⊗ A→ A

copants

∆ : A→ A⊗ A

transposition

P : A⊗2 → A⊗2

Figure 5.1: Generating cobordisms are taken by F to the structure maps of A: identity
ι : k −→ A, trace ε : A −→ k, multiplication m : A⊗2 −→ A, comultiplication ∆ : A −→
A⊗2 and the transposition of factors in the tensor product P : A⊗2 −→ A⊗2.

This decomposition of the identity map for a commutative Frobenius algebra can be found
in [KQ, Chapter 2, page 16]. Its analogue for noncommutative Frobenius algebras has a
similar form but requires cobordisms with inner boundary and corners, see [IK, Section
3.1, Figure 3.1.8].

5.1.2. Defect lines and Frobenius automorphisms. An automorphism σ of A is
called a Frobenius automorphism or an ε-automorphism if ε ◦ σ = ε as maps A −→ k.
The second way of referring to σ may be preferable to avoid possible confusion with
the Frobenius endomorphism of commutative rings in finite characteristic. The group of
ε-automorphisms may be denoted G(A) or G(A, ε), to emphasize dependence on ε.

Two-dimensional TQFT F may be further refined by adding one-dimensional defects

a

A

A

a
ε(a)

F
=

n∑
i=1

yi

xi

Figure 5.2: Left: a dot labeled a on a tube goes to multiplication by a map ma : A −→ A.
Middle: a 2-sphere dotted by a evaluates to ε(a). Right: the neck-cutting relation, where
{xi}i and {yi}i are dual bases of A relative to ε.
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σ = σ−1

σ

a =

σ

σ(a)

Figure 5.3: Dot crossing a defect circle. If crossing in the opposite direction, b will become
σ−1(b).

σ

a =
σ(a)

σ

a =
σ−1(a)

σ

=

Figure 5.4: Defect circle σ around dot a without coorientation evaluates to dot σ(a).

to surfaces. These defects are co-oriented circles labeled by ε-automorphisms of A. An
example is worked out in [KR2, Section 2.2].

Functor F is extended to such cobordisms with defects. It takes a circle labeled σ on a
tube with upward coorientation to the map σ : A −→ A, see Figure 5.3. Coorientation of a
circle may be reversed simultaneously with replacing σ by σ−1. Given that the underlying
surface is oriented, co-orientation of a circle on it induces an orientation on the circle and
vice versa, so it is also possible to describe this setup via oriented rather than co-oriented
circles.

A dot labeled a may cross over a defect line σ simultaneously with changing its label
to σ(a), see Figure 5.3. An innermost circle around a dot a reduces to the dot σ±1(a)
depending on its coorientation, see Figure 5.4. An innermost circle not containing any
dots can be removed, since σ(1) = 1, see Figure 5.4.

Two parallel defect lines labeled σ1, σ2, co-oriented in the same direction can be con-
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σ2

σ1
= σ1σ2

σ σ

=
σ

σ

Figure 5.5: Left: merging two parallel circles into one. Right: Merging and splitting
circles with the same label.

σsurgery
circles

∑
i,j yj

yi
xj

xi

Figure 5.6: Separating defect lines into different connected components via neck-cutting.

verted to a single line labeled σ1σ2, see Figure 5.5.

Suppose we are given an oriented closed surface S with A-labeled dots and G(A, ε)-
labeled defect circles. Evaluation F(S) ∈ k is multiplicative under disjoint union of
surfaces so we can assume S is connected. To evaluate S, we do two surgeries (neck-
cutting) on each side of each defect line in S to reduce S to a linear combination of
products of dotted spheres with a single defect line and dotted surfaces, see Figure 5.6
and Figure 5.7. Each connected component of genus g > 0 can be further simplified via
neck-cutting into a linear combination of dotted 2-spheres, see Figure 5.7 right.

To evaluate a sphere with a σ-defect and dots x, y on it, as in Figure 5.8 center, we
can push one of the dots across σ-circle into the region with the other dot, remove the
circle (since it now circles an empty region), multiply the dots and apply the trace, see

y

x
σ

∑
ω

ω

z

Figure 5.7: Left: a 2-sphere with a single defect circle and two dots. Right: reducing
higher genus components via neck-cutting.
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σ−1(y) x

F

ε(σ−1(y)x)

y

x

σ

y σ(x)

F

ε(yσ(x))

Figure 5.8: Two ways to evaluate a sphere with a σ-defect circle give the same answer
since σ is an ε-automorphism, ε(σ−1(y)x) = ε(yσ(x)).

σ
n∑
i=1

xi

yi

σ =
n∑
i=1

ε(xiσ(yi)) = tr(σ)

Figure 5.9: Torus with an essential σ-defect circle evaluates to tr(σ). Note that tr(σ) =
tr(σ−1) in view of Corollary 5.8.

Figure 5.8. Since σ respects ε, the two ways of doing it result in the same answer.

We record this as a proposition and denote the resulting evaluation of a decorated
surface S as ⟨F ⟩ of F(S).

5.2. Proposition. A closed oriented surface S with floating A-dots and co-oriented dis-
joint σ-circles for σ ∈ G(A, ε) has a well-defined evaluation F(S).

Proof. The evaluation of S is outlined above, via surgeries on both sides of each σ-circle,
and then evaluating surfaces decorated by dots and 2-spheres decorated by a σ-circle and
x, y, as in Figure 5.7. The only invariance to check, modulo commutative Frobenius
algebra axioms, is that for pushing a dot labeled y across a σ-circle, which is done in
Figure 5.8.

5.3. Example. A dotless 2-torus T with a non-contractible σ-defect circle evaluates to
the trace of σ onA, see Figure 5.9. For example, tr(σ) = λ+2+λ−1 for the automorphism σ
on A given by (30) and (31) below since 1, a, b, ab have eigenvalues 1, λ, λ−1, 1, respectively.

More generally, given a decorated cobordism C between one-manifolds, neck-cutting
and consequent evaluation reduces its image under F to a linear combination of dotted
cup and cap cobordisms, see Figure 5.10, where we assume that one-manifolds are not
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a
σ1
σ2

b c
d

σ3 ∑
ω

λω ω3 ω4

ω1 ω2

Figure 5.10: Reducing a decorated cobordism to a linear combination of cups and caps,
by neck-cutting near each boundary circle and evaluating closed components.

decorated. Such a decorated cobordism between unions of circles induces a linear map
A⊗k0 −→ A⊗k1 , where k0, k1 is the number of bottom and top boundary circles of C.
In this way, the original two-dimensional TQFT associated to (A, ε) allows an extension
with these decorations. This TQFT associated A⊗k to a union of k undecorated circles.

5.3.1. State spaces of decorated 1-manifolds. One can use the language of uni-
versal constructions, see [Kh4, BHMV] and references there, to extend the evaluation
F(S) for closed decorated surfaces S to state spaces of one-manifolds that inherit decora-
tions from surfaces. Namely, a generic codimension one submanifold of S may intersect
σ-circles in finitely-many points. Local intersection information at such point consists of
a co-orientation and choice of σ.

Vice versa, to a union L of circles with co-oriented σ-dots, one can assign the state
space F(L) as follows. Start with a k-vector space Fr(L) with a basis of oriented decorated
surfaces S with ∂(S) ∼= L, one for each equivalence class of rel boundary homeomorphisms,
see Figure 5.11. These surfaces contain co-oriented σ-intervals, σ-circles and A-dots.
Denote by [S] the basis element for the surface S.

Two decorated surfaces S1, S2 with ∂S1
∼= ∂S2

∼= L can be glued together along the
common boundary resulting in a closed decorated surface denoted S2S1, see Figure 5.12.

Define a bilinear form ( , ) on Fr(L) by

([S1], [S2]) = F(S2S1). (21)

This bilinear form is symmetric. Define the state space of L as the quotient of Fr(L) by
the kernel of this bilinear form:

F(L) := Fr(L)/ker(( , )). (22)

This is an example of universal construction of topological theories [Kh4, BHMV], and
this construction strategy has been applied in many different situations. Any decorated
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L
σ1 σ2 σ2 σ1

σ1 σ2 σ2 σ1σ3 ∂S = L

S

Figure 5.11: Decorated 1-manifold L and decorated surface S with ∂(S) = L.

σ σ

a S1

S2

σ σ

b c

σ

a S2S1

b c

Figure 5.12: Gluing surfaces S1 and S2 along the common boundary.

oriented two-dimensional cobordism S induces a map

F(S) : F(∂0S) −→ F(∂1S) (23)

given by composing a cobordism representing an element in F(∂0S) with S.

In general, the state spaces F(L) are not multiplicative under disjoint union, and there
are only inclusions

F(L1)⊗F(L2) ⊂ F(L1 ⊔ L2). (24)

Due to the neck-cutting formula, which can be applied only if the cutting circle is disjoint
from σ-circles, there is a restrictive case of multiplicativity,

F(L ⊔ S1) ∼= F(L)⊗F(S1), (25)

where S1 denotes an undecorated circle. State spaces F(L) are trivial for many decorated
one-manifolds L, for instance if the endpoint labels σ cannot be matched in pairs, keeping
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σ−1

σ
σ σ−1

σ

σ−1

Figure 5.13: Left and center: co-orientation and σ ↔ σ−1 flip along a seam. Right: There
is an even number of flips along a σ-circle, even if σ = σ−1.

track of co-orientations. Here, it is convenient to at least allow co-orientation reversal
together with changing σ to σ−1. Such a reversal (or flip) may happen anywhere along a
defect circle or line. Along a defect circle, the total number of reversals must be even, so
that locally along a circle there is a well-defined co-orientation, with flips along reversal
points, see Figure 5.13.

In general, we do not know much about the state spaces F(L) for collections of dec-
orated circles as above. Furthermore, it would be natural to look for extensions of these
theories to networks, where lines labeled σ and τ can merge into a line labeled στ , as we
now explain.

5.3.2. Turaev’s homotopy TQFTs and universal theories. One can think of a
σ-circle on S as describing a sort of monodromy. Choose a topological space X with a
base point x0 such that π1(X, x0) ∼= G = G(A, ε) and π2(X, x0) = 0. To a σ-surface S,
associate a homotopy class of maps S −→ X as follows. A-dots floating on S are ignored.
Points away from neighborhoods of σ-circles are mapped to the basepoint x0. An interval
transverse to a σ-circle is mapped to the loop at x0 representing element σ ∈ π1(X, x0),
using the co-orientation to choose between a map representing σ or σ−1, see Figure 5.14.

In this way, our construction is reminiscent of Turaev’s homotopy TQFTs in dimen-
sion two [Tu1, Tu2, MS], Landau–Ginzburg (LG) orbifolds [IV, BH, BR, LS, KW] and
orbifolded Frobenius algebras [Ka]. In the setting of Landau–Ginzburg models, mon-
odromy transformation refers to a deformation of LG orbifolds via BPS spectrum (stable
particles) or other (geometric) invariants as one moves around the moduli construction in
order to understand their mirror symmetry.

Furthermore, consider a circle L with 3 defect points, co-oriented in the same direction,
such that their labels multiply to 1 ∈ G, see Figure 5.15. In the σ-circles setup, this
decorated circle cannot bound a decorated surface, so its space is zero.

However, the “monodromies” along the circle multiply to the trivial element of G, and
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σ

}

}
σ x0

Figure 5.14: Map into X near a seam circle of S.

σ (στ )−1

τ σ τ

στ

=

σ τ

(στ )−1

Figure 5.15: “Monodromy” along the circle on the left is trivial and motivates the intro-
duction of a trivalent vertex.

it is natural to introduce a trivalent vertex, as shown in Figure 5.15.

Seam lines and trivalent vertices can be arranged into “networks” on a surface S. It is
natural to require that moves shown in Figure 5.16 and Figure 5.17 should preserve the
evaluation of the network.

One motivation for these moves is that a representation of π1(S) into G, up to conjuga-
tion in π1(S), gives rise to an equivalence class of networks. Denote the set of equivalence
classes by

π(S,G) := Hom(π1(S), G)/π1(S), s(ρ)(t) = ρ(s−1ts), s, t ∈ π1(S), ρ ∈ Hom(π1(S), G).
(26)

To construct a network representing ρ : π1(S) −→ G, viewed as an element of π(S,G),
decompose a connected surface S in the usual way as given by gluing a 4g-gon along the
sides. The sides represent generators ai, bi of π1(S). Draw an interval crossing each the
side, place the label ρ(ai), ρ(bi) ∈ G on it, and suitably co-orient the interval as well.
Inside the 4g-gon these 4g intervals naturally extend to a connected network, uniquely
defined, since the relation

n∏
i=1

ρ(ai)ρ(bi)ρ(ai)
−1ρ(bi)

−1 = 1 (27)
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σ1 σ2 σ3

σ1σ2

σ1σ2σ3

=

σ1 σ2 σ3

σ2σ3

σ1σ2σ3

στ

στ

σ τ =

στ

Figure 5.16: Associativity and digon simplification moves of G-labeled networks.

σ

=

σ−1

σ =

σ τ

=

σ τ

σ τ

στ

σ σ−1

τ τ−1

1 =

σ

τ

Figure 5.17: Some skein relations for G-networks. Either co-orientation is fine for top right
relation. Bottom right relation says that intervals labeled 1 may be erased. This relation
can be clarified by removing the interval on the left labeled 1 and keeping the flip points
on the two arcs that reverse co-orientation and send σ to σ−1, as in Figure 5.13. Same
refinement can be applied to the top left relation. For careful treatment of flip points one
should also choose types of allowed triples of coorientations allowed at networks’ vertices
and add suitable relations, see Figures 5.18, 5.19 and 5.20.
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σ τ

γ

στγ = 1

σ τ

γ

στ = γ

(στ )−1

σ τ

στ

=

σ τ

στ

Figure 5.18: Two types of co-orientation triples around a vertex of the network are shown
on the top. If both types are allowed, it is natural to add the relation that a vertex can
absorb a co-orientation flip point, see bottom equality.

σ τ

στ

=

σ τ

στ

Figure 5.19: Moving a flip point through a vertex.

holds in G. The network has 4g− 2 trivalent vertices and its complement in S is an open
disk (if some edges of the network are labeled 1 ∈ G, they can then be erased, making
the complement not simply connected). An example for g = 1 is shown in Figure 5.21,
when necessarily ρ(a), ρ(b) commute. Since the fundamental group of the two-torus is
abelian, there is only one element in the conjugacy class of a homomorphism. Note that
we are not conjugating by elements of G, only by elements of π1(S) (equivalently, by inner
automorphisms of the latter group).

Vice versa, to a G-network w on S we can assign an element of π(S,G). Choose
a K(G, 1) space X which is a CW-complex with a single vertex v0 and 1-cells c(g) in a
bijection with elements of G such that that the loop along c(g) represents g in π1(X, v0) ∼=
G.

View network w as a trivalent graph on S, possibly with loops, and form a standard



FOAMS, ITERATED WREATH PRODUCTS, FIELD EXTENSIONS, SYLVESTER SUMS1065

σ

σ−1

σ = σ

Figure 5.20: Canceling a pair of adjacent flip points on a seam.

ρ(a)

ρ(a)

ρ(b)

ρ(b)
ρ(
a)
ρ(
b)

ρ(
a)

ρ(b)

ρ(a)ρ(b)

Figure 5.21: A network on the torus describing a homomorphism π1(T
2) −→ G. Com-

mutativity ρ(a)ρ(b) = ρ(b)ρ(a) is needed for both trivalent vertices to make sense.

open neighborhood U of w. Construct a map ϕw : S −→ X as follows. All points in
S \ U map to the base points v0 of X. Neighborhood U can be partitioned into a union
of intervals, each one intersecting w at a single point, and triangles, one for each vertex
of w, see Figure 5.22.

Each interval intersecting w at a point of a line labeled σ is mapped bijectively to the
1-cell c(σ) in the direction of co-orientation. Around each vertex of w there is a triangle,
with its sides mapped to c(σ), c(τ), c(στ), respectively. There is a unique, up to homotopy,
way to map this triangle to X given the map on its sides.

Thus, to a network w we assign a map ϕw : S −→ X. Fixing a base point s0
on S away from w induces a map π1(S, s0) −→ π1(X, v0). Network transformations
shown in Figure 5.16 and 5.17 away from the basepoint correspond to basepoint-preserving
homotopies of maps S −→ X and induce the same homomorphism of fundamental groups.
Moving a base-point across a line labeled σ conjugates the homomorphism by σ.

5.4. Proposition.The above correspondence gives a bijection between elements of π(S,G)
and isotopy classes of G-networks modulo relations in Figures 5.16 and 5.17.

Proof. Let us sketch a proof of this proposition. A network as above describes a map
of S into the classifying space of BG. The latter has the standard cell decomposition
with n-dimensional cells given by n-tuples of elements of G. A map of S to BG can
be made simplicial, with the image of S lying in the 2-skeleton BG2 of BG, via a map
ψ : S −→ BG2. Take the Poincaré dual P2 of the cell decomposition of BG2. The inverse
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σ τ

στ

στ

σ τ

Figure 5.22: Left: Decomposing U near a vertex of w into a triangle and unions of parallel
intervals, one for each leg of the tripod at the vertex. Right: the triangle is mapped to
X in a unique way, up to homotopy, extending the map of its boundary.

image ψ−1(P 1
2 ) of the 1-skeleton of P2 gives a network on S as described above. Vice

versa, any network comes from such a simplicial map ψ : S −→ BG2. Two homotopic
maps of S to BG can both be made simplicial, giving maps ψ1, ψ2 : S −→ BG2. These
maps are homotopic through a simplicial map ψ : S × [0, 1] −→ BG3, where now the
image lies in the 3-skeleton of BG, for some simplicial decomposition of S × [0, 1]. One
can now connect S × {0} and S × {1} in S × [0, 1] through a collection of surfaces St,
for a finite subset of t′s in [0, 1], where two consecutive surfaces St, S

′
t, that come with

maps to S × [0, 1], differ in an elementary way, through one of the Pachner moves for
triangulations of surfaces [Pa] (and one additionally keeps track of G-labels of all edges
on surfaces). These moves can be translated to the corresponding transformations of our
networks.

The description of representations of the fundamental group via networks is Poincaré
dual to the one commonly used in the literature [Tu2, MS, Ka].

We do not expect that G-valued networks on a surface (equivalently, elements of
π(S,G)) can be evaluated consistently given the data (A, ε) of a commutative Frobe-
nius algebra and taking G = G(A, ε) the group of trace-respecting automorphisms of A.
Clearly, one needs much more structure to have a natural evaluation.

If G is fixed, there is the notion of G-equivariant two-dimensional TQFT and corre-
sponding G-equivariant commutative Frobenius algebra, see [Tu1, Tu2, MS, Ka], much
more sophisticated than that of a commutative Frobenius algebra. These structures do
allow evaluations of surfaces with G-networks. Additionally, they define tensor functors
on the corresponding categories of two-dimensional G-cobordisms, thus assigning vector
spaces to G-labeled one-manifold, in a multiplicative way (disjoint union corresponds to
tensor product of vector spaces).
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Universal theories approach [BHMV, Kh4, KS, KKO, KL] provides a different way to
construct a topological theory, given evaluation function on networks on closed surfaces.
Fix a group G. Choose an evaluation function, that is, a map of sets

α : π(S,G) −→ k. (28)

Given a closed oriented surface S with a G-network w, define α(S,w) := α(ρ), where
ρ is the equivalence class of homomorphisms defined by w (equivalence under source
conjugations, that is, conjugations in π1(S)).

With evaluation α for closed surfaces with a G-network at hand, we can define state
spaces α(L) of decorated oriented one-manifolds L in Section 5.3.1, with α in place of
F and G-networks on S in place of collections of G-circles. First interesting question is
funding families of evaluations α such that the state spaces α(L) are finite-dimensional
for all L,by analogy with a study in [Kh4] and follow-up papers. Such evaluations may
be called rational or recognizable.

The state spaces α(L) may be zero for some G-decorated one-manifolds no matter
what α is. For instance if σ ∈ G \ [G,G] is not in the commutator subgroup, the state
space of a single circle S1(σ) with a mark σ on it is trivial, since such circle cannot bound
any G-network w on a surface S with ∂(S,w) ∼= S1(σ). We leave studying these state
spaces and associated categories (as in [Kh4, KS, KKO]) for another paper.

5.5. Remark. Following Turaev’s homotopy TQFT, one can consider the case of maps
of surfaces into a path-connected topological space X with π2(X) ̸= 0. The group G :=
π1(X, x0) acts linearly on the abelian group B := π2(X, x0), i.e., see [FF, Section 8.2], and
[BHS, Section 7.1.ii] for its generalization. Consider oriented closed surfaces S decorated
by a G-network together with floating dots labeled by elements of B and disjoint from
the graph of the G-network. To relations in Figures 5.16, 5.17 one can add the rules in
Figure 5.23 below.

The relation between equivalence classes of these networks and homotopy classes of
maps from S to X is discussed in [IK2, Remark 2.27].

Universal theories can be further considered for such pairs (G,B), and we hope to
treat examples elsewhere. When G = {1} is the trivial group, the network with each edge
labeled 1 may be erased, and S is decorated only by dots that are elements of an abelian
group B. Universal theories for this case are discussed in [KKO, Section 8].

One can further assume that B is an abelian monoid with an action of G on it rather
than an abelian group. The notion of a (G,B)-decoration of S modulo Figure 5.16,
5.17, 5.23 relations makes sense, and one can consider universal theories and state spaces
for such pairs as well, although there is no underlying topological space X to interpret
equivalences classes of (G,B)-decorations as homotopy classes of maps into X.
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b c
=

b + c 0
=

b
σ

=
σ(b) b

σ

=

σ

σ(b)

Figure 5.23: Top row relations allow to merge dots via addition in B and to remove a dot
labeled 0 ∈ B. The two relations in the bottom row are easily shown to be equivalent
using an isotopy and the relation in Figure 5.5 on the right. The latter relation follows
from the relations in the bottom row of Figure 5.17.

5.6. Remark. In this subsection, we describe the Poincaré dual diagrammatics (to the
usual diagrammatics) for specifying representations of the fundamental groups of a sur-
face, as well as propose to study universal theories for such representations, which should
generalize Turaev’s homotopy TQFTs in two dimensions.

5.6.1. Basic structure of Frobenius automorphisms. Fix an ε-automorphism σ
and assume that k is algebraically closed (if k is not closed, this can easily be achieved
by passing to the algebraic closure via scalar extension, i.e., pass to A := A⊗k k). Then
A decomposes into the direct sum of generalized weight spaces for σ,

A = ⊕
λ
Aλ, (σ − λ)N

∣∣
Aλ

= 0, N ≫ 0, λ ∈ k∗. (29)

Note that λ ̸= 0 for a nonzero weight space Aλ, since σ is an automorphism. We have
AλAµ ⊂ Aλµ, making A into a graded algebra, and σ(Aλ) = Aλ.

Let Λ = {λ ∈ k∗|Aλ ̸= 0} be the subset of weights λ such that Aλ ̸= 0. Let Λ∗ be the
subgroup of k∗ generated by Λ. Algebra A is naturally graded by the abelian group Λ∗.

Note that, in general, Λ ̸= Λ∗. As an example, consider a four-dimensional algebra
with an automorphism σ given by

A = k[a, b]/(a2, b2), σ(a) = λa, σ(b) = λ−1b, (30)

where λ is any element of k∗, and the trace map

ε(ab) = 1, ε(1) = ε(a) = ε(b) = 0. (31)

Then σ is an ε-automorphism, Λ = {1, λ±1}, and Λ∗ is the subgroup generated by λ,
infinite if λ is not a root of unity in k.
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5.7. Lemma. The trace map ε is zero on Aλ for λ ̸= 1.

Proof. Let v ∈ Aλ and assume first σ(v) = λv and ε(v) ̸= 0. Then ε(σ(v)) = ε(v),
forcing λ = 1. By induction on nilpotence degree of v relative to σ − λ we can assume
ε(σ(v) − λv) = 0. Then ε(σ(v)) = λε(v) showing that either λ = 1 or ε(σ(v)) = λ = 0.
Applying this to σ−1(v) in place of v and observing that A0 = 0 completes the proof.

5.8. Corollary. ε restricts to a nondegenerate pairing Aλ⊗Aλ−1 −→ k for each λ ∈ Λ.
In particular, A1 is a commutative Frobenius algebra.

5.9. Example. Consider Frobenius algebra A in (30) with the trace given by (31) but a
different σ:

σ(a) = a+ b, σ(b) = b, (32)

which also requires char(k) = 2 to define σ. Then A is the generalized 1-eigenspace of σ
and the action of σ is not semisimple.

The direct sum of eigenspaces A′
λ ⊂ Aλ, over λ ∈ Λ, is a subalgebra of A which is not

necessarily Frobenius (see Example 5.9).

There does not seem to be a substantial literature about Frobenius automorphisms;
they are discussed in Wang [Wa] and several other papers.

5.10. Field extensions and patched surfaces.

5.10.1. Traces of field extensions. Let k ⊂ F be a field extension of finite degree n.
The trace map ε : F −→ k, ε(x) = trF/k(mx) assigns to x ∈ F the trace of multiplication
by x map mx : F −→ F , mx(a) = xa, viewed as a k-linear endomorphism of vector
space F . A basic result on field extensions says that ε is nondegenerate if and only if the
extension is separable, e.g., see [Ja, Theorem 5.2] and lecture notes by Conrad [Co].

5.11. Proposition. The pair (F, ε), for ε = trF/k and a finite separable extension F/k,
is a commutative Frobenius k-algebra. Any element σ ∈ Gal(F/k) of the Galois group is
an ε-automorphism.

Proof. The first part of the proposition is the nondegeneracy statement right before
it. The second part is trivial, since an automorphism of Gal(F/k) preserves traces of
multiplication operators by elements of F .

Consequently, each extension k ⊂ F as above defines a two-dimensional TQFT F
with defect lines and Galois group Gal(F/k) being a subgroup of G(F, ε). To m circles,
this TQFT associates F⊗m, with tensor product taken over k. The defect lines in this
TQFT are labeled by elements of Gal(F/k).

Closed surfaces with defect lines in (k, F ) TQFT admit a straightforward computation.
That is, the action of Gal(F/k) on F extends to F⊗kk via the trivial action on the second
factor. The resulting action is k-linear.
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Writing F as a simple extension, F ∼= k[x]/(f(x)), a factorization in the algebraic
closure

f(x) = (x− λ1) · · · (x− λn), (33)

with distinct λ1, . . . , λn, gives minimal idempotents for the direct product decomposition,

ei =
∏
j ̸=k

x− λj
λk − λj

. (34)

Although we cannot explicitly write down an action of σ on x, we know that the action
permutes minimal idempotents ei in the same way σ permutes roots λi.

We therefore see that a finite extension F/k is separable if and only if the tensor
product F ⊗k k with the algebraic closure of k is a direct product of copies of k,

F ⊗k k ∼= k× k× · · · × k, (35)

(necessarily of [F : k] copies). Another equivalent condition is that F ⊗kk is a semisimple
algebra (equivalently, F ⊗k k does not contain nilpotent elements). The trace of ma :
F −→ F can be computed in the k-vector space F ⊗k k.

This passage to the algebraic closure results in a 2D TQFT over the ground field k
with the Frobenius algebra F ⊗k k, trace map given by

ε(ei) = 1, i = 1, . . . , n (36)

and comultiplication
∆(ei) = ei ⊗ ei, i = 1, . . . , n. (37)

Action of σ ∈ Gal(F/k) is given by permutation of e1, . . . , en corresponding to the action
of σ on the roots of f(x). Consequently, each defect circle map can be computed in the
basis of minimal idempotents as their permutation.

The map associated to any surface with defect circles can now be computed explicitly.
For instance, consider a one-holed torus with a defect circle σ, see Figure 5.24 left.

We compute the induced map

1 =
∑
i

ei
∆−→

∑
i

ei ⊗ ei
1⊗σ−→

∑
i

ei ⊗ σ(ei)
m−→

∑
i|σ(ei)=ei

ei ∈ F ⊗k k. (38)

In particular, one-holed torus simplifies to a disk, see Figure 5.24 right.

Capping off the boundary by a disk, a 2-torus with an essential σ-defect circle evaluates
to [F σ : k], the degree of the fixed field of σ over k. An undecorated 2-torus evaluates to
dimk(F ) = [F : k], seen as an element of k. Over a field of finite characteristics, these
evaluations may be equal to 0.

More complicated cobordisms with circle defects can be computed analogously. For
example, Figure 5.25 shows the evaluation of a genus two surface with 3 defect circles
labeled σ1, σ2, σ3 ∈ Gal(F/k).
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σ =
∑

i|σ(ei)=ei
ei =

Figure 5.24: Left: simplification of a one-holed torus with a defect circle. Right: one-
holed torus equals a disk.

σ1 σ2
σ3

= # {i : 1 ≤ i ≤ n, σ1(ei) = σ2(ei) = σ3(ei)}

Figure 5.25: Evaluating a genus two surface with three circle defects.

5.11.1. A chain of extensions and evaluation of patched surfaces. Recall
that for a finite Galois extension k ⊂ F , the trace map is given by

trF/k(a) =
∑

σ∈Gal(F/k)

σ(a). (39)

Consider now a chain of finite separable field extensions k ⊂ F ⊂ K with [K : F ] = n,
[F : k] = m. The trace maps

trF/k : F −→ k, trK/F : K −→ F, trK/k : K −→ k

are non-degenerate and satisfy

trK/k = trF/k ◦ trK/F , (40)

see [Ja, Chapter 1, Theorem 5.2], and turn F into a commutative Frobenius k-algebra
and K into a commutative Frobenius algebra over F and over k [Kc1, Sections 2.2.13 and
2.2.17].

Three commutative Frobenius algebras with traces

(F,k, trF/k), (K,F, trK/F ), (K,k, trK/k) (41)

give rise to three two-dimensional TQFTs that we denote by

FF = FF/k, FK = FK/F , FK/F , (42)
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F

a1

K

b1

b2
F

a2

K

b3

Figure 5.26: Seamed surface with facets checkerboard colored by fields F,K. Elements
ai ∈ F and bj ∈ K float in the corresponding regions.

respectively. Defect lines in these TQFTs are labeled by elements of the corresponding
Galois groups

Gal(F/k), Gal(K/F ), Gal(K/k).

It is natural to ask whether these three TQFTs can be combined into a single structure,
and we now suggest one possible approach, first without the defect lines.

Consider a “patched” or “seamed” closed oriented surface S which consists of regions
labeled F and K. Elements of F and K may float in the regions labeled by the corre-
sponding field. Seam circles separate regions labeled F and K, see Figure 5.26 for an
example.

To evaluate such a surface to an element F(S) ∈ k let us use neck-cutting relations to
separate each seam circle from the rest of the diagram. We do surgery on both sides of
a seam circle using neck-cutting relations in extensions F/k and K/k, correspondingly.
Choose dual bases:

� {xi}, {yi}, 1 ≤ i ≤ m for the Frobenius pair (F,k, trF/k),

� {x′j}, {y′j}, 1 ≤ j ≤ n for the Frobenius pair (K,F, trK/F ),

� {x′′k}, {y′′k}, 1 ≤ k ≤ mn for the Frobenius pair (K,k, trK/k).

Note that we may choose {xix′j}, {yiy′j} as dual bases for the third extension.

Each seam circle C bounds one component (facet) labeled F and one labeled K.
Choose circles parallel to C in each of these components and apply neck-cutting along
these circles as shown in Figure 5.27.

Doing this neck-cutting along each seam circle converts S into a sum of terms which
are disjoint unions of connected components of three types:

� closed connected surfaces labeled F with elements of F floating on them,

� closed connected surfaces labeled K with element of K floating on them,

� spheres with a seam circle and an element of F , respectively K, in a disk labeled
F , respectively K, see Figure 5.28.
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C

F

K

m∑
i=1

mn∑
k=1 y′′k

yi

x′′k

xi

Figure 5.27: Surgery on a seam circle. Dotted seamed spheres are then evaluated using
trace maps.

b

aF

K

Figure 5.28: Seamed 2-sphere, denoted S2(a, b), with dots a ∈ F and b ∈ K floating in
the F -disk and K-disk, respectively.

Components of the first and second kind are evaluated via TQFTs for (F,k, trF/k) and
(K,k, trK/k), respectively, to yield elements of k. We consider the following evaluation of
the seamed 2-sphere S2(a, b):

F(S2(a, b)) = trF/k(a trK/F (b)). (43)

We can interpret this evaluation, see Figure 5.29, as first removing the K-disk with dot
b and inserting dot trK/F (b) ∈ F in its place, now floating on the 2-sphere labeled F
alongside the original dot a. Now multiply the two dots and evaluate using εF = trF/k.
Figure 5.29 shows the two steps in this evaluation.

With evaluations for all three types of connected components at hand, we know how to
evaluate an arbitrary seamed (F,K)-surface S as above. In the sum resulting after neck-

b

aF

K

F a

trK/F (b)

trF/k(a trK/F (b))

Figure 5.29: Evaluation of the seamed sphere S2(a, b), given by pushing b via relative
trace into the F -facet and evaluating via trF/k.
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K

F

= K F

K b

=
F

trK/F (b)

K =
m∑
j=1

K

F

K

x′j

y′j

Figure 5.30: Some skein relations. Top left: a dotless F -disk may be removed. Top right:
pushing a dot off a K-disk. Bottom: partial neck-cutting from K to F .

=
F K

a

F K

a

K

F a

= K
a

Figure 5.31: Left: pushing an F -dot a ∈ F across a seam into a K-component. Right:
removing a dotted F -disk.

cutting, for each term we take the product of evaluations of all connected components
and then sum these elements of k. Denote this evaluation by F(S) or ⟨S⟩.

It is easy to see that, if a seam circle C bounds an F -disk or a K-disk on one side
(or such disks on both side), possibly with some dots in them, then one can skip the
neck-cutting procedure on the corresponding side of C (or on both sides of C) without
changing the evaluation. This observation implies relations in the top row of Figure 5.30.

Specializing Figure 5.30 relation on the top right to b ∈ F , the dot on the right hand
side has label nb, since trK/F (b) = nb, where n = [K : F ]. Consequently, if char k = p and
p|n, the right hand side is 0.

A dot on an F -component can be pushed across a seam into an adjacentK-component,
since the trace trK/F is F -linear, see Figure 5.31. If the F -component were a disk, it can
then be removed.

This allows us to move dots away from any F -component that bounds a seam (other-
wise it is a connected component of S). Furthermore, Figure 5.32 relation holds. It allows
to reduce S to a surface where each K-facet has at most one boundary component. The
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K

F F

=

K

F

Figure 5.32: Different boundary components of a K-facet can be merged into one.

relation can be checked by doing surgeries on F -sides of the two circles on the left hand
side, then using relations in Figure 5.31.

Similar to the discussion in Section 5.10.1, such patched surfaces can be evaluated by
tensoring the fields with the algebraic closure k and looking at the chain of k-algebra
inclusions and trace maps between them

k ⊂ F ⊗k k ⊂ K ⊗k k. (44)

Both rings F ⊗kk, K⊗kk are direct product of fields k, and under the inclusion F ⊗kk ⊂
K ⊗k k minimal idempotents in K ⊗k k go to sums of distinct minimal idempotents
of K ⊗k k. Relative traces have a similar simple description. This allows to easily
evaluate a patched surface to an element of k. In this way, the TQFT reduces to set-
theoretic computations with roots of an irreducible polynomial describing the extension
K/k, together with the Galois group action on the roots, and the partition of roots
corresponding to the subfield F ⊂ K.

If one allows elements of F and K to float in the corresponding regions of the surface,
the evaluation requires decomposing these elements in the bases of minimal idempotents
of F ⊗k k and K ⊗k k.

5.11.2. Defect lines and Galois symmetries. Here we use notations from the pre-
vious subsection, including having a chain of finite separable field extensions k ⊂ F ⊂ K.

In this section, we can extend patched surfaces setup in Section 5.11.1 by adding defect
lines for Galois symmetries of extensions F/k andK/k. Let S be a patched (F,K)-surface.
Choose a collection of disjoint circles with co-orientations on F -patches of S and label
each of them by an element σ ∈ Gal(F/k) (not necessarily the same one). Likewise, choose
a collection of disjoint circles with co-orientations on K-patches of S and label each of
them by an element τ ∈ Gal(K/k). As before, dots labeled by elements of F and K may
float in F - and K-regions of S, correspondingly. To evaluate such a decorated patched
surface S, one applies neck-cutting around each of three types of seamed circles of F :

� (F,K)-circles, along which K- and F -regions of S meet,

� Gal(F/k)-circles in F -patches,
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K

F
σ

τ

Figure 5.33: A crossing of a σ-circle and a seam line.

Fj

Fi
ι

Fj

Fi

σ

ι

Figure 5.34: Left: ι : Fi ↪→ Fj is a field inclusion. Right: A seam line that can intersect
(Fi, Fj)-line corresponds to an automorphism σ : Fj → Fj that preserves the subfield Fi,
that is, σ(ι(Fi)) = ι(Fi).

� Gal(K/k)-circles in K-patches.

After that, evaluation reduces to the familiar cases that have already been discussed. We
can denote the evaluation by F(S) or ⟨S⟩ ∈ k.

If σ ∈ Gal(K/k) preserves the subfield F , one can allow σ-circles to intersect seam
lines separating F - and K-regions of S, see Figure 5.33.

Such a network can be evaluated as before, by tensoring all fields with k, representing
K as a simple extension, and working with the set of roots of the corresponding irreducible
polynomial.

Finally, one can consider arbitrary finite Galois extensions k ⊂ F and patched surfaces
with regions labeled by finite extensions Fi. A seam circle separating regions labeled Fi
and Fj is assumed to be co-oriented, and an inclusion Fi ⊂ Fj is assigned to each such
circle, see Figure 5.34 left. Elements of Fi may float in Fi-regions. These regions may
contain σ-circles, for σ ∈ Gal(Fi/k). Furthermore, these circles can be viewed as a special
case of the seam circles of the first type, for the case when fields Fi = Fj and the inclusion
(isomorphism) Fi ⊂ Fi is given by σ.

The seamed circles labeled by Galois group elements may intersect seamed circles of
the first type, as long as the Galois symmetry σ preserves the fields Fi for all regions along
the σ-circle, see Figure 5.34.

Such closed networks can then be evaluated by working with a splitting field K that
contains copies of fields Fi, over all patches of the surface S, tensoring with the algebraic
closure k, and working with minimal idempotents in K ⊗k k to evaluate the network.
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F1 F2

F3

ι

ȷȷι

F F

F

στ

τσ

ab

Figure 5.35: Left: F1, F2, and an F3-region meet at a vertex, with the inclusion F1 ⊂ F3

given by the composition ȷ ◦ ι of inclusions ι : F1 ↪−→ F2, ȷ : F2 ↪−→ F3. Right: as a special
case, when all 3 fields are F and the inclusions are isomorphisms in G = Gal(F/k), the
networks match those that appear in homotopy 2D TQFTs with the group G. Picking
an abelian subgroup A ⊂ F stable under G and allowing dots labeled by elements of
A to float in the regions corresponds to working with a space X with π1(X) ∼= G and
π2(X) ∼= A with the matching action of G on A.

With these evaluations at hand, one can then define state spaces for collections of
circles that are patched from intervals labeled by various fields Fi separated by points
labeled by inclusions Fi ⊂ Fj and Galois symmetries σ : Fi −→ Fi.

The same approach allows to evaluate even more general networks. Namely, beside
seam circles for inclusions Fi ⊂ Fj one can consider networks with co-oriented edges
labeled by inclusions Fi ⊂ Fj that may contain trivalent (or even more general) vertices
where three regions meet, see Figure 5.35 left.

In the special case when all fields are the same field F and seam edges are Galois
symmetries σ ∈ Gal(F/k), these networks are identical to those in Section 5.3.2. One
then obtains a special case of Turaev’s homotopy 2D TQFTs, where networks describe
conjugacy classes of homomorphisms π1(S) −→ Gal(F/k), up to conjugation by elements
of π1(S) or, more generally, homotopy classes of maps S −→ X for X as specified in the
caption for Figure 5.35.

Suitable state spaces for decorated patched circles for these theories can then be stud-
ied.

It is possible to further refine the theory by introducing “orbifold” points with a non-
trivial “monodromy” around them. These points may be located on facets of a network,
along seam lines, along Galois (σ-defect) lines, and at vertices of the network, see Fig-
ures 5.36, 5.37 and 5.38. An orbifold point with a label σ inside a facet (type (1) point,
shown in Figure 5.36) can be defined via a connected sum with a torus with a σ-defect
circle. In the state sum, only idempotents ei with σ(ei) = ei placed on that facet will
contribute to the evaluation.

At an orbifold point on a σ-defect circle (type (2a) orbifold point) the automorphism
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(1) F
σ
× = σ

σ
×
ei

σ(ei) = ei

Figure 5.36: Type (1) orbifold point, on an F -patch of surface.

σ0 σ1
F

F

(2a)

σ0 σ1
F

F ei

σ0(ei) = σ1(ei)

Figure 5.37: Type (2a) orbifold point on an (F, F )-seam of a surface, with field automor-
phisms different along the seam on the two sides of the point.

label in Gal(F/k) may change from σ0 to σ1, see Figure 5.37. In the corresponding
evaluation, only minimal idempotents ei with σ0(ei) = σ1(ei) may contribute.

At more general type (2) orbifold point on an (F,K)-seam, an embedding ι0 : F ↪−→ K
may change to a different embedding ι1 : F ↪−→ K, see Figure 5.38 left. At a type (3)
orbifold point, at a vertex of the network, the embedding ȷ : F1 ↪−→ F3 corresponding to
the Northwest seam may be different from the composition of embeddings ȷ0 ◦ ι0 for the
South seam ι0 : F0 ↪−→ F1 and the Northeast seam ȷ0 : F2 ↪−→ F3, see Figure 5.38 right.

ι0 ι1
K

F

(2) (3)

F1 F2

F3

ι0

ȷ0ȷ

Figure 5.38: Left: type (2) orbifold point, with different embeddings ι0, ι1 : F ↪−→ K on
the two sides of the seam. Right: type (3) orbifold point, with ȷ ̸= ȷ0ι0.
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a + b

a b

a + b

a b

a+ b

ba a

Figure 6.1: Left: split and merge vertices of an MOY graph. Right: simplest MOY
graphs, the (a, b)-theta graph and thickness a circle Γa.

6. Foams, Galois extensions, and Sylvester sums

6.1. Base change for GL(N) foams and field extensions. Consider the ring of
polynomials

R′ = Z[α1, . . . , αN ] (45)

in variables α1, . . . , αN , and its subring of symmetric polynomials

R = Z[α1, . . . , αN ]
SN ⊂ R′, R = Z[E1, . . . , EN ],

Ek =
∑

i1<...<ik

αi1 . . . αik ,

where Ek is the k-th elementary symmetric function in α1, . . . , αN .

Most constructions of equivariant GL(N) link homology, as an intermediate step, as-
sociate a free graded R′-module ⟨Γ⟩ to a planar trivalent graph Γ with oriented edges
labeled by weights in {1, 2, . . . , N} subject to the flow constraint that the sum of weights
of out edges equals the sum of weights of in edges at each vertex of Γ, see Figure 6.1.
There is an extensive literature on GL(N) homology. We refer to [KK] for a partial list
of references and to [RW2] for a combinatorial way to define ⟨Γ⟩.

A planar graph as above is called a Murakami–Ohtsuki–Yamada (MOY) graph or a
web. The graded rank of ⟨Γ⟩ equals the quantum gl(N) invariant P (Γ) ∈ Z+[q, q

−1],
also known as the Murakami–Ohtsuki–Yamada (MOY) invariant, i.e., see [MOY]. Here
Z+ := {0, 1, 2, . . . }.

This invariant extend to a link invariant [MOY], called the MOY invariant, taking
values in Z[q, q−1]. It additionally depends on the labels of the link’s components, which
are in the range {1, . . . , N}. The invariant extends to links by replacing each crossing
in a link’s diagram by a suitable linear combination of MOY graphs. This link invariant
is a special case of the Reshetikhin–Turaev link invariants constructed from quantum
deformations of universal enveloping algebras of simple Lie algebras.

Upon categorification, P (Γ) is replaced by a free graded R-module ⟨Γ⟩ of graded rank
P (Γ). One can refer to ⟨Γ⟩ as the homology or state space of Γ.
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The homology groups of a link are obtained as a complex built out of state spaces ⟨Γ⟩
for various MOY graphs Γ given by taking a planar projection D of a link and substituting
certain elementary subgraphs in place of crossings of D.

For the empty web ∅ the associated module is R, ⟨∅⟩ ∼= R, and the MOY invariant is
P (∅) = 1.

Denote by Γa the MOY graph which is a circle labeled a, 1 ≤ a ≤ N , see Figure 6.1
right. Then ⟨Γa⟩ can be canonically identified with the subring

Ra,N−a = Z[α1, . . . , αN ]
Sa×SN−a . (46)

Here, Sa × SN−a ⊂ SN is the parabolic subgroup for the decomposition (a,N − a), sepa-
rately permuting the first a variables and the last N − a variables.

The web ΓN , a circle of thickness N , has the state space isomorphic to R, so that
⟨ΓN⟩ ∼= ⟨∅⟩. In general, with a minimal amount of effort and little loss of information
(there are subtleties, but these will not play any role for us), lines labeled N can be hidden
(erased) from MOY diagrams. This corresponds to passing from GL(N) to SL(N) link
homology. However, it is often convenient to keep these lines.

When a = 1, we can also identify

⟨Γ1⟩ ∼= R[X]/(XN − E1X
N−1 + . . .+ (−1)NEN). (47)

More generally, choose a sequence a = (a1, . . . , ak) of positive integers that add up to
N , with a1 + . . .+ ak = N and k ≥ 1, and consider the graph Γa in Figure 6.2 left.

In this web lines of weight a1, a2, . . . , ak merge into thicker and thicker lines, eventually
merging into a line of thickness N that goes around and then splits off into the original
lines. The state space ⟨Γa⟩ does not depend on the order in which the k lines merge and
the graph can be denoted as in Figure 6.2 right, where the order of merge is not specified.

The value of the quantum MOY invariant on the graph Γa is the q-multinomial coef-
ficient

P (Γa) =

[
N

a1, . . . , ak

]
q

:=
[N ]!

[a1]! . . . [ak]!
, (48)

where

[m]! := [m][m− 1] . . . [1], [m] =
qm − q−m

q − q−1
.

The state space ⟨Γa⟩ is a free R-module of graded rank P (Γa).

When doing quantum SL(N) homology or SL(N) MOY invariants, lines of thickness
N may be erased and lines of thickness N − a converted to those of thickness a with the
opposite orientation. This procedure does not change the value of the MOY invariant,
and can be made to preserve homology groups. In this case, Figure 6.2 graphs may be
reduced by erasing thickness N interval and sometimes further simplifying, see Figure 6.3.
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. . .

. . .

N

a1 a2 a3 a4 · · · ak
a1 a2

· · ·
ak−1 ak

N

Figure 6.2: Left: GL(N) web Γa. Lines of thickness a1, . . . , ak merge into a line of thickness
N . Right: a schematic way to depict this web, with k lines merging at once into the N -
line. Changing the order of merges of lines results in webs with canonically isomorphic
state spaces.

Let G = GL(N,C) or its maximal compact subgroup G = U(N), with the standard
action on CN . Consider the induced action of G on the (partial) flag variety

Fl(a) := {0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lk ∼= CN | dim(Li)−dim(Li−1) = ai, i = 1, . . . , k}, (49)

where L0 = 0. The equivariant cohomology HG(Fl(a)) is naturally a module over the
equivariant cohomology of a point HG(∗) ∼= R. There is a natural isomorphism of R-
algebras

⟨Γa⟩ ∼= HG(Fl(a)) ∼= Ra, (50)

where
Ra := Z[x1, . . . , xN ]Sa , Sa := Sa1 × · · · × Sak ⊂ SN , (51)

is the subring of invariants for the parabolic subgroup Sa of SN acting on the ring of
polynomials in N variables.

In the special case a = (1, . . . , 1) = (1N), the parabolic subgroup is trivial and

R(1N ) = Z[x1, . . . , xN ] ∼= HG(Fl((1
N))) (52)

is isomorphic to the polynomial ring and to the equivariant cohomology of the full flag
variety Fl((1N)), which we can also denote FF(N).
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a
N − a

N

a N − a
a

1 1 1

3

Figure 6.3: Left: graph Γ(a,N−a) turns into Γa upon reducing from GL(N) to SL(N)
homology by erasing the interval of thickness N . Right: Reducing GL(3) graph Γ(1,1,1) to
the corresponding SL(3) graph, with all edges of the latter labeled 1. In the SL(3) case,
MOY graphs are equivalent to Kuperberg’s A2 spiders, see [Ku].

ℓ
Γ

ι ε Γ Γ

Γ

m

Figure 6.4: A web Γ with a symmetry axis ℓ and schematically depicted unit, counit, and
multiplication morphisms.

The state spaces ⟨Γ⟩ are functorial, in a suitable sense. A graph cobordism F , which
is a decorated combinatorial two-dimensional CW -complex with prescribed singulari-
ties [RW1] and embedded in R2 × [0, 1], also called a foam or GL(N)-foam, induces a
homomorphism of state spaces

⟨F ⟩ : ⟨∂0F ⟩ −→ ⟨∂1F ⟩. (53)

Together, these homomorphisms form a functor from the category of GL(N)-foams to the
category of graded R-modules.

Suppose that a web Γ admits a reflection symmetry about an axis ℓ. Then ⟨Γ⟩ is
naturally a unital associative Frobenius R-algebra, due to the presence of unit ι, counit ε
and multiplication m cobordisms as schematically shown in Figure 6.4 for the so-called Θ-
web, resembling the letter Θ (orientations and weights of edges are omitted for simplicity).
The cobordisms ι, εmatch halves of ⟨Γ⟩ by rotating one half into the other. The cobordism
m matches two halves of Γ in Γ ⊔ Γ, leaving a single Γ as the other boundary of the
cobordism.

A homomorphism of commutative rings

ϕ : R −→ S, (54)
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where S is not necessarily graded, can be used to define a version ⟨Γ⟩S of state spaces,
a kind of base change from R to S, such that ⟨Γ⟩S is a free S-module of rank P (Γ)q=1

for any MOY graph Γ. Here P (Γ)q=1 is the specialization of the Laurent polynomial
P (Γ) ∈ Z+[q, q

−1] to its value at q = 1.

Due to all modules being free, one way to define it is by

⟨Γ⟩S := ⟨Γ⟩ ⊗R S. (55)

A more intrinsic way to define ⟨Γ⟩S is via S-valued closed foam evaluation that uses ϕ,
see [KR1, Section 4] for a similar definition in a different case where the state spaces are
not known to be free modules over the ground ring.

Consider now a special case when the ground ring S = k is a field and we pick a
separable polynomial

f(x) = xN + uN−1x
N−1 + . . .+ u0, ui ∈ k, i = 1, . . . , N − 1, (56)

irreducible over k. Let K be a splitting field of f(x) over k and F be the field

F := k[α]/(f(α)). (57)

The polynomial f(x) has N roots α1, . . . , αN ∈ K, and each of them defines a homomor-
phism of k-algebras F −→ K.

Consider the homomorphism

ϕ : R −→ k, ϕ(Ei) = (−1)iui. (58)

and state spaces ⟨Γ⟩ϕ associated to MOY graphs via the foam construction. The state
spaces of the empty graph and the N -circle are isomorphic to k,

⟨∅⟩ϕ ∼= ⟨ΓN⟩ ∼= k. (59)

The state space of the 1-circle is isomorphic to F ,

⟨Γ1⟩ ∼= F, (60)

via a homomorphism that take a one-dotted disk with boundary Γ1 to α (facets of foam
may be labeled by symmetric functions in the number of variables equal to the thickness
of the facet). The state space Γ1 is a free k module with the basis of disks with i dots,
i = 0, . . . , N − 1, see Figure 6.5. The corresponding basis of F is that of powers of α,
{1, α, . . . , αN−1}.

There is a surjective homomorphism

ϕ1 : R(1N ) −→ K, ϕ1(xi) = αi, i = 1, . . . , N, (61)

into the splitting fieldK that extends the homomorphism ϕ, so the square below commutes
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1 α

. . .
i

αi

. . .
N − 1

αN−1

Figure 6.5: Basis of powers of a dot (powers of α) in ⟨Γ1⟩.

R(1N ) K

R k.

ϕ1

ϕ

Recall that the source ring of ϕ1 is the state space of Γ(1N ), which consists of N weight
1 lines that merge and split into an N -line.

6.2. Proposition. The map ϕ1 induces a surjective homomorphism of k-algebras

ϕ̃ : ⟨Γ(1N )⟩ϕ −→ K. (62)

This map is an isomorphism if and only if the Galois group of the splitting field extension
K/k is the symmetric group SN .

Proof. The map ϕ1 induces a surjective homomorphism ϕ̃ of k-algebras since f is a
separable polynomial (56) of degree N . Galois groups are isomorphic to subgroups of

symmetric groups, so ϕ̃ is an isomorphism if and only if K is a splitting field of a separable
polynomial.

Thus, ϕ̃ is an isomorphism if the splitting field extension K/k has the largest possible
degree N ! given that deg(f) = N .

Recall that the extension K/k is Galois and there is a bijection between intermediate
subfields of K/k and subgroups of the Galois group Gal(K/k).

Assuming that the Galois group is the largest possible given that f has degree N , we
can understand the state spaces of webs ⟨Γa⟩ϕ for all decompositions a via a part of the
Galois correspondence.

6.3. Proposition. Suppose that Gal(K/k) = SN . Then for each decomposition a of N ,
there is a ring isomorphism

⟨Γa⟩ ∼= KSa (63)

between the ϕ-state space of the web Γa and the intermediate subfield KSa.
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k

N

1 N − 1

F

N

111 . . .1

K

N

ak. . .a2a1

KSa

N

Figure 6.6: Basic webs along an N -line with field extensions of k as state spaces. The
top label is the thickness of the edge, and the bottom label is the corresponding field.

Proof. The proposition follows by looking at subrings in K of symmetric functions for
the corresponding roots for each strand of thickness a1, . . . , ak (symmetric functions in
subsets of linear functions x− αi), which implies that ⟨Γa⟩ is exactly the subfield of K of
Sa-invariant elements.

Inclusions of subfields as well as trace maps between different subfields correspond to
foams that merge and split lines in these webs, corresponding to combining to consecutive
parts of a or splitting a part into two parts,

(. . . , ai−1, ai, ai+1, ai+2, . . . ) ↔ (. . . , ai−1, ai + ai+1, ai+2, . . . ).

Thus, state spaces for theta-like webs Γa correspond to subfields for the parabolic
subgroups Sa. In this correspondence we do not encounter all intermediate subfields but
only those that come from “flattening” or ordering the set of roots of f and can be matched
to decompositions Sa, see Proposition 6.3.

For the partition (1, N − 1) the state space

⟨Γ(1,N−1)⟩ ∼= F,

also see (60) and Figure 6.3 left for a = 1.

We encounter the ground field k, field F , the splitting field K as well as intermediate
fields for the parabolic subgroups as ϕ-state spaces of theta-like webs. These webs can be
thought of as bubbling off an N -line or N -circle, see Figure 6.6.

When [K : k] < N !, the Galois group is a proper subgroup of SN . For each permutation
s of N roots of f(x) in K there is a surjective map

ϕs : k[x1, . . . , xN ] −→ K, ϕs(xi) = xs(i), i = 1, . . . , N (64)

that lifts homomorphism

ϕS : R⊗Z k ∼= k[E1, . . . , EN ] −→ k, ϕS(Ei ⊗ 1) = (−1)iui, (65)
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(similar to homomorphism (58)). Map ϕs factors through a homomorphism

ψs : ⟨Γ(1N )⟩ϕ −→ K,

ϕs : k[x1, . . . , xN ]
γ−→ ⟨Γ(1N )⟩ϕ

ψs−→ K,

where γ is the canonical quotient map, sending xi to the unit element cobordism into
Γ(1N ) decorated by a dot on the i-th thin disk.

For two s that differ by an element of Gal(K/k) the two homomorphisms are related by
an automorphism ofK. Choose representatives s1, . . . , sm of left cosets of Gal(K/k) acting
on roots α1, . . . , αN ∈ K of f(x). Here m = N !/[K : k] is also the index of Gal(K/k)
as a subgroup of SN of all permutations of roots of f(x). Each of these representatives
determines a surjective homomorphism

ψsi : ⟨Γ(1N )⟩ϕ −→ K, i = 1, . . . ,m. (66)

Note that ⟨Γ(1N )⟩ϕ is a commutative k-algebra of dimension N ! and a quotient of
F ⊗k F ⊗ · · · ⊗F = F⊗N . Consequently, it is a commutative semisimple k-algebra (since
k ⊂ F is a separable extension) and necessarily a direct product of field extensions of k.
The product of homomorphisms

⟨Γ(1N )⟩ϕ
m∏
i=1

K
(ψi)

m
i=1 (67)

is easily seen to be surjective and then necessarily an isomorphism.

6.4. Proposition. There is an isomorphism of algebras

⟨Γ(1N )⟩ϕ ∼= K×m, m = N !/[K : k], (68)

given by (67), between ϕ-state space of (1N) theta web and the direct product of m copies
of K, where m is the index of the Galois group Gal(K/k) in SN .

It is a reasonable question whether the above observations can be developed into
something of interest to number theory or algebraic geometry, with the caveat that the
Galois correspondence, that we see above in connection with webs and foams, is about
200 years old. One can ask whether it make sense to assign a commutative ring A to a line
and étale extensions B of A to webs Γ that “bubble off” that line, additionally admitting
a symmetry axis, so that the state space of web Γ is a ring B. Can étale cohomology be
then connected to some version of foam theory?

The universal extension R ⊂ Z[x1, . . . , xN ] is used to build equivariant link homology.
Specializing N = 2 results in Khovanov homology. Further specializing to a separable
degree two characteristic zero field extension k ⊂ F results in Lee homology, i.e., see
[Le, KR2]. Lee homology groups depend on linking numbers only, but looking at the
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degeneration from the universal extension to a field extension allows to pull out the Ras-
mussen invariant [Ra] of knot concordance and its variations. This pattern extends to
N > 2, see [Go, Wu, Lo, Lw]. Specializing to separable field extensions results in near-
trivial theories, from the topological viewpoint, but the way the universal theory degener-
ates into those leads to a wealth of information about concordance of knots and links. One
can wonder whether more advanced structures in Galois theory and number theory may
admit such liftings or deformations relating them to non-trivial low-dimensional topology.

6.5. Overlapping foams and Sylvester double sums.A straightforward extension
of the Robert–Wagner evaluation formula to overlapping foams was proposed in [Kh4,
Section 3]. It allows to interpret the Sergeev–Pragacz formula for the supersymmetric
Schur functions (hook Schur functions) [MJ1], [Mo, Chapter 4] and the Day formula for
Toeplitz determinants of rational functions via overlapping foams, see [Kh4, Da, HJ]. The
same paper also suggested a relation between overlapping foam evaluation and resultants
and speculated on possible relevance of overlapping foams to categorification of quantum
groups.

In this section we explain how to interpret Sylvester double sums and relations on them
(the Exchange Lemma) as developed in [KSV] and earlier work (see references in [KSV])
via overlapping foams as well. We assume familiarity with Section 3 of [Kh4], which we
briefly summarize below.

A closed GL(N) foam F is a decorated combinatorial two-dimensional CW-complex
embedded in R3. It consists of oriented facets (connected surfaces) each carrying a thick-
ness from 1 to N . Facets are joined along seams where facets of thickness a and b merge
into a facet of thickness a+ b, subject to compatibility of orientations. A foam may con-
tain vertices, which are singular points that connect pairs of seams between two different
ways of merging three facets of thicknesses a, b, c into a facet of thickness a+b+c. A facet
of thickness k of a foam may contain dots labeled by symmetric functions in k variables.
A foam F evaluates to ⟨F ⟩ which is a symmetric polynomial in N variables. We refer
to [RW2, KK] and references in [KK] for details.

It is useful to label the set of variables byX with |X| = N and view ⟨F ⟩ as a symmetric
function in these variables, denoting the corresponding ring of symmetric functions by
Sym(X).

When F is a connected surface (a single facet) of maximal thickness N , with a dot
on it labeled by f(X) ∈ Sym(X), the evaluation ⟨F ⟩ = f(X) does not depend on the
genus of the surface, see Figure 6.7. Of course, for most other foams, including surfaces
of thickness less that N = |X|, the evaluation will strongly depend on the genera of
components of the foam.

In [Kh4, Section 3] an extension of this evaluation is proposed when several embedded
foams for disjoint sets of variables overlap in R3. Foam evaluation ⟨F ⟩, which is a sum
of evaluations ⟨F, c⟩ over all colorings c, is modified by scaling ⟨F, c⟩ by (xi − yj)

m(i,j,c),
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f
X

|X|

=
f

= f (X)

X

|X|
Figure 6.7: When F is a single facet foam, of maximal thickness N = |X|, it evaluates to
the product of symmetric functions over all the dots on F . In particular, the evaluation
does not depend on the genus of the surface F . The figure shows the case of a single dot
and surface F having genus 1 or 0. Dashed circle on the sphere is there to depict the
sphere schematically (it is not a seam circle on a sphere separating it into two facets of
complementary thickness). The latter seam lines appear in the next few figures.

where m(i, j, c) is the number of circles in the intersection of the union Fi(c) of facets
colored i, xi ∈ X and the union Fj(c) of facets colored j, yj ∈ Y . The product of these
terms is taken over all pairs X, Y and xi ∈ X, yj ∈ Y . Ordering of each pair of sets (X, Y )
of foam labelings is fixed to have a well-defined term xi − yj versus yj − xi.

For a closely related notion of an SL(N) foam and its evaluation, other seam lines are
allowed as well, where oriented facets of thickness a, b, c with a+b+c = N or a+b+c = 2N
meet along seams. Case N = 3 and foams with (a, b, c) = (1, 1, 1) seam lines have been
treated in details in the literature, but for N > 3 foam evaluation is mostly considered for
GL(N) foams. See Section 2.3.1 in [RW1] for a brief discussion on modifying evaluation
from GL(N) to SL(N) foams, with the caveat that what call GL(N) foams is referred to
as slN foams in [RW1], and our SL(N) foams are called generalized foams in [RW1].

Given finite sets of variables Y and Z, define

R(Y, Z) =
∏

y∈Y,z∈Z

(y − z), R(Y, Z) = 1 if Y = ∅ or Z = ∅. (69)

Note that R(Y, Z) is a polynomial that is symmetric in variables in Y and symmetric in
‘variables in Z, thus

R(Y, Z) ∈ Sym(Y )⊗ Sym(Z),

where Sym(Y ) stands for the ring of symmetric polynomials in Y with coefficients in Z
or in a field k, likewise for Sym(Z). Polynomial R(Y, Z) equals the evaluation as in [Kh4,
Section 3] of overlapping connected surfaces (foams with one facet) labeled by Y and Z
and of maximal thickness |Y | and |Z|, respectively, see Figure 6.8.

Given sets of variables A = {α1, . . . , αm} and B = {β1, . . . , βn}, the Sylvester double
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Y Z

|Y | |Z|

Figure 6.8: Overlapped connected surfaces labeled Y and Z of maximal thickness |Y |
and |Z|, respectively, evaluate to R(Y, Z). In the picture, the surfaces are a torus and a
sphere.

sum [Sy, DHKS, KSV], for 0 ≤ p ≤ m and 0 ≤ q ≤ n, is given as follows:

Sylp,q(A,B)(x) :=
∑

A′⊂A,B′⊂B,
|A′|=p, |B′|=q

R(A′, B′)R(A \ A′, B \B′)
R(x,A′)R(x,B′)

R(A′, A \ A′)R(B′, B \B′)
.

(70)
The sum is over all subsets of A and B of cardinality p and q. We refer the reader
to [LPr] and the above papers for applications of Sylvester double sums and their relation
to subresultants.

Sylvester double sum is a polynomial in x of degree at most d := p + q. When p = 0
or q = 0, the expression is called a single sum. Function Sylp,q(A,B)(x) is a polynomial
in x with coefficients in the ring Symm,n

∼= Sym(A)⊗ Sym(B) which is the tensor product
of rings of symmetric functions in the m variables in A and n variables in B, respectively.

To interpret this sum via foam evaluation, we observe that denominator terms may
come from seamed 2-spheres, since in foam evaluation their positive Euler characteristics
make the corresponding products go into the denominators. These 2-spheres should have
seam circles splitting the 2-spheres into pairs of discs of complementary thickness p,m−p
for the A-variables sphere and q, n−q for the B-sphere. This would produce denominator
terms R(A′, A \ A′) and R(B′, B \B′) in the sum.

Furthermore, the 2-spheres should intersect, to account for the two other terms in
the product that do not contain x. Finally, to incorporate x, we introduce a third group
of variables {x}, in addition to A and B, and a connected surface of thickness one for
{x} that intersects the 2-spheres labeled A and B in one circle each, to account for the
terms in the product that contain x. These three components of the foam are shown in
Figure 6.9.

Figure 6.10 shows how these three foams can overlap in R3, with the resulting evalu-
ation equal to Sylp,q(A,B)(x).

6.6. Remark. In our evaluation of 2-spheres with a seam line separating disks with
complementary thickness we are tacitly considering SL evaluation. To convert to GL
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x

1

(a)

p m− p

A′ A \ A′

(b)

B′ B \B′

q n− q

(c)

Figure 6.9: Three components of the double sum foam in Figure 6.10, from left to right:
(a) connected surface (genus is unimportant, chosen to be one) of maximal thickness
1 carrying variable set X = {x}, (b) seamed 2-sphere glued from disks of thickness p
and m − p, respectively, with the variable set A, (c) seamed 2-sphere glued from disks
of thickness q and n − q, respectively, with the variable set B. Colorings of (b) are in
bijections with A′ ⊂ A, |A′| = p, colorings of (c) are in bijections with B′ ⊂ B, |B′| = q.

x
1

p

m− p

q n− q

A′ A \ A′

B \B′

B′

Figure 6.10: Foam evaluating to Sylp,q(A,B)(x). Four intersection circles of three compo-
nents are shown schematically, as pairs of points of four different colors (blue, red, brown,
cyan). The two seamed 2-spheres intersect along two circles (indicated as pairs of blue
and brown points), and the third surface (shown as a torus, but its genus is irrelevant for
the evaluation) intersects each seamed 2-sphere along a circle (indicated as red and cyan
pairs of points). A coloring of this foam consist of assigning a subset A′ ⊂ A of cardinality
p to the left disk of the A sphere and a subset B′ ⊂ B of cardinality q to the left disk of
the B sphere.
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x
1 p m m− p

q n n− q

A′ A \ A′

B \B′B′

Figure 6.11: GL version of the foam in Figure 6.10. A-foam (shown in grey) and B-foam
(shown in purple) are theta-foams, with one disk of maximal thickness in each (shaded
disks labeled m and n). Intersection circles are schematically depicted by pairs identically
colored points.

A

p m− p

A

p m− p

m

Figure 6.12: SL(m) vs GL(m) foams. Left: An SL(m) foam 2-sphere made of two disks
with complementary thicknesses p and m − p. Right: A GL(m) theta-foam obtained by
adding a disk of maximal thickness m to the 2-sphere. There are two ways to orient the
seam edge in the foams and the two evaluations differ by (−1)p(m−p), see [RW1, KK].

evaluation, 2-spheres should be changed into theta-foams with one disk facet of maximal
thickness. The relation is shown in Figure 6.12.

For each of the foam configurations in this section, it is easy to find an embedding into
R3 that extends to an embedding of the corresponding GL foam, with seamed 2-spheres
becoming theta-foams with the new disk facet of maximal thickness, while preserving the
evaluation.

Figure 6.11 shows the GL version of the foam that evaluates to the Sylvester double
sum.

Chen and Louck in [CL, Theorem 2.1] give a certain polynomial identity for a finite
set of variables A = {α1, . . . , αm} and set of variables X = {x1, . . . , xm−d}. This is an
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X

m− d

em−d

=

X A

m− d d m− d

variables
X : {x1, . . . , xm−d}
A : {α1, . . . , αm}

em−d

Figure 6.13: Foams for the relation (71). The thickness of X is m− d. The thickness of
the left portion of A is d, the thickness of its right portion is m− d. The two components
on the right hand side overlap along a circle.

X

m− d

f

=

X A

m− d d m− d

variables
X : {x1, . . . , xm−d}
A : {α1, . . . , αm}

f

Figure 6.14: Foams for the relation (72), a generalization of Figure 6.13 foam. Genus of
the X component is unimportant.

xk αi αj

X A′ A \ A′

contributes (xk − αi)

dot em−d contributes
∏

r∈A\A′

αr

xk ∈ X, αi ∈ A′, αj ∈ A \ A′

2-sphere colored (i, j) contributes (αj − αi)
−1

Figure 6.15: Foam for the right hand side of the identity (71). The 2-torus X has maximal
thickness m− d = |X| and a unique coloring, by X. It contributes 1 to the product. Left
disk of 2-sphere is colored by A′ ⊂ A, right disk by its complement A′\A. The denominator
term on the right hand side is the product of αj − αi, over αi ∈ A′ and αj ∈ A \A′. The
intersection circle contributes the product of xk−αi, over all k = 1, . . . ,m−d and αi ∈ A′.
Dots on the left hand side and right hand side are labeled by the elementary symmetric
function of the degree equal to the thicknessm−d of the facets and contribute x1 · · · xm−d,
respectively product of αj ∈ A \ A′, to the terms.
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identity in the ring of rational functions Q(α1, . . . , αm, x1, . . . , xm−d):

x1 · · · xm−d =
∑

A′⊂A, |A′|=d

 ∏
αj /∈A′

αj


∏

xj∈X, αi∈A′

(xj − αi)∏
αj /∈A′, αi∈A′

(αj − αi)
. (71)

More generally, they have the formula

f(X) =
∑

A′⊂A, |A′|=d

f(A \ A′)

∏
xj∈X, αi∈A′

(xj − αi)∏
αj /∈A′, αi∈A′

(αj − αi)
(72)

for a symmetric polynomial f in m − d variables such that the degree of f in any of its
variables is at most d. When m = d + 1, so that X = {x1}, their formula specializes
to the classical Lagrange interpolation formula for a one-variable polynomial of degree at
most d, see [CL].

Foam equivalents of formulas (71) and (72) are depicted in Figures 6.13 and 6.14,
correspondingly. X foams there have maximal thickness m − d = |X| and a surface of
any genus can be chosen in place of a torus for that component. Figure 6.15 shows in
detail why the foam in the right hand side of Figure 6.13 evaluates to the right hand side
of formula (71).

An important role in [KSV] and several related papers is played by the Exchange
Lemma. To state it, following [KSV], take A and B to be disjoint sets of cardinalities m
and n, respectively. Then

∑
A′⊂A, |A′|=d

R(A \ A′, B)
R(X,A′)

R(A \ A′, A′)
=

∑
B′⊂B, |B′|=d

R(A,B \B′)
R(X,B′)

R(B′, B \B′)
, (73)

Foam interpretation of the both sides of this identity is shown in Figure 6.16.

As another example, consider the formula in [DKSV, Proposition 2.1]. To state it, let
A,B be finite sets with |A| = m and |B| = n, and choose 0 ≤ d ≤ m. Let X,E be finite
sets such that

|E| ≥ max{|X|+ d , m+ n− d , m}.
Then ∑

A1⊔A2=A
|A1|=d, |A2|=m−d

R(A2, B)R(X,A1)

R(A1, A2)
=

=
∑

E1⊔E2⊔E3=E
|E1|=d, |E2|=m−d, |E3|=|E|−m

R(A,E3)R(E2, B)R(X,E1)

R(E1, E2)R(E1, E3)R(E2, E3)
.

(74)
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X r
A

d m− d B

n

A′ A \ A′

r = |X| m = |A| n = |B|

m =

X r
B

d n− d A

m

B′ B \B′

n

Figure 6.16: Exchange Relation written via foam evaluation. Seam circles of blue and
orange theta-foams are oriented oppositely, to incorporate implicit sign in formula (73)
that appears if in one of the denominators the order of a set and its complement is
reversed, see [KSV]. X and B foams on the left hand side and X and A foams on the
right hand side may carry any genus; we chose genus 1 for all four.

Foam interpretation of this formula is shown in Figure 6.17. In the evaluation of
overlapping foams we assume that variable sets (in this example, A,B,X,E) are disjoint,
but perhaps this condition can be relaxed (formula (74) holds as well when these sets
have non-empty intersections, see [DKSV]).

We leave it to the reader to write a similar foam interpretation of the relation between
Sylvester double and single sums, see formula (2) in [DKSV].

From the present examples and those in [Kh4, Section 3] one can make a natural
guess that there exists a meaningful theory of overlapping foams, but it is not clear to
the authors how to develop it. One possible direction is to use an extension of Sylvester’s
subresultants to polynomials with multiple roots constructed in [DKS, DKSV] to search for
the symmetric analogue of the Robert–Wagner foam evaluation [RW1]. Robert–Wagner
work and many prior papers (see [KK] for an incomplete survey) deal with exterior foams
that are used to categorify networks on intertwiners between quantum exterior powers of
the fundamental Uq(slN) representations. Papers [Ca, QRS, RW2] indicate that a similar
theory should exists for symmetric foams that would categorify networks of quantum
symmetric powers of the fundamental representation, but a definition and evaluation of
symmetric foams is unknown as of today.

7. Appendix (joint with Lev Rozansky): Comparison with matrix factor-
izations

Each finite degree field extension k ⊂ F is Frobenius. Any nonzero k-linear map ε :
F −→ k is a non-degenerate trace making F a commutative Frobenius algebra over k.



FOAMS, ITERATED WREATH PRODUCTS, FIELD EXTENSIONS, SYLVESTER SUMS1095

X
A

B

A1 A \ A1|X| |B|

d m− d

m = |E|

X

|X|

d

E1

m− d E2

|E| \m

E3
A

|A|

B

|B|

Figure 6.17: Foams for the formula (74), also see [DKSV, Proposition 2.1]. On the right
hand side, generalized theta-foam in the middle for variable set E consists of a thickness
|E| disk with three adjacent disks of thicknesses d, m− d and |E|−m, respectively. Each
of these three disks intersects one of the spheres for variable sets A,B,X.

For separable extensions, there is a canonical trace trF/k used above.

Matrix factorizations deliver a supply of commutative Frobenius algebras and two-
dimensional TQFTs with corners [KRz, CM, DM]. A nondegenerate potential w ∈
k[x1, . . . , xk] defines the Jacobi algebra

J(w) := k[x1, . . . , xk]/(∂1w, . . . , ∂kw), ∂iw := ∂w/∂xi (75)

(a potential is called nondegenerate when this quotient algebra is finite-dimensional). The
Jacobi algebra is commutative Frobenius and carries a canonical trace trGr, given by the
Grothendieck residue, i.e., see [AGV, GH]. When k is a subfield of C, the trace may be
written as a complex integral

trGr(p(x)) =
1

(2πi)k

∫
|∂iw|=R

p(x)

∂1w · · · ∂kw
dx1 · · · dxk, p(x) ∈ k[x1, . . . , xk] (76)

over a contour that contains all roots of the system of equations ∂1w = . . . = ∂kw = 0.

Suppose that F is a subfield of C (in particular, char(k) = 0). Since F/k is a simple
extension, there is a generating element α ∈ F, k(α) = F , and

F ∼= k[x]/(f(x)), (77)

where f is the minimal polynomial of α over k,

f(x) = xn + an−1x
n−1 + . . .+ a0, ai ∈ k. (78)

We can realize F as the Jacobi algebra of the singularity with the potential w(x) in a
single variable x such that w′(x) = f(x),

w(x) =
1

n+ 1
xn+1 +

an−1

n
xn + . . .+ a0x. (79)
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The polynomial f(x) is irreducible over k and can be fully factored in the algebraic closure
k ⊂ C:

f(x) = (x− λ1) · · · (x− λn), λi ∈ k, λi ̸= λj. (80)

The Hessian

w′′(x) = f ′(x) =
n∑
i=1

∏
j ̸=i

(x− λj), (81)

and
w′′(λi) =

∏
j ̸=i

(λi − λj). (82)

For a single variable x and a potential w(x) with w′(x) = f(x) having simple roots only,
the Grothendieck trace is given by

trGr(p(x)) =
1

2πi

∫
|f(x)|=R

p(x)

f(x)
dx =

n∑
i=1

p(λi)∏
j ̸=i

(λi − λj)
, p(x) ∈ k[x], R ≫ 0. (83)

To compare the two traces, note that the canonical trace trF/k in a finite separable

field extension can also be characterized as follows. The tensor product F ⊗k k of F with
the algebraic closure k of k is isomorphic to the direct product of n copies of k, where n
is the degree [F : k],

F ⊗k k ∼= k× · · · × k. (84)

This algebra contains n minimal idempotents e1, . . . , en, one for each term in the product.
Trace trF/k extends k-linearly to a trace

trF/k : F ⊗k k −→ k

that is characterized uniquely by its taking value 1 on each minimal idempotent, trF/k(ei)
= 1.

Any other nondegenerate trace ε : F −→ k extends likewise to a k-linear trace

ε : F ⊗k k −→ k

taking a nonzero value on each idempotent ei, with at least one of these values different
from 1.

Minimal idempotents ek(x) ∈ k[x]/(f(x)) are given by

ek(x) =
∏
j ̸=k

x− λj
λk − λj

. (85)
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=
ω′′(x)

Figure 7.1: One-holed torus represents the element w′′(x) in the Jacobi algebra of a one-
variable potential.

Indeed, ek(λi) = δi,k, so these are delta functions when evaluated on the roots of f(x).
Evaluating the Grothendieck trace on them gives

trGr(ek(x)) =
n∑
i=1

ek(λi)∏
j ̸=i

(λi − λj)
=

1∏
j ̸=k

(λk − λj)
. (86)

Thus, values of the two traces on minimal idempotents are

trF/k(ek) = 1, trGr(ek) =
∏
j ̸=k

1

(λk − λj)
, 1 ≤ k ≤ n, (87)

and the field extension trace can be written as

trGr(p(x)) =
1

2πi

∫
|f(x)|=R

w′′(x)p(x)

w′(x)
dx =

n∑
i=1

p(λi), p(x) ∈ k[x]. (88)

Notice that we added the Hessian w′′(x) to the numerator of the integral and kept the
denominator. We see that the two traces differ by multiplication by the Hessian,

trF/k(p(x)) = trGr(w
′′(x)p(x)). (89)

The second and first derivatives w′′(x), w′(x) have no common roots, since all roots of
w′(x) = f(x) are simple, and w′′(x) is an invertible element of k[x]/(f(x)) ∼= F (the latter
ring is a field anyway). In the 2D TQFT of the Landau–Ginzburg model for the potential
w(x) the value of a one-holed torus, as an element of the Jacobi algebra (the state space
of the circle), is the Hessian w′′(x), see Figure 7.1.

Consequently, the field extension trace (the map induced by the cap in the TQFT
associated to (F,k, trF/k)) can be written as the cap with the genus one surface (holed
torus) in the Landau–Ginzburg TQFT associated to a given generating element α ∈ F ,
as described earlier, see Figure 7.2.
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trF/k
= = ω′′(x)

MF/LG TQFT maps

Figure 7.2: Cap given by the field extension trace equals the genus one cap trace in the
matrix factorization (Landau-Ginzburg) TQFT, for any choice of generator x and the
corresponding potential w(x).

Choosing a different generator α for F will, in general, change the polynomial f(x),
potential w(x) and the value of the trace on idempotents of F ⊗k k, while the trace trF/k
is defined canonically. At the same time, it is given by capping off by the holed torus, in
any one-variable matrix factorization TQFT realization of F as the Jacobi algebra.

This amusing relation between matrix factorizations and field extensions may be worth
a further exploration. Notice, in particular, that F may be realized as the Jacobi algebra,
F ∼= J(w), for a multivariable potential w(x) ∈ k[x1, . . . , xk]. Equivalently, F is the
zero-dimensional complete intersection of hypersurfaces ∂iw = 0, i = 1, . . . , k. It should
be interesting to find nontrivial presentations of that kind for various F with k > 1 or
locate them in the literature.

The Jacobi algebra J(w) is the endomorphism ring of the canonical matrix factoriza-
tion

K(w) =
k⊗
i=1

K(xi − yi, ui), (90)

a Koszul factorization with the potential w12 = w(x) − w(y) in 2n variables x1, . . . , xn,
y1, . . . , yn. Here ui are any polynomials in x’s and y’s such that

w12 =
k∑
i=1

(xi − yi)ui,

and K(v, u) is the factorization

k[x, y]
v−→ k[x, y]

u−→ k[x, y],

see [KRz]. Matrix factorization K(w) represents the identity functor on the triangulated
category MF(w) of matrix factorizations with potential w and morphisms being homs of
matrix factorizations modulo homotopies [KRz].

Assume that F/k is a finite Galois extension in characteristic 0 and consider the Galois
group G = Gal(F/k). One can ask to find presentations of F as the Jacobi algebra J(w)
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τσ τ y σ x

x

z

z τσ

Figure 7.3: Top left arc represents the identity factorization K(w). Bottom left arc
carrying dot σ represents the factorization M(σ). Trivalent vertices on the middle and
right pictures show mutually-inverse isomorphisms (91).

such that Galois symmetries σ ∈ G lift to endofunctors of MF(w) defining an action of
the Galois group on that category. Precisely, for each σ we would like to have a matrix
factorization M(σ) = Mx,y(σ) (using subindices to specify sets of variables) with the
potential w(x) − w(y) together with isomorphisms in the homotopy category MF(x − z)
of matrix factorizations with the potential w(x)− w(z)

Mx,y(σ)⊗y My,z(τ) ∼= Mx,z(στ), σ, τ ∈ G, (91)

such that Mx,y(1) ∼= K(w) . One can further require that these isomorphisms satisfy
compatibility relations so that G acts on MF(w) in a strong sense. Furthermore, fac-
torization M(σ) should induce the symmetry σ on J(w) ∼= F upon taking the trace of
the identity endomorphism of M(σ). Diagrammatically, following notations from [KRz],
denote M(σ) = Mx,y(σ) by a dot labeled σ on an oriented line with endpoints labeled
x, y, see Figure 7.3.

The identity map of M(σ) is depicted by a defect interval, shown as a vertical interval
in Figure 7.4 left. Taking the trace of the identity map corresponds, on the diagrammatic
side, to closing of the square into an annulus with a defect circle on it, see Figure 7.4.

In general, a defect circle on an annulus would only give a linear endomorphism of the
Jacobi algebra, not an algebra homomorphism. For that, we would additionally want the
equality shown in Figure 7.5 left, which may come from a more local relation in Figure 7.5
right.

For a general separable finite field extension F/k, it seems hard to impossible to pick a
potential ω ∈ k[x1, . . . , xn] with the Jacobi algebra J(ω) ∼= F and invertible factorizations
M(σ), σ ∈ Gal(F/k), giving an action of the Galois group Gal(F/k) on the homotopy
category of matrix factorizations HMFω with potential ω such that the action induces the
Galois group action on F .

Potentially related structures appear in the theory of Landau–Ginzburg orbifolds,
where a group G acts on k[x1, . . . , xk] preserving the potential w, leading to the category
of G-equivariant matrix factorizations. In those examples usually k = C, and it is unclear
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y xσ

xσ

y

≃

x

σ

y

Figure 7.4: Left: the identity endomorphism of σ. Middle and right: its trace is a defect
circle on an annulus. Boundaries of the annulus correspond to closures of the identity
factorization K(w), given by equating variables x = y in that factorizations and taking
cohomology of the resulting 2-periodic complex. Cohomology is precisely the Jacobi
algebra J(w), and the annulus with the σ-circle defines a linear endomorphism of it.

σ σ

= σ
σ

σ =
σ

σ

Figure 7.5: Left: σ-circle defining an algebra endomorphism of J(w). Right: a sufficient
local relation for that.

whether some version of LG orbifold theory may be adapted to relate Galois extensions
and matrix factorizations.
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