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THE FUNAYAMA ENVELOPE AS THE TD-HULL OF A FRAME

G. BEZHANISHVILI, R. RAVIPRAKASH, A. L. SUAREZ, J. WALTERS-WAYLAND

ABSTRACT. We introduce proximity morphisms between MT-algebras and show that
the resulting category is equivalent to the category of frames. This is done by utilizing
the Funayama envelope of a frame, which is viewed as the Tp-hull. Our results have
some spatial ramifications, including a generalization of the Tp-duality of Banaschewski

and Pultr.
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1. Introduction

Pointfree topology has its origins in the study of topological spaces where the lattice of
open sets is taken as the core construct. Although this has been very fruitful (see, e.g.,
[Joh82, PP12]), it has its own drawbacks because the language is often not expressive
enough. This is well manifested when looking at separation axioms. While the language
of frames is perfectly adequate to express higher separation axioms, it is less so for the
lower ones. For example, being regular means that each open set is the union of open
sets whose closure is contained in it. This condition is easy to express in the language
of frames using the rather below relation (see, e.g., [PP21, p. 88]). On the other hand,
being a Ti-space means that each singleton is closed, which is harder to express since
singletons of the space as well as the closure operator cannot be formalized using only
the frame of opens. However, it can be done using the powerset algebra equipped with
topological closure or interior. This more expressive formalism goes back to Kuratowski
[Kur22], and has further been developed by McKinsey and Tarski [MT44] in the form of

Received by the editors 2025-01-24 and, in final form, 2025-10-09.

Transmitted by Alex Simpson. Published on 2025-10-20.

2020 Mathematics Subject Classification: 18F60; 18F70; 06D22; 06E25; 54E05; 54D10.

Key words and phrases: Topology, frame, interior algebra, proximity, Tp-separation.

©) G. Bezhanishvili, R. Raviprakash, A. L. Suarez, J. Walters-Wayland, 2025. Permission to copy
for private use granted.

1106



THE FUNAYAMA ENVELOPE AS THE TD-HULL OF A FRAME 1107

the theory of closure algebras or interior algebras; that is, boolean algebras equipped with
an appropriate operator. As is clear from the title of their article, The Algebra of Topology,
they envisioned an algebraic formalism to reason about topology. This approach turned
out to be very beneficial not only for topology, but also for the foundations of mathematics
in general, and the connection between intuitionistic and modal logics in particular (see,
e.g., [RS63, CZ97, Esal9)).

As was demonstrated in [BR23] (see also [N6b54, RS63, Nat90]), the standard point-
free approach to topology through the frames of opens can be enhanced by considering
those interior algebras whose underlying boolean algebra is complete. Indeed, these can
naturally be thought of as a pointfree generalization of interior algebras arising as pow-
ersets of topological spaces, and give rise to frames by taking the poset of open elements.
These algebras were coined MT-algebras, in honor of McKinsey and Tarski. Equipping
MT-algebras with an appropriate notion of morphism, we obtain the category MT, and
the open element functor © from MT to the category Frm of frames. Moreover, up
to isomorphism, every frame arises as the frame of open elements of some MT-algebra,
thanks to the well-known Funayama embedding of each frame into a complete boolean
algebra [Fun59]. We call this the Funayama envelope of a frame L and denote it by F L.
However, the assignment L — F L is not functorial: frame morphisms do not in general
lift to complete lattice maps between their Funayama envelopes [BR23, Example 4.4].
To amend this, we introduce a new notion of morphism between MT-algebras, which is
based on a proximity-like structure on the MT-algebra, reminiscent of de Vries proximity
on a boolean algebra (see [dV62, Bez10]). This modification enables us to obtain F as a
functor from Frm to this new category MTp of MT-algebras and proximity moprhisms.
One of our main results establishes that the functors © and F yield an equivalence of
these categories.

As we will see, the Funayama envelope of a frame always satisfies Tp-separation.
Spatially, this is the separation axiom of Aull and Thron [AT62] stating that each point
is locally closed. The MT-version of it states that locally closed elements join-generate
the MT-algebra. By contrast, there is no notion of a Tp-frame, only of a Tp-spatial frame
(see the next paragraph). This can be explained by the fact that an MT-algebra is T
iff it is isomorphic to the Funayama envelope of a frame [BR23, Thm. 6.5], yielding a
one-to-one corresponence between frames and Tp-algebras. We think of the Funayama
envelope as the Tp-hull of a frame, thus providing a useful formalism to capture Tp-
separation pointfreely, albeit in the language of MT-algebras rather than frames. As a
consequence, we obtain that each MT-algebra has a Tp-reflection, which also happens
to be a coreflection. This is explained by the fact that proximity morphisms are weak
enough so that not all isomorphisms in this category are structure-preserving bijections.
This, in particular, results in an equivalence of MTp, its full subcategory TDMTp of
Tp-algebras, and Frm (for the reader’s convenience, all categories of interest are gathered
together in tables at the end of the paper).

Our results have some spatial ramifications, including a further explanation and gen-
eralization of the Tp-duality of Banaschewski and Pultr [BP10]. One of their key notions
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is that of a D-morphism between frames. We generalize this to a D-morphism between
MT-algebras. For Tp-algebras, this notion is stronger than that of a proximity morphism.
We prove that the category STDMT of spatial Th-algebras is a reflective subcategory of
the category MTp of MT-algebras and D-morphsims, and is equivalent to the category
TDTop of Tp-spaces. This yields a pointfree description of the Tp-coreflection of [BP10,
3.7.2], which is not expressible in the language of frames. Another advantage of the MT-
approach is that every MT-morphism between Tp-algebras is a D-morphism, which is in
contrast with what happens in the setting of frames (where the category TD-SFrmp of
Tp-spatial frames with D-morphisms is not a full subcategory of Frm).

As we pointed out above, D-morphisms between spatial Tp-algebras correspond to
continuous maps between their dual Th-spaces. We also give a dual characterization of
proximity morphisms between spatial Th-algebras. This is done by introducing the notion
of a sober map (that is, a continuous map from one topological space to the soberification
of another), thus obtaining a more general duality for spatial Tp-algebras that subsumes
the Tp-duality for frames. The latter is the restriction of a new duality between the
categories Topg of topological spaces and sober maps and SMTp of spatial MT-algebras
and proximity morphisms. This allows us to not only capture the D-morphisms between
Tp-spatial frames as in the Tp-duality of [BP10], but also all frame morphisms.

The ability to describe the Tp-hull of a frame provides further evidence that this
enhanced pointfree approach to topology is highly beneficial. For example, it affords
sufficiently expressive power to capture lower separation axioms, which have been elusive
in locale theory.

2. Preliminaries

In this section we briefly review some well-known facts about frames and MT-algebras
that we will use in the rest of the paper.

Frames and co-frames. We recall that a complete lattice L is a frame if it satisfies the
join-infinite distributive law

a/\\/S:\/{a/\s|s€S},

and a co-frame if it satisfies the meet-infinite distributive law

av \S=/Navs|ses}

foralla € L and S C L. A frame morphism is a map between frames preserving arbitrary
joins and finite meets, and a co-frame morphism is defined dually. As usual, we let Frm
denote the category of frames and frame morphisms.

A typical example of a frame is the complete lattice QX of open sets of a topological
space X, and of a co-frame the complete lattice ['X of closed sets of X. The assignment
X — QX is the object part of the functor 2 : Top — Frm®?, which sends each continuous
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map f : X — Y to the preimage map f~! : QY — QX. The functor Q has a right adjoint,
namely the functor pt : Frm® — Top, which maps each frame L to the space of its points
(completely prime filters) with the topology given by o [L], where o (a) = {P € ptL |
a € P} for each a € L. The functor pt sends each frame morphism f : L — M to the
continuous map f~!: ptM — ptL.

A frame L is spatial provided points of L separate non-comparable elements of L, and
a space X is sober if each irreducible closed set is the closure of a unique point. The
adjunction ) — pt restricts to an equivalence between the full subcategories SFrm of
spatial frames and Sob of sober spaces (see [PP12, Ch. II] for details):

Q

Top I Frm®

pt

full full

Sob +—— 4 SFrm®

More important for our purposes is the Tp-duality of Banaschewski and Pultr [BP10].
We recall [AT62] that a topological space X is a Tp-space if each point z € X is locally
closed (closed in some open neighborhood of x). Let TDTop be the full subcategory of
Top consisting of Tp-spaces.! If f : X — Y is a continuous map between Tp-spaces, then
f71: QY — QX has an extra property. To describe it, we recall that an element a of a
poset P is covered by another element b if a < b and from a < z < b it follows that a = x
or x = b. In this case we write a < b. An element a is said to be covered if a < b for some
b.

Now, since each x € X is locally closed, there is U € QX such that x € U and
U\{z} € QX. Therefore, U\{z} is covered by U in QX. Thus, the filter F, := {U €
QX |z € U} of QX is slicing in the following sense:

2.1. DEFINITION. [BP10, Sec. 2.6] A completely prime filter F' of a frame L is slicing if
there exist b € F and a ¢ F with a < b.?

The Tp-spectrum of a frame L is defined to be the collection pt;, L of slicing filters of L,
topologized by setting the opens to be the elements of the form 6(a) = {x € ptp L | a € z}.
As was shown in [BP10, Lem. 2.6.1], pt,, L is a subspace of pt L. The dual frame morphisms
of continuous maps between Th-spaces have the following extra property:

2.2. DEFINITION. [BP10, Sec. 3.1] A frame morphism f : L — M is a D-morphism
provided f~!(F) is a slicing filter of L for each slicing filter F' of M.

n [BP10, 3.1] this category is denoted by Top,.

2As follows from [BP10, Lem. 2.6.1], in the definition of a slicing filter it is enough to assume that
F is prime as being completely prime is then a consequence. This notion captures locally closed points
in that a point (of a Tp-space) is locally closed iff the corresponding completely prime filter F), is slicing
[BP10, Prop. 2.7.1].
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Let Frmp denote the wide subcategory of Frm whose morphisms are the D-morphisms.
A frame L is said to be Tp-spatial if it is isomorphic to Q2X for some Tp-space X. Let
TD-SFrmp be the full subcategory of Frmp determined by these objects. We then have
(see [BP10, Prop. 3.5.1)):

2.3. THEOREM. [Tp-duality] There is an adjunction (2, ptp) between TDTop and Frmp®?,
which restricts to an equivalence between TDTop and TD-SFrmp°P.

Q \
TDTop |, L " Frmp“?
) plp

= full

TDTop +——— TD-SFrmp®”
The pt and ptp functors are in general different, even for Th-spatial frames. Hence,

the Th-duality is not a restriction of the Q2 -4 pt adjunction. But the functor € is the same
in both cases, thus we do have the following commutative square:

Top & > Frm°P

full nonfull

J
TDTop +—— TD-SFrmp®”

We emphasize that not all frame morphisms between Tp-spatial frames are D-morphisms.
The next example illustrates this.

2.4. EXAMPLE. Let X := {%} be a singleton space and Y the natural numbers equipped
with the Alexandroff topology (where opens are precisely the upper sets). It is easy to
see that both X and Y are Tp-spaces. Moreover, {2X is isomorphic to the two-element
boolean algebra 2 = {0,1} and QY is isomorphic to (w + 1)°P. Define f : QY — QX by
f(a) = 1iff a # 0. It is straightforward to check that f is a frame morphism. Furthermore,
F := {1} is a slicing filter in QX but f~*(F) = QY \ {&} is not a slicing filter in QY.
Thus, f is not a D-morphism.

2.5. REMARK. In the above example, no continuous map between the spaces X and Y
can give rise to f : QY — QX since otherwise * would have to be mapped to a point
whose open neighborhoods are all nonempty opens of Y, and such a point does not exist
in Y. In fact, all frame morphisms between Tp-spatial frames that come from continuous
maps between Tp-spaces are D-morphisms (as will be evident from Theorem 2.13(2)
and Corollary 2.14 below).

Interior algebras and MT-algebras. The following definitions go back to McKinsey
and Tarski [MT44] (see also [RS63, Esal9)).
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2.6. DEFINITION. An interior operator on a boolean algebra A is a unary function [J :
A — A satisfying Kuratowski’s axioms for all a,b € A:

o [11=1.
e [(aAb) =0aADOb.
o [a <a.

e [a < Oa.

An interior algebra is a pair (A, ) with A a boolean algebra and O an interior operator

on A.

Recall (see, e.g., [RS63, Sec. I11.3]) that a morphism of interior algebras is a boolean
homomorphism f : A — B such that f(Oa) = Of(a) for each a € A. We will be interested
in the following weaker condition: f(Oa) < Of(a) for each a € A. Such morphisms have
been studied in the literature under different names: continuous morphisms [Ghil0], stable
morphisms [BBI16], or semi-homomorphisms [BMMO08]. For the purposes of this paper,
we will follow [Ghil0] in calling them continuous morphisms.

2.7. DEFINITION.

(1) Let Int be the category of interior algebras and interior algebra morphisms.

(2) Let Intc be the category of interior algebras and continuous morphisms.

Clearly Int is a wide subcategory of Intc, and in both categories, compostion is
function composition and identity morphisms are identity functions.

2.8. DEFINITION. Let A be an interior algebra.

(1) An element a € A is open if a = Oa.
(2) An element a € A is closed if a = Qa where $a = —-O-a.

(3) An element a € A is locally closed if a = b A {c for some b,c € A3

Let ©A, CA, and L' CA be the collections of open, closed, and locally closed elements of
A, respectively.

Observe that ©A is a bounded sublattice of A and [J: A — OA is right adjoint to the
inclusion OA — A, yielding that ©OA is a Heyting algebra (see, e.g., [Esal9, Sec. 2.5]).
Similarly, C A is a bounded sublattice of A and  : A — CA is left adjoint to the inclusion
CA — A, yielding that CA is a co-Heyting algebra. We point out that the implication
on OA is given by u — v = O(—u V v) for all u,v € ©OA, and the co-implication on CA
by ¢ < d = Q(d A —c) for all ¢,d € CA. Moreover, L CA is closed under finite meets, and
closing L' CA under finite joins gives the boolean subalgebra of A generated by ©A (or
CA).

3Equivalently, a is locally closed provided a = u A {a for some u € QA.
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2.9. DEFINITION.

(1) An interior algebra (A,O) is a McKinsey-Tarski algebra or an MT-algebra if A is a
complete boolean algebra.

(2) An MT-morphism between MT-algebras M and N is a complete boolean homomor-
phism h : M — N such that h(Oa) < Oh(a) for each a € M.

(3) Let MT be the category of MT-algebras and MT-morphisms.

Since each MT-algebra M is complete and [J : M — OM is right adjoint to the
inclusion, OM is a subframe of M. In fact, we can equivalently think of MT-algebras as
pairs (A, L) where A is a complete boolean algebra and L is a subframe of A. Then the
interior operator on A is given by Oa = \/{b € L | b < a}. Moreover, if f: M — N is an
MT-morphism, then its restriction f|oy : OM — ON is a frame morphism that sends
identity morphisms to identity morphisms and respects composition. We thus obtain:

2.10. THEOREM. [BR23, Thm. 3.10] The assignment M +— OM and f — f|on yields a
functor © : MT — Frm.

A typical example of an MT-algebra is the powerset algebra (£ X, ) of a topological
space X, where [ is the interior operator on X. The assignment X — ® X extends
to a functor & : Top — MT’, where a continuous map f : X — Y is sent to the
MT-morphism f~!: @Y — ® X. To define a functor in the opposite direction, for an
MT-algebra M, let at M be the set of atoms of M. For a € M, define

nu(a) ={x cat M|z <a}.

Then {n(a) | a € M} is a topology on at M, so P at M is an MT-algebra and ny, : M —
P at M is an onto MT-morphism. Moreover, if f : M — N is an MT-moprhism, then
it has a left adjoint (since it is a complete boolean homomorphism). The restriction of
the left adjoint is then a well-defined continuous map f*:at N — af M. This defines a
functor at : MT° — Top, which is right adjoint to &.

We call M spatial provided ny, : M — P at M is one-to-one (in which case it is an
isomorphism of MT-algebras). Let SMT be the full subcategory of MT consisting of
spatial MT-algebras. For each X € Top, let ex : X — at P X be given by ex(z) = {z}.
Then ex is a homeomorphism and we have (see [BR23, Thm. 3.22]):

2.11. THEOREM. [MT-duality] (%,at) is an adjunction between Top and MT whose
unit is given by € : lpop — atoP and counit by n : Poat — Iyr. This adjunction
restricts to an equivalence between Top and SMTP.

P
Top I MT*°P

at

= full

Top «+———— SMT®
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We conclude this preliminary section by recalling the MT-algebra analogues of T, and
Ty-spaces. An element of an MT-algebra M is saturated if it is a meet from OM. Let
&M be the collection of saturated elements of M. We call a € M weakly locally closed if
a = s /A cwhere s € SM and c € CM. Let WLCM be the collection of weakly locally
closed elements of M.

2.12. DEFINITION. An MT-algebra M is said to be a Tp-algebra if L CM join-generates
M and a Ty-algebra if WLCM join-generates M.

Let TDMT be the full subcategory of MT consisting of Tp-algebras, STDMT the
full subcategory of TDMT consisting of spatial Tp-algebras, and define TOMT and
STOMT similarly. Also, let TDTop be the full subcategory of Top consisting of Tp-

spaces, and define TOTop similarly. Then MT-duality restricts to yield the following (see
[BR23, Thms. 5.7, 6.4]):

2.13. THEOREM.

(1) The adjunction (P,at) restricts to TOTop and TOMTP, yielding an equivalence
between TOTop and STOMT®P.

(2) The adjunction (P, at) further restricts to TDTop and TDMTP, yielding an equiv-
alence between TDTop and STDMT®P.

Putting Theorems 2.3 and 2.13(2) together, we conclude:

2.14. COROLLARY. TD-SFrmp is equivalent to STDMT.

As we pointed out after Theorem 2.3, the inclusion TD-SFrmp < Frm is not full.
By contrast, the inclusion STDMT < MT is full. Moreover, while the Tp-duality for
frames is not a restriction of the Q - pt adjuntion (since pt;, is not in general the same
as pt), the Tp-duality for MT-algebras is obtained by restricting the adjunction ® 4 at.
This is summarized in the two diagrams below:

Top #—— Frm® Top . 1 MT®
! ) at
full i nonfull full full
. J
TDTop +——— TD-SFrmp® TDTop +—— STDMTP

3. Proximity morphisms between MT-algebras

In this section, we show that each MT-algebra can be equipped with a proximity relation,
which is a weakening of a de Vries proximity on a boolean algebra [dV62, Bez10]. This
gives rise to a new category MTp of MT-algebras and proximity morphisms between
them. In Section 4, it will be shown that this category is equivalent to Frm.
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Given boolean algebras A, B, with B a subalgebra of A, we define a binary relation
<p on A by
a<pc<—dbeB:a<b<ec

It is straightforward to verify that this relation satisfies the following conditions:

S1) 1 <51

S2) a <p ¢ implies a < ¢;

a<a <pd <cimplies a <p ¢;

S4) a <p ¢,d implies a <p ¢ A d;

S5) a <p ¢ implies —¢ <p —a;

(S1)
(52)
(S3)
(54)
(S5)
(S6)

S6) a <p ¢ implies that there is b € B with a <g b <p c.

3.1. REMARK. The above are standard proximity axioms on a boolean algebra, except
(S6) is a strengthening of the usual in-betweenness axiom. However, in general, <p is not
a de Vries proximity on A since it is not necessarily the case that a = \/{c € A | ¢ <p a}.
In fact, <p is a de Vries proximity on A if and only if B join-generates A.

In our considerations, A will be an MT-algebra and B will be the boolean subalgebra
of A generated by ©A. We recall that in the powerset algebra of a topological space,
the elements of the boolean subalgebra generated by the frame of opens are exactly the
finite unions of locally closed subsets, and are called constructible sets (see, e.g., [Har77,
p. 94]). Analogously:

3.2. DEFINITION. An element a of an MT-algebra M is constructible provided a is a
finite join from LCM. Let Cons M be the set of constructible elements of M.

Note that Cons M is the boolean subalgebra of M generated by OM, and thus one
can consider the associated binary relation, <¢,,, /. To simplify notation, we omit the
subscript.

3.3. DEFINITION. Let M be an MT-algebra. An element a is constructibly below b, or
“cons-below” , if a < b for the binary relation associated with Cons M.

Interestingly, the cons-below relation on an MT-algebra M is a de Vries proximity
precisely when M is a Tp-algebra:

3.4. LEMMA. For any MT-algebra M, the cons-below relation is a de Vries proximity on
M iff M is a Tp-algebra.

ProOOF. By Remark 3.1, the cons-below relation is a de Vries proximity on M iff Cons M
join-generates M. Since each element of Cons M is a finite join from LCM, the latter
condition is equivalent to M being a Tp-algebra. [
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Next, by analogy with de Vries algebras, we define proximity morphisms between
MT-algebras.

3.5. DEFINITION. For M, N € MT, amap f : M — N is a proximity morphism provided
the following conditions are satisfied:

(P1) floauy : OM — ON is a frame morphism.

(P2) f(anb)= f(a)A f(b) for each a,b € M.
(P3) f(VS)=V{f(s)|seS} for each finite S C LCM.
(P4) f(a)=V{f(z) |z e LCM, x < a} for each a € M.

3.6. REMARK. Since each element of Cons M is a finite join from L' CM, (P4) is equivalent
to
fla) = \/{f(b) | b€ Cons M, b<a} foreachaec M.

3.7. LEMMA. Let f: M — N be a proximity morphism between MT-algebras.
(1) f(—z) =~f(z) for each x € OM UCM.
(2) flem : CM — CN is a co-frame morphism.
(3) If v € LCM then f(x) € LCN.
(4) fleonsar : Cons M — Cons N is a boolean homomorphism.

PROOF. (1) Let z € OMUCM. Then -z € CMUOM. Thus, since OM UCM C LCM,
by (P3), f(x)V f(—z) = f(x vV —z) = f(1) = 1. Moreover, by (P2),

J(2) A f(=2) = fla A=) = £(0) =0.

Therefore, f(—z) = =f(x).

(2) Since CM C LCM, the restriction f|cps preserves finite joins by(P3). We show
that it preserves arbitrary meets. Let S C CM. Then —s € OM for each s € S, so
V{—s|s e S} e OM. Therefore, by (P1) and (1),

F(AS) = F(-Vimslsesy) =-f (Vs lsesy)
= Vs [se8h=-\{~f()] s €S}
= A7l

Thus, fley : CM — CN is a co-frame morphism.

(3) This follows from (P1), (P2), and (2).

(4) Since each element of Cons M is a finite join from LCM, it follows from (P3)
and (3) that f|eon s is well defined. Moreover, by (P1)—(P3), it is a bounded lattice
homomorphism, and thus a boolean homomorphism. [




1116 G. BEZHANISHVILI, R. RAVIPRAKASH, A. L. SUAREZ, J. WALTERS-WAYLAND

3.8. LEMMA. Let f : M — N be a map between MT-algebras satisfying (P1), (P2), and
(P4). The following are equivalent:

)
(1) f satisfies (P3); that is, f is a proximity morphism.
(2) a1 < by and ay < by imply f(ar V az) < f(b1) V f(bs) for each a;,b; € M.

(3)
PROOF. It is sufficient to prove that (1)< (2) since (2)<(3) follows from [Bez12, Lem. 2.2]
and [BH14, Prop. 7.4].

(1)=(2): Suppose a; < by and as < bs. Then there exist finite Si, Sy C LCM such
that aq S \/Sl S bl and (05} S VSQ S bg. FIWhUS7 a1V ag S \/Sl\/\/SQ S b1Vb2. By (PQ),
f is order preserving. Therefore, by (1),

fla1 V as) Sf(\/sl\/\/sz) :\/f[sl]v\/f[SZ] < f(br) V f(b2).

Consequently, f(aiVas) < f(by)V f(be) since \/ f[S1]VV f[Sz2] € Cons N by Lemma 3.7(3).

(2)=(1): Let S C LCM be finite. Since f is order preserving, \/ f[S] < f(\/ S). For
the reverse inequality, since s < s for each s € S, (2) implies f(\/S) < \/ f[S]. Thus,
f(VS) <V f[S], and hence f satisfies (P3). =

We next show that the MT-algebras and proximity morphisms between them form a
category, however neither the composition is usual function composition nor the identity
morphisms are identity functions. The composition of proximity morphisms between
MT-algebras is defined as for de Vries algebras:

a < b implies = f(—a) < f(b) for each a,b € M.

3.9. DEFINITION. For proximity morphisms f : M; — M, and g : My — M3, define
(g% f)a \/{g ) |z € LCM, z<a}.

It is immediate that if € LCM; then (g% f)(x) = (go f)(x).

3.10. LEMMA. Let f : My — My, g : My — Ms, and h : Ms — My be prozimity
morphisms. For each a € M, we have

((h*g) % =\ {g(f(@))) |z € LCMy, x < a} = (hx (g f))(a).
PROOF. Let a € M;. Then
((h*g) * = \{(hxg)(f(2)) |z € LCM, < a}
=\/{(hog)(f(z)) |z € LEM, x <a}  since f(z) € LCM,
= \/{h((go f)(@)) |z € LCM;, x < a}
= \{n(g* f)(x)) |2 € LEM,, x <a}  since x € LCM,
(hx (g* f))(a).
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3.11. DEFINITION. For an MT-algebra M, define 1, : M — M by
Ly(a \/{xEIGM|:C<a} for each a € M.
3.12. LEMMA.
(1) 1 is a prozimity morphism for each MT-algebra M.
(2) For each proximity morphism f: M — N between MT-algebras we have
Inxf=f=fx1y.

PROOF. (1) By the definition of 1), 1p/(z) = = for each z € LCM. In particular, 1,,
is identity on OM, and hence (P1) holds. In view of Section 3.6, an argument similar to
[Bez10, Lem. 4.8] yields that (P2) and Lemma 3.8(3) hold. It is also immediate from the
definition that (P4) holds. Thus, 1), is a proximity morphism by Lemma 3.8.

(2) Let a € M. Then

(v * f)(a) = \/{In(f(z)) | 2 € LCM, 2 < a}
:\/{f )|z eLCM, z<a} since f(z) € LCN
= f(a)
_\/{f Iy(z)) |z e LCM, z <a} since z € LCM
= (f * 1m)(a).

As an immediate consequence of Lemmas 3.10 and 3.12 we obtain:

3.13. THEOREM. The MT-algebras and proximity morphisms between them form a cate-
gory M'T'p where composition is given by x and identity morphisms are 1y;.

PROOF. In view of Lemmas 3.10 and 3.12, we only need to check that if f : M; — M,
and g : My — Mj are proximity morphisms, then so is g x f : M} — Ms. For this it is
sufficient to verify (P1)—(P4).

(P1) For u € OM;, we have (g~ f)(u) = (g o f)(u). Thus, (g * f)|on, is a frame
morphism.

(P2) For a,b € M, since L CM, is closed under finite meets, we have

(g%f)(a) A (g*f)()
= \V{o(f(x \xEIGMl,:I;<a}/\\/{g y) |y e LCMy, y < b}

= \{9(f@) Ag(fW) | 2,y € LOCM;, x < a, y < b}
—\/{g (xAY)) | z,y € LCM, v <a,y<b}
=\{9(f(2)) | € LCM;, = < anb}
=(g*f)(aAb)~
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(P3) Let S C LCM. By (P2), g * f is order preserving. Thus,

Vilg s | se sy <axn(VS).

For the reverse inequality, since (g x f)(a) < (g o f)(a) for each a € M; and f,g are
proximity morphisms, we obtain

(9= (V5) <o (VS) =g (\V f151) = Vgl (s) | s € 5
—\/{g*f )| s €S}

(P4) For a € M;, we have

(g% f)(a \/{g ) |z e LCM, z <a}
—\/{g*f )| x e LCM, z <a} since x € LCM;.

Not surprisingly, isomorphims in MTp are not structure-preserving bijections:

3.14. EXAMPLE. Let [ be the identity on the two-element boolean algebra 2. Then
(2,0) is an MT-algebra. Also, let M = {0,a,b,1} be the four-element boolean algebra.
Then (M, 0) is an MT-algebra, where (0 : M — M is defined by

Da:{1 ifa=1

0 otherwise.

Observe that 1), = [0 and 15 is the identity on 2. Since 2 C M, we may view 1,; as a
proximity morphism f : M — 2 and 1, as a proximity morphism ¢g : 2 — M. We then
have g x f = 1,y and f x g = 15. Thus, g is the inverse of f in MTp, and hence f is an
isomorphism in MTp. However, f is clearly not a structure-preserving bijection.

In Proposition 4.22, we will characterize isomorphisms in MTp, from which we derive
that isomorphisms between Tp-algebras are indeed structure-preserving bijections (ob-
serve that M in the above example is not a Tp-algebra). This requires more machinery,
which we turn to next.

4. Funayama envelope

It is a consequence of a well-known result of Funayama [Fun59] that each frame embeds
into a complete boolean algebra. In this section, we use this to define the Funayama
envelope of a frame L, denoted by F L, and show that it may be identified with a Tp-
algebra whose opens are isomorphic to L. For this reason, we think of & L as the Tp-hull of
L. We prove that this assignment extends to categorical equivalences between Frm, MTp,
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and the full subcategory TDMTp of MTp consisting of Tp-algebras. The equivalence
of the last two categories is explained by the fact that isomorphisms in MTp are not
structure-preserving bijections. We show that this unusual phenomenon disappears in
TDMT5s.

The Funayama envelope of a frame can be constructed by taking the MacNeille com-
pletion of its boolean envelope (see below).

Boolean envelope of a frame. Recalling the categories Int and Intc (Definition 2.7),
we have:

4.1. DEFINITION.

(1) An interior algebra A is essential if the least boolean subalgebra of A generated by
OA coincides with A.*

(2) Let Essc be the full subcategory of Intc consisting of essential algebras, and define
Ess similarly (as a full subcategory of Int).

Clearly Ess is a wide subcategory of Essc. These two categories are closely related
to the following categories:

4.2. DEFINITION.

(1) Let Heyt be the category of Heyting algebras and Heyting homomorphisms, and
let Bool be the full subcategory of Heyt consisting of boolean algebras.

(2) Let DLat be the category of bounded distributive lattices and bounded lattice ho-
momorphisms, and let HLat be the full subcategory of DLat consisting of Heyting
algebras.

Clearly, Heyt is a wide subcategory of HLat. To connect these two categories with
Ess and Essg, we recall the definition of the boolean envelope of a distributive lattice
(see, e.g., [BD74, Sec. V.4]), which is the reflector B : DLat — Bool.

The boolean envelope or free boolean extension of a bounded distributive lattice L is a
pair (BL,e), where BL is a boolean algebra and e : L — BL is a bounded lattice embed-
ding satisfying the following universal mapping property: for any boolean algebra A and
a bounded lattice homomorphism h : L. — A, there is a unique boolean homomorphism
Bh : BL — A such that Bh o e = h; i.e., the following diagram commutes:

L —— BL

hl ot
- Bh

-
A

4Esakia introduced essential algebras under the name of skeletal algebras (see [Esal9, Def. 2.5.6]).
Since the name “skeletal” is overused in topology, we prefer the name essential. This is justified by the
fact that we can think of A as an essential extension of ©A in that for each congruence © of the interior
algebra A, if © is not identity then neither is © N (OA x OA).
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We identify L with it image e[L] and treat L as a bounded sublattice of BL which
generates BL. If L is a Heyting algebra, then the embedding L. — BL has a right
adjoint O : BL — L and (BL,0) is an essential interior algebra (see, e.g., [Esal9,
Sec. 2.5]). Moreover, each bounded lattice homomorphism h : L; — Lo lifts uniquely to
a continuous morphism Bh : BL; — BL,. Furthermore, h is a Heyting homomorphism
iff Bh is a morphism of interior algebras (see, e.g., [BMMO08, Sec. 2.2]). We thus obtain:

4.3. THEOREM.
(1) Ess is a coreflective subcategory of Int that is equivalent to Heyt.
(2) Essc is a coreflective subcategory of Intc that is equivalent to HLat.

PROOF. For (1) see [Esal9, Thm. 2.5.11], and (2) is proved similarly (see, e.g., [BMMOS,
Thm. 2.14]). .

We next restrict the equivalence in Theorem 4.3(2) to constructible algebras.

4.4. DEFINITION.
(1) We call A constructible if it is essential and OA is a frame.

(2) A continuous morphism f : A — B between constructible algebras is a constructible
morphism if floa : ©A — OB is a frame morphism.

(3) Let Cons be the category of constructible algebras and constructible morphisms.

Note that Cons is a non-full subcatgeory of Essc since not every bounded lattice
homomorphism between frames is a frame morphism. However, isomorphisms in Cons
are isomorphisms in Essc. We have the following consequence of Theorem 4.3(2):

4.5. THEOREM. Frm is equivalent to Cons.

PROOF. For a Heyting algebra L, we have that L is a frame iff (BL,0) is a constructible
algebra. Indeed, if L is a frame, then (BL,0) is an essential interior algebra for which
OBL is a frame since OBL = L (recall that we identify L with e[L]). Thus, (BL,0) is
a constructible algebra. For the same reason, if (BL,0) is constructible then L must be
a frame. Moreover, for a bounded lattice homomorphism A : L; — Lo between frames,
since OBL; = L; (i = 1,2) and Bh|,, = h, we have that h is a frame morphism iff Bh is
a constructible morphism. Thus, since isomorphisms in Cons are isomorphisms in Essc,
the equivalence of Theorem 4.3(2) restricts to an equivalence between Frm and Cons. m
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Funayama envelope of a frame.
4.6. PROPOSITION. © : MTp — Frm is a functor.

ProOOF. By Theorem 2.10, OM is a frame; by (P1), if f : M — N is a proximity
morphism, Of : OM — ON is a frame morphism. Since OM C LCM, the restriction of
1 is the identity on OM, so O(1,s) = loy. For the same reason, if f : M; — M, and
g : My — Mj are proximity morphisms then

O(g* [) = (9% )loa, = (g0 florr = glom, © flor, = Ogo Of.
Thus, © : MTp — Frm is a functor. n

We show that © is an equivalence by describing its quasi-inverse using Funayama'’s
result [Fun59] that there is a frame embedding of each frame L into a complete boolean
algebra B, where B can be constructed as the MacNeille completion® of the boolean
envelope of L [Grall].®

For a frame L, let BL be the MacNeille completion of its boolean envelope. We lift
the interior operator O : BL — BL to O : BL — BL by

Oa=\/{Ob|becBLand b < a}.

Then (@, ﬁ) is an MT-algebra such that OF L = L (see e.g., [BR23, p. 8]).

4.7. DEFINITION. For a frame L, we call the MT-algebra (@, ﬁ) the Funayama envelope
of L and denote it by F L.

Note that the assignment L +— FL cannot be extended to a functor Frm — MT
with f = OF f for every frame morphism f. Indeed, there are frame morphisms that
do not lift to complete boolean homomorphisms between their Funayama envelopes. For
the reader’s convenience, we illustrate this with an example from [BR23, Example 4.4],
detailed below.

4.8. ExAMPLE. Equip N with the cofinite topology and let Q(N) be its frame of opens.
The boolean envelope of Q(N) is isomorphic to the boolean algebra of finite and cofinite
subsets of N, and its MacNeille completion is isomorphic to #?(N). We thus identify
FQN) with #(N). Consider the frame morphism f : Q(N) — 2 given by f(U) = 0 iff
U =@. Then F f(F) = 0 for every finite subset F' C N. Therefore, if F f is a complete
boolean homomorphism, then & f(N) = @, a contradiction.

By contrast, we will show that the Funayama envelope does extend to a functor F :
Frm — MTp that is a quasi-inverse of ©. This is, in fact, our main motivation for
introducing proximity morphisms.

5Recall that the MacNeille completion of a partially ordered set P is a complete lattice P together
with an embedding e : P — P such that ¢[P] is both join-dense and meet-dense in P (see, e.g., [BD74,
p. 237].

6B can also be realized as the booleanization of the frame of nuclei of L [Joh82]. As was shown in
[BGJ13], the two constructions yield the same object up to isomorphism.



1122 G. BEZHANISHVILI, R. RAVIPRAKASH, A. L. SUAREZ, J. WALTERS-WAYLAND

4.9. LEMMA. Each frame morphism h : L1 — Lo extends to a proximity morphism
Fh:FL — FLy given by

Fhia) = \[{Bh(z) |z € LECFLy, x < a}
= \/{Bh®) |beBLy, b<a}.

PRrROOF. By identifying L; with its image in BL,, we have OF L1 = Ly, and similarly for
Ly. Since LCHF Ly C BL; and each element of BL4 is a finite join from L' CHF L1, we have

\ABA®D) | b€ BLy, b < a} =\/{Bh(z) |z € LEFLy, x < a}.

We show that Fh satisfies (P1)—(P4) of Definition 3.5. Clearly Fh|gr, = Bh. In par-
ticular, Fh|r, = h, and so (P1) holds. By [Bez10, Lem. 4.8], we have that Fh(a A b) =
Fh(a) N Fh(b), and hence (P2) holds. Since LCHFL; C BL; and Bh is a boolean homo-
morphism, for each finite S C LCHF Ly, we get

Fh (\/ 5) — Bh (\/ S> = \/ Bh[S] = \/ FhS]
and thus (P3) holds. Finally,
Fhia) = \/{Bh(z) | 2 € LCFLy, v < a} = \[{Fh(z) |z € LCFLy, x < a},
and so (P4) holds, yielding that Fh is a proximity morphism. m

4.10. PrROPOSITION. F : Frm — MT5p is a functor.

PROOF. As we saw above, F is well defined both on objects and morphisms of Frm. We
show that & sends identity morphisms to identity moprhisms and preserves composition.
Let a € FL. Since B(1.,) = 1g, we obtain

= \{B(1L)(x) |2 € LCL), x <a} = \[{z € LCLy | z < a} = 15,(a).

Therefore, F (1) = 1. Now, let f : Ly — Ly and g : Ly — L3 be frame morphisms.
Then

(FgxFf)a) = \{Fg(Ff(x) | 2 € LCFLy, v < a}
=\/{F9(Ff(b)) | b€ BLy, b < a}
(

= \{F9(Bf ()| beBLy, b<a} (F flar, = Bf)
=\ {Bg(Bf(b) | beBLy, b<a} (FglaoL, = By:;

be BL, = Bf(b) € BLy)
= \/{B(go £)(b) b€ BLy, b<a} (BgoBf =B(go [))

= F(go f)la).
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As we pointed out earlier, each frame L is isomorphic to OF L. We denote the iso-
morphism by pr : L — OF L. By identifying L with OF L, we view p;, as the identity on
L. In addition, if M is an MT-algebra, then the boolean envelope BOM of OM embeds
into M by [Esal9, Prop.2.5.9], and hence so does FOM by [BD74, Thm. XII.3.4]. We
thus identify FOM with its image in M.

4.11. LEMMA. For M € MTp, define (s : FOM — M by

Cula) = \/{z € LCM |z < a}

and oy M — FOM by

pu(d) = \/ {zeLCM |z <b}.

FOM

Then Cpr and @y are mutually inverse proximity isomorphisms.

PROOF. Since each element of Cons M is a finite join from L CM, we have

Cula) = \/{z € LCM |z < a}.

Thus, it satisfies (P4). Since (y is identity on both LCM and OM, it also satisfies (P3)
and (P1). Finally, it satisfies (P2) by [Bez10, Lem. 4.8]. Therefore, (ys is a proximity
morphism. That ¢, is a proximity morphism is proved similarly. It is left to show that
Cy and ¢y are mutually inverse in MTp. Since (y(x) = pp(x) = x for each z € LCM,
for a € M, we have

(Curon)a) = \{Culpu() |z € LM, z < a}

= \/{x € LCM |z <a}=1y(a);

M

and for b € FOM, we have

(e CG)(0) =\ {em(Cu(@)) |2 € LOM, x < b}

FOM

= \/ {r e LCM |z < b} = 1y0m(D),

FOM

concluding the proof. [
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4.12. REMARK. In general, the MTp-isomorphisms produced in the above result are not
bijections. For example, consider the MT-algebra M = {0,a,b, 1} of Example 3.14. We
have FOM = {0,1}, and so ((ur * ¢ar)(a) = 0 # a. This behavior occurs as composition
in MTp is given by x rather than by usual composition of functions, and identities in
MTp are not identity maps.

4.13. LEMMA.
(1) p: lpem — OF is a natural transformation.
(2) ¢ : FO — lnmrp is a natural transformation.

PRrOOF. (1) Let f : L1 — Ly be a frame morphism. We must show that the following

diagram commutes.
f

L1 ? L2
lel lPLQ

As before, we identify L with p.[L] and assume that L C FL. Since the functor ©
sends a proximity morphism to its restriction to the frame of opens, commutativity of the
diagram amounts to showing that & f(a) = f(a) for each a € Ly, which follows from the
definition of F f.

(2) Let g : My — M be a proximity morphism between MT-algebras. We must show
that the following diagram commutes.

M, g

> M2
CMIT TCMQ

g@Ml 57—(99> f}d(gMQ

First let x € LCM;. Then g(x) € LCM,; by Lemma 3.7(3). Thus, FOg(z) = g(z), and
hence

(n(FOg(x)) = Qun, (9(x)) = \/{y € LCM, |y < g(2)} = g(2) = g(Can, (),
where the last equality holds since (yy, (z) = 2. Now let a € FOM;. Then

(G, * FOg)(a) = \/{Cur,(FOg()) | © € LCM, 2 < a}
=\ {9(Cu () | 2 € LOCM:, x < a} = (g% Cur, ) (a).
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4.14. THEOREM. The functors © and F establish an equivalence of MTp and Frm.

PROOF. As we observed before Lemma 4.11, the natural transformation p is an isomor-
phism on all components. By Lemma 4.11, so is the natural transformation ¢. Thus, it
suffices to show that these are the unit and counit of the adjunction & 4 ©.

Let M € MTp. In view of our identifications, O(y; and poj; are identities. Hence,
for u € OM, we have

OCur 0 pon(u) = O (u) = u.
Let L € Frm. For similar reasons, p; and Bp;, are identities. Therefore, for b € BL,
(Crr o FpL)(b) = Crr(Bpr(b)) = Crr(b) = b.

Thus, for a € FL,

(Crr o Fpr)(a) = \/{Cor(Fpr(h)) | b€ BL, b<a} = \/{beBL|b<a}=a.

In Example 3.14 we have seen that MTp-isomorphisms are not necessarily structure-
preserving bijections. The fact that © : MTp — Frm establishes an equivalence of cate-
gories now gives us a characterization of such morphisms (see, e.g., [AHS06, Prop. 7.47]).

4.15. PROPOSITION. Let f: M — N be a proximity morphism of MT-algebras.
(1) f is an isomorphism iff Of is an isomorphism of frames.
(2) f is a monomorphism iff O f is a monomorphism of frames.
(3) f is an epimorphism iff Of is an epimorphism of frames.

Note that, apart from isomorphisms not being bijections between the underlying sets,
in MTp we also have monomorphisms that are not injective and epimorphisms that are
not surjective:

4.16. EXAMPLE. In Example 3.14, the maps f and g are both isomorphisms hence both
are monic and epic. However, f is not injective and g is not surjective.

This counterintuitive behavior disappears when we restrict our attention to Tp-algebras.
4.17. PROPOSITION. [BR23, Thm. 6.5] An MT-algebra M is T iff M = FOM.

4.18. DEFINITION. Let TDMTp be the full subcategory of MTp consisting of T)-
algebras.

We have the following:
4.19. THEOREM.
(1) TDMTp is equivalent to MTp.
(2) Frm is equivalent to TDMTp.



1126 G. BEZHANISHVILI, R. RAVIPRAKASH, A. L. SUAREZ, J. WALTERS-WAYLAND

PROOF. (1) Let ¢ : TDMTp — MTp be the inclusion functor. By Lemma 4.11 and
[ML98, Prop. IV.4.2], we obtain an adjoint equivalence between TDMTp and MTp via
the functors e and F©, making FO : MTp — TDMTp a quasi-inverse of e.

(2) Apply (1) and Theorem 4.14. n

The isomorphism @, : M — FOM may be seen as the Tp-reflection of M. Indeed,
FOM is always a Tp-algebra, and if N is a Tp-algebra and f : M — N is a proximity
morphism, we may define a proximity morphism f : FOM — N by setting f = f x (.
We then have a commutative diagram in MTp:

M —— F0M

4.20. REMARK. By definition, up to isomorphism, Oy, = poys is the identity in Frm.
Therefore, the Tp-reflection does not do anything in Frm. In fact, for frames there is no
concept of the Tp-reflection since the language of frames is less expressive than that of
MT-algebras.

Since every MT-algebra is isomorphic to its Tp-reflection, by considering the inverse of
the above isomorphism, we see that TDMTp is also a coreflective subcategory of MTp,
with the coreflector given by the counit (.

We conclude this section by showing that, unlike the situation in M'Tp, isomorphisms
in TDMTp are structure-preserving bijections. For this we use the following lemma,
which is a consequence of [Esal9, Thm. 2.5.11].

4.21. LEMMA. For f : L — M a frame isomorphism, Bf : BL — BM is a boolean
1somorphism.

PROOF. By Theorem 4.3(1), Heyt is equivalent to Ess. Therefore, Heyting isomor-
phims H; — H, correspond to interior algebra isomorphisms BH; — BH,. But frame
isomorphisms between frames are Heyting algebra isomorphisms, and interior algebra iso-
morphisms are boolean isomorphisms, so the result follows. [

4.22. PROPOSITION. A prozimity map f : M — N between Tp-algebras is an isomor-
phism in MTp iff it is an order-isomorphism.

PRrROOF. First suppose that f : M — N is a proximity isomorphism between Tp-algebras.
By Lemma 4.15(1), Of is an isomorphism of frames. Therefore, by Lemma 4.21, BOf :
BOM — BON is a boolean isomorphism. Thus, it can be lifted to an isomorphism
between FOM and FON (see, e.g., [DP02, Thm. 7.41(ii)]). As M and N are Tp-algebras,
they are order-isomorphic to FOM and FON, and since the isomorphism lifting BO f
preserves arbitrary joins, it must coincide with FOf = f.
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Conversely, suppose that f : M — N is an order-isomorphism. Then its inverse
f~': N — M is an order-isomorphism. Therefore, for a € M, we have

(f 5 M) =\ (f(@) | & € LOM, x < a}
:\/{xEIGM|x§a}
= 1y(a).
A similar argument yields that f x f~! = 15. Thus, f is a proximity isomorphism. n
4.23. REMARK. The category TDMTp has the following additional pleasant features:

(1) Identities in TDMTp are identity functions. In fact, an MT-algebra M is T iff
the identity 15, in MTp is the identity function. Indeed,

MisTp <= VYae M, a:\/{mGIGMMcga}
<= VYa € M, a=1y(a).

(2) The category TDMT is a wide subcategory of TDMTp. For, if f : M — N
is a TDMT-morphism, it preserves all finite meets and joins by definition. By
Theorem 2.10, its restriction Of : OM — ON is a frame morphism. For a € M,
because M is Tp, a = \/{z € LCM |z < a}. Since f preserves all joins, f(a) =
V{f(z) |z e LCM, x <a},soitis a TDMTp-morphism.

Fig. 1 summarizes the relationship between the categories introduced in this section.
The connecting “arrows” should be understood as follows:

red two-sided arrows denote categorical equivalence;

solid black hooks denote full embeddings, with reflections and coreflections noted;

dashed black hooks denote non-full embeddings;

blue hooks denote wide embeddings;

squiggly lines denote same objects but different morphisms.

(The same color coding will be used in the rest of the paper.)

5. Tp-duality for MT-algebras

In this section, we generalize the Tp-duality of Banaschewski and Pultr [BP10] to the
setting of MT-algebras. This is done by generalizing the notion of a D-morphism between
frames to that of a D-morphism between MT-algebras. For Tp-algebras, this notion is
stronger than that of a proximity morphism. We prove that the category STDMT of
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Bool
Int ijr(:ﬂ) Ess & Heyt refl
DLat

4.3(2) 4.3(2) /

Intc «—— Ess¢c «+——— HLat
corefl N N

J J
Cons <> 5 Frm « 14 5 MTp « " TDMTp

§ ]4.23(2)

MT +— TDMT

Figure 1: Relationship between categories

spatial Tp-algebras is a reflective subcategory of the category MTp of MT-algebras and
D-morphsims, and is equivalent to the category TDTop of Tp-spaces. This, in particular,
yields a generalization of the Tp-coreflection [BP10, 3.7.2] from Ty-spaces to arbitrary
ones. We argue that the MT setting is more natural for the Tp-duality than the frame
setting by observing that, unlike the case of Tp-spatial frames, the spatial Tp-algebras
form a full subcategory of MT.

Tp-spectra of MT-algebras. In this subsection, we introduce the Tp-spectrum of an
MT-algebra and connect it to the Tph-spectrum of a frame.

5.1. DEFINITION. For an MT-algebra M, let atp M be the collection of its locally closed
atoms.

We view afp M as a subspace of the spectrum at M of M as defined in Section 2. To
connect atp M to ptp OM, we recall:

5.2. LEMMA.

(1) [BR23, Prop. 4.8] For every MT-algebra M, there is a continuous map 0 : at M —
ptOM given by 0(x) =Tz N OM.

(2) [BR23, Prop. 4.10] If M is a Ty-algebra then 6 is a subspace embedding.

We show that for Tj-algebras, the above embedding yields a homeomorphism between
atp M and pt, OM.
For this, we use the following;:

5.3. LEMMA. For a Ty-algebra M, an element x € M is an atom iff for each uw € OM
we have x < u iff © £ —wu.
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PRrOOF. Clearly if z € M is an atom, then the condition in the statement is satisfied. For
the converse, if x € M satisfies the condition, then x # 0. Let y < x with y # 0. We show
that @ < y. Since M is Ty, y = A S A —w for some S C OM and v € OM. If z £ y then
either £ u for some u € S or £ —w. By assumption, in the former case we get that
x < —w, and in the latter case that z < wv. In both cases, x < \/{—u | u € S} Vv = .
Therefore, y < z < =y, a contradiction. ]

Recall (see, e.g., [PP12, Sec. 11.3.3]) that in a frame L, we have a bijection between
completely prime filters and prime elements given by P +— \/(L\P). Moreover, since
every slicing filter is completely prime, one is able to identify those prime elements that
arise from slicing filters.

5.4. LEMMA. [BP10, Prop. 2.6.2] For a completely prime filter P, the following are
equivalent:

(1) P is a slicing filter;
(2) The corresponding prime is a covered prime;
(3) The corresponding prime is completely meet-irreducible.

We are ready to prove the main result of this subsection.

5.5. THEOREM. For a Ty-algebra M, the embedding 6 : at M — ptOM restricts and
co-restricts to a homeomorphism 0" : atp M — ptp, OM.

aM—2 5 ptOM

atp M — 4 pt, OM

PROOF. To see that 6’ is well defined, let € atp M. Since © € LCM, x = u N Qz for
some u € OM (see footnote 3). Therefore, uV =0z € Tx NOM and —Qz ¢ TeNOM. We
show that =0z < u VvV —=Qz. Suppose =0x < v < uV =0z for some v € OM. Since x is an
atom, either x < v or x < —w. In the former case, z V =0z < v, so (u A Qx) V =0z < v,
and hence u V =Qx < v. In the latter case, Oz < —w since —w is closed, so v < =Qz.
Thus, T2 N OM is a slicing filter.

That 6’ is one-to-one follows from Lemma 5.2(2). To show it is onto, we need to show
that every slicing filter F* C OM is of the form Tx N OM for some locally closed atom =x.

Let
r=NFAN{-alagF}

5.6. CLAIM. z is an atom.
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PrOOF OF CLAIM. Since for each u € OM we have r < u or z < —w, if x # 0, it is an
atom by Lemma 5.3. Thus, it is enough to show that x # 0. Let p be the covered prime
corresponding to F'. Since p = \/(L \ F'), we have z = 0 iff A F' < p. Indeed,

r=0 = AFAN{-a|la¢gF}=0
—= AF<-N{-ala¢F}=\/{a|a¢ F}=p.

Conversely,

ANF<p = AF<\/{alagF}
= AFr-\{ala¢F}=0
— /\F/\/\{—'a|a¢F}:0

— x=0.

But AF <piff AN{luvp|ue F} =p. Since for A C OM, NA € OM implies
ANA = Aoy A, the last condition implies that Ag,{u VvV p | v € F} = p. However,
because p is covered, by Lemma 5.4 this means that u < p for some u € F'. The obtained
contradiction proves that z is an atom. [

5.7. CLAMM. F =1tz NOM.

PROOF OF CLAIM. Let u € OM. First suppose that u € F'. Then x < A\ F < u, and so
u € Tx N OM. Next suppose that u ¢ F. Then x < —u. By Claim 5.6, = is an atom, so
x £ u, and hence u ¢ T2 N OM. n

5.8. CLAIM. x is locally closed.

Proor ofF CramM. By Claim 5.7, F = txNOM. Since F is slicing, there exist a,b € OM
such that a <b, a ¢ Tx N OM, and b € Tz N OM. By Claim 5.6, x is an atom. This
together with M being a Typ-algebra yields that z = AS A —v for some S C OM and
v e OM. For eachu € S, we have a < aV (bAu) < b. Since a <b, either a = aV (bAu) or
b=aV(bAu). In the former case, z < bAu < a, and hence a € TxNOM, a contradiction.
Therefore, b = a V (b A u), and thus

bA-a=aV (bAu)|AN-a=bAuA-a<u.
Since this is true for each u € S, we obtain that b A —a < A S. Consequently,
r < b/\ﬂa/\—'vg/\S/\—'vgx,

yielding that x = b A —a A —v. Thus, x is locally closed since b is open and —a A —w is
closed. n

Consequently, since 6 : at M — ptOM is a subspace embedding by Lemma 5.2,
0" :atp M — ptp, OM is a homeomorphism. n
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5.9. COROLLARY. For a Tp-algebra M, at M is homeomorphic to pty, OM.

PROOF. By Theorem 5.5, there is a homeomorphism ¢ : atp M = pt, OM. Since M is a
Tp-algebra, atp M = at M, yielding the result. [

The assumption in Theorem 5.5 that M is a Ty-algebra is necessary. (Note that the
assumption is used to show that ¢ : atp M — pt, OM is onto.)

5.10. EXAMPLE. In the MT-algebra M of Example 3.14, Ta N OM = {1} is a slicing
filter. But a € at M is not locally closed because LCM = {0,1}. Thus, ¢ is not onto.

Tp-reflection of MT-algebras and T)h-coreflection of topological spaces. We now
focus our attention on morphisms and look at the MT-analogues of D-morphisms of
Banaschewski and Pultr (see Definition 2.2), which we will also call D-morphisms. Our
aim is to show that the spatial Tp-algebras form a full reflective subcategory of the
category of MT-algebras and D-morphisms, thus yielding a pointfree version of the Tp-
coreflection of Ty-spaces defined in [BP10]. We emphasize that this T)p-reflection is not
expressible in the language of frames.

5.11. DEFINITION.

(1) We call a continuous map locally closed if it maps locally closed points to locally
closed points.

(2) Let Toprc be the wide subcategory of Top whose morphisms are locally closed
maps.

We point out that identity maps are locally closed and that the composition of two
locally closed maps is locally closed, so Toprc indeed forms a category. We let TOTopyc
be the full subcategory of Topy,c consisting of Ty-spaces’, and note that TDTop is a full
subcategory of TOToprc since every continuous map between Tp-spaces is automatically
locally closed.

We show that locally closed maps between Tj-spaces can be seen as topological duals
of D-morphisms. For this we recall the following result from [BP10, Prop. 2.7.1]:

5.12. LEMMA. For a Ty-space X, every slicing filter of QX is of the form F, = {U €
QX |z € U} for some locally closed x € X.

5.13. PROPOSITION. A continuous map f : X — Y between Ty-spaces is locally closed iff
Qf s a D-morphism.

" As follows from Proposition 5.13, TOTopy,c is precisely the category pTop defined in [BP10, 3.7.2].
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PROOF. Suppose that f: X — Y is a locally closed map between Ty-spaces. Consider a
slicing filter of 2X, which by Lemma 5.12 is of the form F), for some locally closed x € X.
Then f(z) € Y is locally closed. We have

Q) NE) = {U ey | f\U) € B} = {U € QY |z € f(U)} = Fy

Since f(x) is locally closed, Fy(, is slicing, and hence Qf is a D-morphism.

For the converse, suppose that €2f is a D-morphism. If x € X is locally closed, the
same computation as above shows that (Qf)"'(F,) = Fj), and because Qf is a D-
morphism, Fy) is a slicing filter. Thus, f(z) is locally closed by Lemma 5.12, and hence
f is a locally closed map. [

We next introduce D-morphisms for MT-algebras.

5.14. DEFINITION.

(1) An MT-morphism f is a D-morphism if the left adjoint f* maps locally closed atoms
to locally closed atoms.

(2) Let MTp be the category of MT-algebras and D-morphisms. We also let SMTp
be the full subcategory of MTp consisting of spatial MT-algebras and STOMTp
the full subcategory of SM'Tp consisting of spatial Ty-algebras.

We point out that identity maps are D-morphisms and that the composition of two D-
morphisms is a D-morphism, so MTp indeed forms a category. Also, note that STDMT
is a full subcategory of STOMTp since each MT-morphism between Tp-algebras is au-
tomatically a D-morphism (because every atom in a Tp-algebra is locally closed). The
following result holds for arbitrary (not only 7}) spaces.

5.15. LEMMA. A continous map f : X — Y is locally closed iff f~' : Y — PX is a
D-morphism.

PRrOOF. For each z € X, we have

e =[S e Y [{z} S f U9} =[S € 2Y | f(x) € S} = {f()}.

The result follows since a point in a space is locally closed iff the corresponding singleton
is a locally closed element in the MT-algebra of all subsets. [

5.16. REMARK. The above result is no longer true if we replace the functor # with :
consider the inclusion {0} C {0,1} where both sets are given the trivial topology. The
dualization of this map is the identity on the two-element frame, which is a D-morphism.
But {0} is locally closed in {0}, and not in {0, 1}. Of course, by Proposition 5.13, it does
remain true for € if the spaces under consideration are Tj.

As an immediate consequence of Theorems 2.11, 2.13(1), and the above lemma we
obtain:
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5.17. THEOREM. Topy,c is equivalent to SMTp°?, and TOTopy,c is equivalent to STOMTpP.
The above equivalences further restrict to give the equivalence of Theorem 2.13(2).

We thus arrive at the following commutative diagram:

TOpLC > SMTDOp

A A

TOTOpLC < STOMTD0p

AN N

TDTop +—— STDMT®®

We next study the relationship between D-morphisms of MT-algebras and D-morphisms
of frames. Recalling Theorem 2.10, we have:

5.18. LEMMA. For a complete boolean homomorphism f : M — N between MT-algebras,
we have

(ON) 7tz NON) =1f*(z) NOM,
for all atoms x € N.

PROOF. By the adjointness property, we have that x < f(a) iff f*(z) < a for each a € M.
This, by definition, means that for each a € OM,

a€(Of)'(12zNON) <= 2 < fla) < f*(z) <a < ae€f (z)NOM.

5.19. PROPOSITION.

(1) An MT-morphism f : M — N between Ty-algebras is a D-morphism iff Of is a
D-morphism.

(2) Any MT-morphism f: M — N between Tp-algebras is a D-morphism.

PROOF. (1) Let f : M — N be an MT-morphism between Tj-algebras. First suppose
that Of is a D-morphism, and that x € N is a locally closed atom. By Theorem 5.5,
tx N OM is a slicing filter, and hence so is Tf*(x) N OM by Lemma 5.18. Thus, f*(x) is
locally closed by reapplying Theorem 5.5.

Next suppose that f is a D-morphism. Let FF C ON be a slicing filter. By Theorem 5.5,
F = 1z N ON for some locally closed atom z € N. By assumption, f*(z) € M is a
locally closed atom. By Theorem 5.5, 1f*(x) N OM is a slicing filter, and hence so is
(Of) Y (t2 N ON) by Lemma 5.18. Thus, Of is a D-morphism.

(2) This follows immediately from the fact that in a Tp-algebra all atoms are locally
closed. n
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By [BP10, Sec. 3.7.2], Tp-spaces are a coreflective subcategory of the category of Tp-
spaces and locally closed maps. The Tp-coreflection of a Ty-space X is ptp QX C X,
which up to homeomorphism is the inclusion of locally closed points of X into it. We
next define a pointfree analogue of this construction, without restricting to Ty objects on
either side.

5.20. DEFINITION. For an MT-algebra M, define xp; : M — P atp M by
xu(a)={x €atp M |z < a}.

It follows directly from the definition that xas(aAb) = xa(a)Nxar(b), and xar(V; a;) =
\U; xam(a;) because atoms are completely join-prime. Thus, xau[©OM] is a subframe of
Patp M. We will regard P atp M as an MT-algebra whose opens are precisely this
subframe. Thus, xy : M — P atp M is an MT-morphism onto a spatial Tp-algebra.

5.21. LEMMA. The map xp : M — Patp M is a D-morphism.

PROOF. As observed above, the map is an MT-morphism. The atoms of P atp M are the
singletons. For x € atp M, we have x3,({z}) = x, which is locally closed. Thus, x, is a
D-morphism. [

5.22. THEOREM. The category STDMT is a full reflective subcategory of MTp.

PROOF. The subcategory is full by Lemma 5.19(2). For any MT-algebra M, by Lemma 5.21,
the map xn : M — Patp M is a D-morphism onto a spatial Tp-algebra. Suppose that
J M — N is a D-morphism with NV a spatial Tp-algebra. Define f : Patp M — N by
f(S)=V{f(z) |z € S}. We show that the following diagram commutes:

M — 5 PapM

For a € M, f(XM(a)) =V{f(x) |z € atp M, x < a}. Tt is clear, then, that ]/C\(XM(G)) <
f(a). For the other inequality, since N is spatial it suffices to show that y < f(a) implies
y < f(XM(a)) for all y € ¢ N. If y < f(a), then f*(y) < a. By assumption on f,
f*(y) € atp M. Therefore,

y < f(f <\/{f J|x€eatp M, x<a}.
Thus, y < ]?(X wm(a)), as desired. Finally, we show that F is an MT-morphism:
f(U&) =\ {f(@)|ze USi} = \/\/{f(x) |z € 5}
-V VU e s -V s

it is left to see that f maps opens to opens. However, the commutativity of the diagram
gives f(XM( )) = f(a) for a € OM, and the result follows. "
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5.23. REMARK. It follows from [BP10, Prop. 3.5.1] that the category TD-SFrmp of Tp-
spatial frames is a full reflective subcategory of Frmp, the Tp-spatialization being the
reflector. Theorem 5.22 provides a generalization of this, but also an improvement since
TD-SFrmp, is not a full subcategory of Frm (see Example 2.4), while STDMT is a full
subcategory of MT (see the end of Section 2).

We conclude this subsection by showing that the coreflection in [BP10, Sec. 3.7.2] may
be obtained as the dualization of the above reflection.

5.24. DEFINITION. For a topological space X, let Xp be the subspace of X consisting of
locally closed points.

Since z € X is locally closed if and only if {z} is locally closed in the MT-algebra
P X, we have a homeomorphism hp : Xp = atp PX given by hp(x) = {x}. From now
on, we will identify these spaces.

5.25. LEMMA. The inclusion ip : Xp C X is such that P(ip) = Xpx-
PROOF. Since P(ip) = ip *, P(ip)(Y) =Y N Xp for each Y C X. Therefore, under the
identification described above,
Pip)Y)=YNXp={{z} eapP X |{z} CY} =xpx(Y).
| ]

5.26. THEOREM. The category TDTop is a full coreflective subcategory of Toprc. The
coreflection is given by the inclusion Xp C X.

PRrROOF. Let X be a space. By definition, the inclusion X C X is a locally closed map.
Suppose that Y is a Tp-space and f : Y — X is a locally closed map. By Lemma 5.15,
L_\l : PX — PY is an MTp-morphism. By Theorem 5.22, there is an M'Tp-morphism
f~t:Patp PX — PY such that the diagram on the right commutes:

Xp — =+ X
D @X—>@aID@X
Y

By Lemma 5.25 and Theorem 2.13(2), there must be a locally closed map J?: Y —- Xp
such that the diagram on the left commutes. n

5.27. REMARK. The above theorem yields the Th-coreflection of Banaschewski and Pultr.
In [BP10, 3.7.2] it was described as the embedding pt, QX — X for every Ty-space X.
One of the advantages of our approach is that we do not have to restrict to Ty-spaces.
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5.28. REMARK. As we saw above, the Tp-coreflection of a space is neatly captured by du-
alizing the spatial Tp-reflection of MTp. By contrast, the frame setting is not expressive
enough for this purpose. Indeed, we recall from [BP10, 3.7.2] that the Tp-spatialization
of a frame L is given by

or:L—Qpty L,
ar— {P€pty,L|ac P}

If we dualize o using pt,, we obtain a homeomorphism pt, Q2 pt, L — pt, L, which
is a trivial Tp-coreflection. On the other hand, if we dualize o using pt, we obtain
ptop = ptQpty, L — pt L. Since pt, L is the subspace of locally closed points of pt L, this
gives the inclusion of the soberification of pt, L into pt L, which is not the Tp-coreflection.
In fact, the soberification of a Th-space is Tp only in the trivial case where the starting
space is both sober and Tp. We will explore the interplay between soberification and the
Tp axiom in Section 6.

6. Duality for spatial MT-algebras and proximity morphisms

In this final section, we generalize the duality of Theorem 2.11 between Top and SMT
to incorporate proximity morphisms between spatial MT-algebras. This is done by intro-
ducing the notion of a sober map, a continuous map from one space to the soberification
of another, and by showing that frame morphisms between spatial frames and their cor-
responding proximity morphisms between spatial MT-algebras are characterized by sober
maps. As a corollary, we obtain the topological and MT analogues of the category of
Tp-spatial frames and frame morphisms.

We begin by recalling that Sob is a reflective subcategory of Top, and that the reflector
4 : Top — Sob is given by the soberification ptQ) (see, e.g., [Joh82  p. 44]). The unit
At lpop — 4 is given by Ax(x) = F), for each X € Top and = € X.

6.1. DEFINITION. For topological spaces X and Y, we call a continuous map f : X — sY
a sober map from X to Y, and denote it by f: X ~ Y.

Iff:X~Yandg:Y ~» Z are two sober maps then their composition ge f : X ~» Z
is given by )\J_Zl osgo f : X — sZ, which is well defined since N,z : 7 — 447 is a
homeomorphism. By identifying 47 with 447, the composition g e f can be described as
ago f. By this identification, we have that sA\x = \,x is the identity on s.X. Consequently,
since A is a natural transformation, for each f : X ~» Y the following diagram commutes:

X — 75 Ly
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Therefore, f @ Ax =af oAy = A,y o f = f. Similarly, for each g : Y ~» X, we have that
Ax ® g = g. We thus arrive at the following new category:

6.2. DEFINITION. Let Topg be the category of topological spaces and sober maps between
them, where composition is given by e and identity morphisms are \x.

6.3. REMARK. A sober map f : X ~» Y is a Tops-isomorphism iff sf : sX — 4Y is a
homeomorphism. To see this, suppose there is g : Y ~» X such that ge f = Ax and
feg=Ay,s04ag0 f=Ax and sf o g = Ay (see the left diagram below). By applying 4
to the former, s(sg o f) = ssg 0 sf = sAx. Therefore, by identifying 4 = 44, we have that
sg o sf is the identity on s.X. Similarly, sf o sg is the identity on 4Y, and hence sf is a
homeomorphism.

X ———4Y X ——— 4Y
sf sf
Ax Ay Ax Ay
a9 g/
s X <T Y s X Y

Conversely, suppose sf is a homeomorphism (see the right diagram, where we identify
4 = 44). Then there is a continuous map ¢ : sY — 4X which is inverse to sf. Let
g:Y ~ X be given by g = ¢’ o Ay. By identifying 4 = 44, we have that s¢g’ = ¢’ and sy
is the identity. Therefore, since ¢’ is the inverse of 4f,

ge f=usgof=0sg0sdyof=gof=qg osfolx=Nx.
Similarly, feg=afog=0sfog oAy = Ay. Consequently, g is the inverse of f, so f is a
Topg-isomorphism.

Our aim is to show that Topg is dually equivalent to the full subcategory SMTp of
MTp consisting of spatial MT-algebras. To define a functor from SMTp? to Tops, we
need the following lemma, where 7 is the counit of MT-duality (see Theorem 2.11).

6.4. LEMMA. Suppose f : M — N is a prozimity morphism between spatial MT-algebras.
Define ats f : at N ~» at M by

ats f(y) = {nu(a) [ a € OM, y < f(a)}

for each y € at N. Then ats is a sober map.

PROOF. Since f is a proximity morphism, its restriction floy : OM — ON is a frame
morphism, so pt(f|oa) : ptON — ptOM is a continuous map, as is 0 : ¢ N — ptON
by Lemma 5.2(1). Because M is spatial, ny; : OM — Qat M is an isomorphism, so there
is a homeomorphism

V= pt(ny) : ptOM — ptQat M = sat M.
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The composition

aN —' 5 ptoN PV o — s e M

is clearly a sober map. But

Vo pi(flom) o 0(y) = o pi(flom)({b € ON |y < b})
=v({a e OM |y < f(a)})
={nu(a) |a € OM, y < f(a)}
= ats f(y)
for each y € ar N, completing the proof. [

The inverse of ¢ : ptOM — sat M is given by 40 (where 6 : at M — ptOM is
defined in Lemma 5.2). Indeed, recalling the counit o : 1y, — 2o pt from Section 2, for
x € ptOM,

(90 0 ¢)(x) = 20 (nar[2])
={U € QptOM | 07'(U) € nuz]}
={U € QptOM | Fucx:01U) =nu(u)}
={Ue€QptOM | FJuecx:U =oon(u)}
={U cQptOM |z € U}
= )\pt(oM(x) =,
where the last equality is true by identifying 4 = 44 since pt ©OM is sober. Moreover, for
each z € at M,

Yo b(x) =v¢(teNOM)
= nu[tz N OM]
={nu(a) | a € OM, x < a}
= A\ M-
Thus, for each y € sat M,
y =3Aan)(y) = s(tp 0 0)(y) = ¢ 0s0(y).
6.5. PROPOSITION. atg : SMTp’® — Tops is a functor.

PrOOF. For a spatial MT-algebra M, let ats M = at M and for a proximity morphism
f : M — N between spatial MT-algebras, let ats f : at N ~» at M be defined as in
Lemma 6.4. Then atg is well defined on both objects and morphisms. Moreover, for
proximity morphisms f : My — M, and ¢ : My — Mjs, by Lemma 6.4 and (¥),
ats feats g =asats foalsyg

= g, © pt(floar ) © 80n, © Vs, © PHGlons,) © Ons,

= ¥, © pglonm, © floam) © O,

=, 0 pt((g * f)loas) © O,

= ats(g* f).
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Furthermore, for y € ats M,
ats 1n(y) = {nu(a) | a € OM, y < 1y (a)}

={nu(a) | a € OM, y < a}

= {nu(a) | a € OM, y € ny(a)}

== Fy == )\atsM(y)~
Thus, ats : SMTp°® — Topg is a well-defined functor. n

To define a functor in the other direction, we require the following:

6.6. LEMMA. If f : My — My is a proximity morphism and g : My — M3 is an MT-
morphism, then go f : My — Ms is a proximity morphism.

PROOF. Since g is an MT-morphism, it satisfies (P1)—(P3), and hence so does the com-
position g o f. For (P4), observe that

9f(a) = g (V/{F(2) | v € LCON), 7 < a})
= \/{g(f@) | = € LE(OM), @ < a)

for each a € M;. Thus, g o f is a proximity morphism. m
Let M, N be MT-algebras. If h : OM — ON is a frame morphism, then A lifts to a

proximity morphism given by the following composition in MTp:

M 25 oM - FON —5 N.
For a topological space X,

QAx) =PAx)|opx :OPsX - OP X
is a frame isomorphism. Therefore, the frame isomorphism Q(Ax) ™! lifts to a proximity
morphism hyx : P X — P sX, which is a proximity isomorphism by Proposition 4.15(1).
6.7. DEFINITION. For a topological space X, let hx : # X — P sX be the lift of Q(\x) ™!
described above.

Recall from Section 3 that for proximity morphisms f, g and a locally closed element
x, we have (g * f)(z) = gf(x). Therefore, for D € LC P X, by Lemma 4.11 we have

hx(D) = (py 0 FQUAx) ! 0 g x(D)
= (py 0 FQUAx) (D)
= Coy (BUAx)TH(D))
= BQ(A\x) (D).
6.8. LEMMA. If f : X ~» Y 14s a sober map then Pp f := P fohy is a proximity morphism
from PY to P X.

(%)

PRrROOF. By definition, f is a continuous map from X to 4Y. This means that the map
Pf=f1:9sY - ®X is an MT-morphism. Consequently, @ fohy : PY — ® X is
a proximity morphism by Lemma 6.6. [
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6.9. LEMMA. Let f : M — N and g : M — N be proximity morphisms. If f(u) = g(u)
for allw € OM, then f = g.

PROOF. Let x € LCM. Then x = u A —v for some u,v € OM. Therefore,
f@) = flun—v) = flu) A=f(v) = g(u) Ag(v) = g(u A —w) = g(x).
Thus, for a € M,
fla) =\/{f(x) |z € LOM, x < a} = \[{g(z) | v € LCM, x < a} = g(a).

Consequently, f = g. n
We point out that for U € QY

P f(U) = (P fohy)U)
= 7HQMy) D))
={r e X | f(x) € Q0v)"(U)}
={reX|UEe f(x)}.
This will be used in what follows.
6.10. PROPOSITION. @p : Tops — SMTp" is a functor.

PrOOF. For X € Topg, let Pp X = P X and for a sober map f : X ~ Y, let Pp f :
PpY — Pp X be defined as in Lemma 6.8. Then $p is well defined both on objects and
morphisms. For sober maps f : X ~ Y and g : Y ~ Z, we show that Pp(g e f) =
Pp [+ Ppg. By Lemma 6.9, it suffices to show that they agree on open elements. Let
UeO©O®PZ=QZ. Then

Pe(ge [)(U) =Pp(sgo f)U) =Psgo f)ohz(U)=PfoPsgohz(U)
and since * is usual composition on open elements,
P fxPpgU)=Pp foPpg(U)=P fohyoPgohz(U).

Thus, it is enough to show that hy o P g(V) = P(sg(V)) for all V.€ O PsZ = QsZ.
Using (&), we have

hy 0 P g(V) = QA (g7 (V) = (a9) " (V) = Pag(V),
where the second equality holds because

2 € Q) ((09) (V) == Av(2) € (39) (V) = a9(Ay(2)) €V
= g(z) eV = zeg (V).

Finally, for W € O ®? X, by (),
@pr(W) = {l‘ eX | W e /\X(ZE)} = {ZL’ e X | T e W} =W = Q(l@X)(W)

Thus, by Lemma 6.9, #p A\x = 1p x. m
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We next connect Top with Topg and MT with MTp.

6.11. PROPOSITION.

(1) A : Top — Tops is a functor given by AX = X for each topological space X and
Af = Ay o f for each continuous map f: X — Y.

(2) ' : MT — MTp is a functor given by I'M = M for each MT-algebra M and
I'g =golyx for each MT-morphism g : M — N.

PRrROOF. (1) It is sufficient to show that A preserves composition and identities. The latter
is immediate since Alx = Ay o 1x = Ax. For composition, let f: X - Y andg:Y — Z
be continuous maps. Then

AgeAf=(Azog)e(Ayof)=slz0sg0lyof=sgolyof=Az0g0f=A(gof),

where the third equality holds because s\z is the identity and the fourth because A is a
natural transformation.

X1 sy_9.,7

b e e

sX oy 9y 47 Doz

(2) Again, it is sufficient to show that I" preserves composition and identities. For
an MT-algebra M, let I,; be the identity in MT and 1, the identity in MTp. Then
Il =1y oly =1y Let f: My — My and g : My — M3 be MT-mophisms. Then, for
a € Ml,

(g0 f)(a) = g(f(La(a) = \/{g(f(2) | 2 € LOM, & < a} = (g% f)(a).
Thus, I' is a functor. [

6.12. LEMMA. For a continuous map [ : X — Y, the following diagram commutes:

X X s P X 2 s P X

f l lat(/) f l.aar(/) f

Y ——= atPsY —— sat PsY
e )‘atf/)JY
PROOF. The left square commutes because ¢ : 1pop, — af P is a natural transformation
(see Theorem 2.11). The right square commutes because applying the functor at # to the
natural transformation A : 1o, — 4 yields a natural transformation A o (at ®P) : at P —
sat P. m
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6.13. LEMMA. Let f: X — sY be a continuous map.

(1) ats Pp f(x) =at P f(x) for allx € at P X.

(2) satsPp f=sat P f.

PROOF. Since (2) follows from (1), it is sufficient to prove (1). Let x € at® X. Then
x = g(a') = {2’} for a unique 2’ € X. Thus, at P f(z) = f(z’). Moreover, Pp f(a) =
F1OM\y) Ha) = f~'(a) for every a € O P sY since A,y is the identity on Y. Hence,

ats Pp f(x) ={nm(a) |a € OPsY, < Pp f(a)}
= {nu(a) [a € OPsY, z < f7H(a)}
= {nu(a) |a € OPsY, {2’} C fH(a)}
— {nla) | a € OPoY, f(z') € a)
=cf(a).
Consequently, ats @p f(z) = ef(2') = at P f(x). n

6.14. THEOREM. Tops is equivalent to SMTpP.

PROOF. We first define € : 1popg — ats Pp by setting Ex = Ay 9 x ocx for each X € Tops.
By Proposition 6.11(1), £x = Aeyx : X ~ at P X is a Topg-isomorphism since ey is a
homeomorphism (see Remark 6.3). We show that £is a natural transformation by showing
that the following diagram on the left commutes in Topg. Using the identification s = 44,
this is equivalent to showing that the diagram on the right commutes in Top:

X s aPX X X g PX 2 st P X

f\% \éﬂS@Pf fl lﬂatsg’Pf

Y ~ atPY Y —— atPsY —— sat PsY
Ey 204 Aaory

By Lemma 6.12, it suffices to show that s at # f = s ats Pp f, which is given by Lemma 6.13.

We next define 77 : lgprpor — Pp ats by setting nar = nas o 15 for each M € SMTp.
By Proposition 6.11(2), yy = I'nay - M — P at M is a proximity isomorphism since 1,
is an isomorphism of MT-algebras (because M is spatial; see Theorem 2.11). We show
that 77 is a natural transformation by showing that the following diagram commutes in
SMTPZ

M - pauM

gl \L@P‘USQ

NN
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By Lemma 6.9, it is enough to show that the diagram commutes on open elements. Let
u € OM. By (),

Ppats gx () = Ppats g o iy (u)
= Ppats g(nu(u))
={yea N |nuu)€atsg(y)}

Moreover,

nyxg(u) =nyog(u)={y€aN|y<g(u}

Thus, it is enough to recall from Lemma 6.4 that

ats g(y) = {nu(u) | v € OM, y < g(u)}.

Hence, Topg is equivalent to SMTp°P. n

Let TDTops be the full subcategory of Topg, and let STDMTp be the full subcat-
egory of SMTp consisting of Th-algebras. We have:

6.15. COROLLARY. TDTopg is equivalent to STDMTpP.

PROOF. By Theorem 2.13(2), X € TDTops implies #p X = P X € STDMTp, and
M € STDMTp® implies ats M = at M € TDTopg. Thus, the equivalence of Theo-
rem 6.14 restricts to an equivalence between TDTopg and STDMTpP. n

Let TD-SFrm be the full subcategory of Frm consisting of Tp-spatial frames. The
equivalence of Theorem 4.19(2) restricts to yield:

6.16. PrROPOSITION. TD-SFrm is equivalent to STDMTp.

Proor. It suffices to show that L € TD-SFrm implies 5L € STDMTp, and M €
STDMTp implies OM € TD-SFrm. If L. € TD-SFrm then there exists a Tp-space
X such that L =2 QX. Since X is a Tp-space, P X is a Tp-algebra by Theorem 2.13(2),
and hence FOX = ® X by Proposition 4.17. Thus, FL = FQX = P X is a spatial
Tp-algebra, and hence FL € STDMTp. If M € STDMTp then M = #P X for some
Tp-space X, and hence OM = QX € TD-SFrm. [

Putting together Theorem 6.14, Corollary 6.15, and Proposition 6.16, we arrive at the
following commutative diagram:

Topsg +—— SMTp®P

full]\ full]

TDTops +—— STDMTp® +— TD-SFrm®
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Tables of relevant categories

For the reader’s convenience, we conclude by listing the categories considered in this
article, indicating the objects, morphisms, and where the categories appear for the first

time in the body of the text.

’ Category ‘ Objects ‘ Morphisms ‘
Top topological spaces | continuous maps Section 2
Sob sober spaces continuous maps Section 2
TOTop To-spaces continuous maps Section 2
TDTop Tp-spaces continuous maps Section 2
TopLc topological spaces | locally closed maps | Definition 5.11
TOToprc | To-spaces locally closed maps | Section 5
Tops topological spaces | sober maps Definition 6.2
TDTops | TD-spaces sober maps Corollary 6.15
Table 1: Categories of topological spaces
’ Category ‘ Objects ‘ Morphisms ‘
Frm frames frame morphisms | Section 2
Frmp frames D-morphisms Section 2
SFrm spatial frames frame morphisms | Section 2
TD-SFrm Tp-spatial frames | frame morphisms | Section 2
TD-SFrmp | Tp-spatial frames | D-morphisms Section 2
Table 2: Categories of frames
Category | Objects ‘ Morphisms
MT MT-algebras MT-morphisms Definition 2.9
MTp MT-algebras proximity morphisms | Theorem 3.13
MTp MT-algebras D-morphisms Definition 5.14
TDMT Tp-algebras MT-morphisms Definition 2.12
TDMTp Tp-algebras proximity morphisms | Definition 4.18
TOMT Ty-algebras MT-morphisms Definition 2.12
SMT spatial MT-algebras | MT-morphisms Section 2
SMTp spatial MT-algebras | D-morphisms Definition 5.14
SMTp spatial MT-algebras | proximity morphisms | Section 6
STDMT spatial Tp-algebras | MT-morphisms Section 2
STDMTp | spatial Tp-algebras | proximity morphisms | Corollary 6.15
STOMT spatial Ty-algebras | MT-morphisms Section 2
STOMTp | spatial Tp-algebras | D-morphisms Definition 5.14

Table 3: Categories of MT-algebras
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Category | Objects Morphisms ‘
Bool boolean algebras boolean homomorphisms Definition 4.2
DLat bdd distr lattices bdd lattice homomorphisms | Definition 4.2
HLat Heyting algebras bdd lattice homomorphisms | Definition 4.2
Heyt Heyting algebras Heyting homomorphisms Definition 4.2
Int interior algebras int alg morphisms Definition 2.7
Ess essential algebras int alg morphisms Definition 4.1
Intc interior algebras continuous morphisms Definition 2.7
Essc essential algebras continuous morphisms Definition 4.1
Cons constructible algebras | constructible morphisms Definition 4.4

Table 4: Other categories
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