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THE FUNAYAMA ENVELOPE AS THE TD-HULL OF A FRAME

G. BEZHANISHVILI, R. RAVIPRAKASH, A. L. SUAREZ, J. WALTERS-WAYLAND

Abstract. We introduce proximity morphisms between MT-algebras and show that
the resulting category is equivalent to the category of frames. This is done by utilizing
the Funayama envelope of a frame, which is viewed as the TD-hull. Our results have
some spatial ramifications, including a generalization of the TD-duality of Banaschewski
and Pultr.
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1. Introduction

Pointfree topology has its origins in the study of topological spaces where the lattice of
open sets is taken as the core construct. Although this has been very fruitful (see, e.g.,
[Joh82, PP12]), it has its own drawbacks because the language is often not expressive
enough. This is well manifested when looking at separation axioms. While the language
of frames is perfectly adequate to express higher separation axioms, it is less so for the
lower ones. For example, being regular means that each open set is the union of open
sets whose closure is contained in it. This condition is easy to express in the language
of frames using the rather below relation (see, e.g., [PP21, p. 88]). On the other hand,
being a T1-space means that each singleton is closed, which is harder to express since
singletons of the space as well as the closure operator cannot be formalized using only
the frame of opens. However, it can be done using the powerset algebra equipped with
topological closure or interior. This more expressive formalism goes back to Kuratowski
[Kur22], and has further been developed by McKinsey and Tarski [MT44] in the form of
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the theory of closure algebras or interior algebras; that is, boolean algebras equipped with
an appropriate operator. As is clear from the title of their article, The Algebra of Topology,
they envisioned an algebraic formalism to reason about topology. This approach turned
out to be very beneficial not only for topology, but also for the foundations of mathematics
in general, and the connection between intuitionistic and modal logics in particular (see,
e.g., [RS63, CZ97, Esa19]).

As was demonstrated in [BR23] (see also [Nöb54, RS63, Nat90]), the standard point-
free approach to topology through the frames of opens can be enhanced by considering
those interior algebras whose underlying boolean algebra is complete. Indeed, these can
naturally be thought of as a pointfree generalization of interior algebras arising as pow-
ersets of topological spaces, and give rise to frames by taking the poset of open elements.
These algebras were coined MT-algebras, in honor of McKinsey and Tarski. Equipping
MT-algebras with an appropriate notion of morphism, we obtain the category MT, and
the open element functor O from MT to the category Frm of frames. Moreover, up
to isomorphism, every frame arises as the frame of open elements of some MT-algebra,
thanks to the well-known Funayama embedding of each frame into a complete boolean
algebra [Fun59]. We call this the Funayama envelope of a frame L and denote it by FL.
However, the assignment L 7→ FL is not functorial: frame morphisms do not in general
lift to complete lattice maps between their Funayama envelopes [BR23, Example 4.4].
To amend this, we introduce a new notion of morphism between MT-algebras, which is
based on a proximity-like structure on the MT-algebra, reminiscent of de Vries proximity
on a boolean algebra (see [dV62, Bez10]). This modification enables us to obtain F as a
functor from Frm to this new category MTP of MT-algebras and proximity moprhisms.
One of our main results establishes that the functors O and F yield an equivalence of
these categories.

As we will see, the Funayama envelope of a frame always satisfies TD-separation.
Spatially, this is the separation axiom of Aull and Thron [AT62] stating that each point
is locally closed. The MT-version of it states that locally closed elements join-generate
the MT-algebra. By contrast, there is no notion of a TD-frame, only of a TD-spatial frame
(see the next paragraph). This can be explained by the fact that an MT-algebra is TD
iff it is isomorphic to the Funayama envelope of a frame [BR23, Thm. 6.5], yielding a
one-to-one corresponence between frames and TD-algebras. We think of the Funayama
envelope as the TD-hull of a frame, thus providing a useful formalism to capture TD-
separation pointfreely, albeit in the language of MT-algebras rather than frames. As a
consequence, we obtain that each MT-algebra has a TD-reflection, which also happens
to be a coreflection. This is explained by the fact that proximity morphisms are weak
enough so that not all isomorphisms in this category are structure-preserving bijections.
This, in particular, results in an equivalence of MTP, its full subcategory TDMTP of
TD-algebras, and Frm (for the reader’s convenience, all categories of interest are gathered
together in tables at the end of the paper).

Our results have some spatial ramifications, including a further explanation and gen-
eralization of the TD-duality of Banaschewski and Pultr [BP10]. One of their key notions
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is that of a D-morphism between frames. We generalize this to a D-morphism between
MT-algebras. For TD-algebras, this notion is stronger than that of a proximity morphism.
We prove that the category STDMT of spatial TD-algebras is a reflective subcategory of
the category MTD of MT-algebras and D-morphsims, and is equivalent to the category
TDTop of TD-spaces. This yields a pointfree description of the TD-coreflection of [BP10,
3.7.2], which is not expressible in the language of frames. Another advantage of the MT-
approach is that every MT-morphism between TD-algebras is a D-morphism, which is in
contrast with what happens in the setting of frames (where the category TD-SFrmD of
TD-spatial frames with D-morphisms is not a full subcategory of Frm).

As we pointed out above, D-morphisms between spatial TD-algebras correspond to
continuous maps between their dual TD-spaces. We also give a dual characterization of
proximity morphisms between spatial TD-algebras. This is done by introducing the notion
of a sober map (that is, a continuous map from one topological space to the soberification
of another), thus obtaining a more general duality for spatial TD-algebras that subsumes
the TD-duality for frames. The latter is the restriction of a new duality between the
categories TopS of topological spaces and sober maps and SMTP of spatial MT-algebras
and proximity morphisms. This allows us to not only capture the D-morphisms between
TD-spatial frames as in the TD-duality of [BP10], but also all frame morphisms.

The ability to describe the TD-hull of a frame provides further evidence that this
enhanced pointfree approach to topology is highly beneficial. For example, it affords
sufficiently expressive power to capture lower separation axioms, which have been elusive
in locale theory.

2. Preliminaries

In this section we briefly review some well-known facts about frames and MT-algebras
that we will use in the rest of the paper.

Frames and co-frames. We recall that a complete lattice L is a frame if it satisfies the
join-infinite distributive law

a ∧
∨

S =
∨
{a ∧ s | s ∈ S},

and a co-frame if it satisfies the meet-infinite distributive law

a ∨
∧

S =
∧
{a ∨ s | s ∈ S}

for all a ∈ L and S ⊆ L. A frame morphism is a map between frames preserving arbitrary
joins and finite meets, and a co-frame morphism is defined dually. As usual, we let Frm
denote the category of frames and frame morphisms.

A typical example of a frame is the complete lattice ΩX of open sets of a topological
space X, and of a co-frame the complete lattice ΓX of closed sets of X. The assignment
X 7→ ΩX is the object part of the functor Ω : Top→ Frmop, which sends each continuous
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map f : X → Y to the preimage map f−1 : ΩY → ΩX. The functor Ω has a right adjoint,
namely the functor pt : Frmop → Top, which maps each frame L to the space of its points
(completely prime filters) with the topology given by σL[L], where σL(a) = {P ∈ ptL |
a ∈ P} for each a ∈ L. The functor pt sends each frame morphism f : L → M to the
continuous map f−1 : ptM → ptL.

A frame L is spatial provided points of L separate non-comparable elements of L, and
a space X is sober if each irreducible closed set is the closure of a unique point. The
adjunction Ω ⊣ pt restricts to an equivalence between the full subcategories SFrm of
spatial frames and Sob of sober spaces (see [PP12, Ch. II] for details):

Top Frmop

Sob SFrmop

Ω

⊥
pt

full

∼=

full

More important for our purposes is the TD-duality of Banaschewski and Pultr [BP10].
We recall [AT62] that a topological space X is a TD-space if each point x ∈ X is locally
closed (closed in some open neighborhood of x). Let TDTop be the full subcategory of
Top consisting of TD-spaces.

1 If f : X → Y is a continuous map between TD-spaces, then
f−1 : ΩY → ΩX has an extra property. To describe it, we recall that an element a of a
poset P is covered by another element b if a < b and from a ≤ x ≤ b it follows that a = x
or x = b. In this case we write a⋖ b. An element a is said to be covered if a⋖ b for some
b.

Now, since each x ∈ X is locally closed, there is U ∈ ΩX such that x ∈ U and
U\{x} ∈ ΩX. Therefore, U\{x} is covered by U in ΩX. Thus, the filter Fx := {U ∈
ΩX | x ∈ U} of ΩX is slicing in the following sense:

2.1. Definition. [BP10, Sec. 2.6] A completely prime filter F of a frame L is slicing if
there exist b ∈ F and a ̸∈ F with a⋖ b.2

The TD-spectrum of a frame L is defined to be the collection ptD L of slicing filters of L,
topologized by setting the opens to be the elements of the form δ(a) = {x ∈ ptD L | a ∈ x}.
As was shown in [BP10, Lem. 2.6.1], ptD L is a subspace of ptL. The dual frame morphisms
of continuous maps between TD-spaces have the following extra property:

2.2. Definition. [BP10, Sec. 3.1] A frame morphism f : L → M is a D-morphism
provided f−1(F ) is a slicing filter of L for each slicing filter F of M .

1In [BP10, 3.1] this category is denoted by TopD.
2As follows from [BP10, Lem. 2.6.1], in the definition of a slicing filter it is enough to assume that

F is prime as being completely prime is then a consequence. This notion captures locally closed points
in that a point (of a T0-space) is locally closed iff the corresponding completely prime filter Fx is slicing
[BP10, Prop. 2.7.1].
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Let FrmD denote the wide subcategory of Frm whose morphisms are the D-morphisms.
A frame L is said to be TD-spatial if it is isomorphic to ΩX for some TD-space X. Let
TD-SFrmD be the full subcategory of FrmD determined by these objects. We then have
(see [BP10, Prop. 3.5.1]):

2.3. Theorem. [TD-duality] There is an adjunction (Ω, ptD) between TDTop and FrmD
op,

which restricts to an equivalence between TDTop and TD-SFrmD
op.

TDTop FrmD
op

TDTop TD-SFrmD
op

Ω

⊥
ptD

=

∼=

full

The pt and ptD functors are in general different, even for TD-spatial frames. Hence,
the TD-duality is not a restriction of the Ω ⊣ pt adjunction. But the functor Ω is the same
in both cases, thus we do have the following commutative square:

Top Frmop

TDTop TD-SFrmD
op

Ω

full

∼=

nonfull

We emphasize that not all frame morphisms between TD-spatial frames are D-morphisms.
The next example illustrates this.

2.4. Example. Let X := {∗} be a singleton space and Y the natural numbers equipped
with the Alexandroff topology (where opens are precisely the upper sets). It is easy to
see that both X and Y are TD-spaces. Moreover, ΩX is isomorphic to the two-element
boolean algebra 2 = {0, 1} and ΩY is isomorphic to (ω + 1)op. Define f : ΩY → ΩX by
f(a) = 1 iff a ̸= 0. It is straightforward to check that f is a frame morphism. Furthermore,
F := {1} is a slicing filter in ΩX, but f−1(F ) = ΩY \ {∅} is not a slicing filter in ΩY .
Thus, f is not a D-morphism.

2.5. Remark. In the above example, no continuous map between the spaces X and Y
can give rise to f : ΩY → ΩX since otherwise ∗ would have to be mapped to a point
whose open neighborhoods are all nonempty opens of Y , and such a point does not exist
in Y . In fact, all frame morphisms between TD-spatial frames that come from continuous
maps between TD-spaces are D-morphisms (as will be evident from Theorem 2.13(2)
and Corollary 2.14 below).

Interior algebras and MT-algebras. The following definitions go back to McKinsey
and Tarski [MT44] (see also [RS63, Esa19]).
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2.6. Definition. An interior operator on a boolean algebra A is a unary function □ :
A→ A satisfying Kuratowski’s axioms for all a, b ∈ A:

• □1 = 1.

• □(a ∧ b) = □a ∧□b.

• □a ≤ a.

• □a ≤ □□a.

An interior algebra is a pair (A,□) with A a boolean algebra and □ an interior operator
on A.

Recall (see, e.g., [RS63, Sec. III.3]) that a morphism of interior algebras is a boolean
homomorphism f : A→ B such that f(□a) = □f(a) for each a ∈ A. We will be interested
in the following weaker condition: f(□a) ≤ □f(a) for each a ∈ A. Such morphisms have
been studied in the literature under different names: continuous morphisms [Ghi10], stable
morphisms [BBI16], or semi-homomorphisms [BMM08]. For the purposes of this paper,
we will follow [Ghi10] in calling them continuous morphisms.

2.7. Definition.

(1) Let Int be the category of interior algebras and interior algebra morphisms.

(2) Let IntC be the category of interior algebras and continuous morphisms.

Clearly Int is a wide subcategory of IntC, and in both categories, compostion is
function composition and identity morphisms are identity functions.

2.8. Definition. Let A be an interior algebra.

(1) An element a ∈ A is open if a = □a.

(2) An element a ∈ A is closed if a = ♢a where ♢a = ¬□¬a.

(3) An element a ∈ A is locally closed if a = □b ∧ ♢c for some b, c ∈ A.3

Let OA, CA, and LCA be the collections of open, closed, and locally closed elements of
A, respectively.

Observe that OA is a bounded sublattice of A and □ : A→ OA is right adjoint to the
inclusion OA ↪→ A, yielding that OA is a Heyting algebra (see, e.g., [Esa19, Sec. 2.5]).
Similarly, CA is a bounded sublattice of A and ♢ : A→ CA is left adjoint to the inclusion
CA ↪→ A, yielding that CA is a co-Heyting algebra. We point out that the implication
on OA is given by u → v = □(¬u ∨ v) for all u, v ∈ OA, and the co-implication on CA
by c← d = ♢(d∧¬c) for all c, d ∈ CA. Moreover, LCA is closed under finite meets, and
closing LCA under finite joins gives the boolean subalgebra of A generated by OA (or
CA).

3Equivalently, a is locally closed provided a = u ∧ ♢a for some u ∈ OA.
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2.9. Definition.

(1) An interior algebra (A,□) is a McKinsey-Tarski algebra or an MT-algebra if A is a
complete boolean algebra.

(2) An MT-morphism between MT-algebrasM and N is a complete boolean homomor-
phism h :M → N such that h(□a) ≤ □h(a) for each a ∈M .

(3) Let MT be the category of MT-algebras and MT-morphisms.

Since each MT-algebra M is complete and □ : M → OM is right adjoint to the
inclusion, OM is a subframe of M . In fact, we can equivalently think of MT-algebras as
pairs (A,L) where A is a complete boolean algebra and L is a subframe of A. Then the
interior operator on A is given by □a =

∨
{b ∈ L | b ≤ a}. Moreover, if f :M → N is an

MT-morphism, then its restriction f |OM : OM → ON is a frame morphism that sends
identity morphisms to identity morphisms and respects composition. We thus obtain:

2.10. Theorem. [BR23, Thm. 3.10] The assignment M 7→ OM and f 7→ f |OM yields a
functor O : MT→ Frm.

A typical example of an MT-algebra is the powerset algebra (PX,□) of a topological
space X, where □ is the interior operator on X. The assignment X 7→ PX extends
to a functor P : Top→MTop, where a continuous map f : X → Y is sent to the
MT-morphism f−1 : P Y → PX. To define a functor in the opposite direction, for an
MT-algebra M , let atM be the set of atoms of M . For a ∈M , define

ηM(a) = {x ∈ atM | x ≤ a}.

Then {ηM(a) | a ∈M} is a topology on atM , so PatM is an MT-algebra and ηM :M →
PatM is an onto MT-morphism. Moreover, if f : M → N is an MT-moprhism, then
it has a left adjoint (since it is a complete boolean homomorphism). The restriction of
the left adjoint is then a well-defined continuous map f ∗ : atN → atM . This defines a
functor at : MTop → Top, which is right adjoint to P.

We call M spatial provided ηM : M → PatM is one-to-one (in which case it is an
isomorphism of MT-algebras). Let SMT be the full subcategory of MT consisting of
spatial MT-algebras. For each X ∈ Top, let εX : X → at PX be given by εX(x) = {x}.
Then εX is a homeomorphism and we have (see [BR23, Thm. 3.22]):

2.11. Theorem. [MT-duality] (P, at) is an adjunction between Top and MTop whose
unit is given by ε : 1Top → at ◦P and counit by η : P ◦ at → 1MT. This adjunction
restricts to an equivalence between Top and SMTop.

Top MTop

Top SMTop

P

⊥
at

=

∼=

full
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We conclude this preliminary section by recalling the MT-algebra analogues of TD and
T0-spaces. An element of an MT-algebra M is saturated if it is a meet from OM . Let
SM be the collection of saturated elements of M . We call a ∈ M weakly locally closed if
a = s ∧ c where s ∈ SM and c ∈ CM . Let WLCM be the collection of weakly locally
closed elements of M .

2.12. Definition. An MT-algebra M is said to be a TD-algebra if LCM join-generates
M and a T0-algebra if WLCM join-generates M .

Let TDMT be the full subcategory of MT consisting of TD-algebras, STDMT the
full subcategory of TDMT consisting of spatial TD-algebras, and define T0MT and
ST0MT similarly. Also, let TDTop be the full subcategory of Top consisting of TD-
spaces, and define T0Top similarly. Then MT-duality restricts to yield the following (see
[BR23, Thms. 5.7, 6.4]):

2.13. Theorem.

(1) The adjunction (P, at) restricts to T0Top and T0MTop, yielding an equivalence
between T0Top and ST0MTop.

(2) The adjunction (P, at) further restricts to TDTop and TDMTop, yielding an equiv-
alence between TDTop and STDMTop.

Putting Theorems 2.3 and 2.13(2) together, we conclude:

2.14. Corollary. TD-SFrmD is equivalent to STDMT.

As we pointed out after Theorem 2.3, the inclusion TD-SFrmD ↪→ Frm is not full.
By contrast, the inclusion STDMT ↪→ MT is full. Moreover, while the TD-duality for
frames is not a restriction of the Ω ⊣ pt adjuntion (since ptD is not in general the same
as pt), the TD-duality for MT-algebras is obtained by restricting the adjunction P ⊣ at.
This is summarized in the two diagrams below:

Top Frmop

TDTop TD-SFrmD
op

Ω

full

∼=

nonfull

Top MTop

TDTop STDMTop

P

⊥
at

full

∼=

full

3. Proximity morphisms between MT-algebras

In this section, we show that each MT-algebra can be equipped with a proximity relation,
which is a weakening of a de Vries proximity on a boolean algebra [dV62, Bez10]. This
gives rise to a new category MTP of MT-algebras and proximity morphisms between
them. In Section 4, it will be shown that this category is equivalent to Frm.
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Given boolean algebras A,B, with B a subalgebra of A, we define a binary relation
≺B on A by

a ≺B c⇐⇒ ∃b ∈ B : a ≤ b ≤ c.

It is straightforward to verify that this relation satisfies the following conditions:

(S1) 1 ≺B 1;

(S2) a ≺B c implies a ≤ c;

(S3) a ≤ a′ ≺B c′ ≤ c implies a ≺B c;

(S4) a ≺B c, d implies a ≺B c ∧ d;

(S5) a ≺B c implies ¬c ≺B ¬a;

(S6) a ≺B c implies that there is b ∈ B with a ≺B b ≺B c.

3.1. Remark. The above are standard proximity axioms on a boolean algebra, except
(S6) is a strengthening of the usual in-betweenness axiom. However, in general, ≺B is not
a de Vries proximity on A since it is not necessarily the case that a =

∨
{c ∈ A | c ≺B a}.

In fact, ≺B is a de Vries proximity on A if and only if B join-generates A.

In our considerations, A will be an MT-algebra and B will be the boolean subalgebra
of A generated by OA. We recall that in the powerset algebra of a topological space,
the elements of the boolean subalgebra generated by the frame of opens are exactly the
finite unions of locally closed subsets, and are called constructible sets (see, e.g., [Har77,
p. 94]). Analogously:

3.2. Definition. An element a of an MT-algebra M is constructible provided a is a
finite join from LCM . Let ConsM be the set of constructible elements of M .

Note that ConsM is the boolean subalgebra of M generated by OM , and thus one
can consider the associated binary relation, ≺ConsM . To simplify notation, we omit the
subscript.

3.3. Definition. Let M be an MT-algebra. An element a is constructibly below b, or
“cons-below”, if a ≺ b for the binary relation associated with ConsM .

Interestingly, the cons-below relation on an MT-algebra M is a de Vries proximity
precisely when M is a TD-algebra:

3.4. Lemma. For any MT-algebra M , the cons-below relation is a de Vries proximity on
M iff M is a TD-algebra.

Proof. By Remark 3.1, the cons-below relation is a de Vries proximity on M iff ConsM
join-generates M . Since each element of ConsM is a finite join from LCM , the latter
condition is equivalent to M being a TD-algebra.
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Next, by analogy with de Vries algebras, we define proximity morphisms between
MT-algebras.

3.5. Definition. ForM,N ∈MT, a map f :M → N is a proximity morphism provided
the following conditions are satisfied:

(P1) f |O(M) : OM → ON is a frame morphism.

(P2) f(a ∧ b) = f(a) ∧ f(b) for each a, b ∈M .

(P3) f(
∨
S) =

∨
{f(s) | s ∈ S} for each finite S ⊆ LCM .

(P4) f(a) =
∨
{f(x) | x ∈ LCM, x ≤ a} for each a ∈M .

3.6. Remark. Since each element of ConsM is a finite join fromLCM , (P4) is equivalent
to

f(a) =
∨
{f(b) | b ∈ ConsM, b ≤ a} for each a ∈M.

3.7. Lemma. Let f :M → N be a proximity morphism between MT-algebras.

(1) f(¬x) = ¬f(x) for each x ∈ OM ∪ CM .

(2) f |CM : CM → CN is a co-frame morphism.

(3) If x ∈ LCM then f(x) ∈ LCN .

(4) f |ConsM : ConsM → ConsN is a boolean homomorphism.

Proof. (1) Let x ∈ OM∪CM . Then ¬x ∈ CM∪OM . Thus, since OM ∪ CM ⊆ LCM ,
by (P3), f(x) ∨ f(¬x) = f(x ∨ ¬x) = f(1) = 1. Moreover, by (P2),

f(x) ∧ f(¬x) = f(x ∧ ¬x) = f(0) = 0.

Therefore, f(¬x) = ¬f(x).
(2) Since CM ⊆ LCM , the restriction f |CM preserves finite joins by(P3). We show

that it preserves arbitrary meets. Let S ⊆ CM . Then ¬s ∈ OM for each s ∈ S, so∨
{¬s | s ∈ S} ∈ OM . Therefore, by (P1) and (1),

f
(∧

S
)

= f
(
¬
∨
{¬s | s ∈ S}

)
= ¬f

(∨
{¬s | s ∈ S}

)
= ¬

∨
{f(¬s) | s ∈ S} = ¬

∨
{¬f(s) | s ∈ S}

=
∧

f [S].

Thus, f |CM : CM → CN is a co-frame morphism.
(3) This follows from (P1), (P2), and (2).
(4) Since each element of ConsM is a finite join from LCM , it follows from (P3)

and (3) that f |ConsM is well defined. Moreover, by (P1)–(P3), it is a bounded lattice
homomorphism, and thus a boolean homomorphism.
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3.8. Lemma. Let f : M → N be a map between MT-algebras satisfying (P1), (P2), and
(P4). The following are equivalent:

(1) f satisfies (P3); that is, f is a proximity morphism.

(2) a1 ≺ b1 and a2 ≺ b2 imply f(a1 ∨ a2) ≺ f(b1) ∨ f(b2) for each ai, bi ∈M .

(3) a ≺ b implies ¬f(¬a) ≺ f(b) for each a, b ∈M .

Proof. It is sufficient to prove that (1)⇔(2) since (2)⇔(3) follows from [Bez12, Lem. 2.2]
and [BH14, Prop. 7.4].

(1)⇒(2): Suppose a1 ≺ b1 and a2 ≺ b2. Then there exist finite S1, S2 ⊆ LCM such
that a1 ≤

∨
S1 ≤ b1 and a2 ≤

∨
S2 ≤ b2. Thus, a1 ∨ a2 ≤

∨
S1 ∨

∨
S2 ≤ b1 ∨ b2. By (P2),

f is order preserving. Therefore, by (1),

f(a1 ∨ a2) ≤ f
(∨

S1 ∨
∨

S2

)
=
∨

f [S1] ∨
∨

f [S2] ≤ f(b1) ∨ f(b2).

Consequently, f(a1∨a2) ≺ f(b1)∨f(b2) since
∨
f [S1]∨

∨
f [S2] ∈ ConsN by Lemma 3.7(3).

(2)⇒(1): Let S ⊆ LCM be finite. Since f is order preserving,
∨
f [S] ≤ f(

∨
S). For

the reverse inequality, since s ≺ s for each s ∈ S, (2) implies f(
∨
S) ≺

∨
f [S]. Thus,

f(
∨
S) ≤

∨
f [S], and hence f satisfies (P3).

We next show that the MT-algebras and proximity morphisms between them form a
category, however neither the composition is usual function composition nor the identity
morphisms are identity functions. The composition of proximity morphisms between
MT-algebras is defined as for de Vries algebras:

3.9. Definition. For proximity morphisms f :M1 →M2 and g :M2 →M3, define

(g ⋆ f)(a) =
∨
{g(f(x)) | x ∈ LCM1, x ≤ a}.

It is immediate that if x ∈ LCM1 then (g ⋆ f)(x) = (g ◦ f)(x).

3.10. Lemma. Let f : M1 → M2, g : M2 → M3, and h : M3 → M4 be proximity
morphisms. For each a ∈M1, we have

((h ⋆ g) ⋆ f)(a) =
∨
{h(g(f(x))) | x ∈ LCM1, x ≤ a} = (h ⋆ (g ⋆ f))(a).

Proof. Let a ∈M1. Then

((h ⋆ g) ⋆ f)(a) =
∨
{(h ⋆ g)(f(x)) | x ∈ LCM1, x ≤ a}

=
∨
{(h ◦ g)(f(x)) | x ∈ LCM1, x ≤ a} since f(x) ∈ LCM2

=
∨
{h((g ◦ f)(x)) | x ∈ LCM1, x ≤ a}

=
∨
{h((g ⋆ f)(x)) | x ∈ LCM1, x ≤ a} since x ∈ LCM1

= (h ⋆ (g ⋆ f))(a).
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3.11. Definition. For an MT-algebra M , define 1M :M →M by

1M(a) =
∨
{x ∈ LCM | x ≤ a} for each a ∈M.

3.12. Lemma.

(1) 1M is a proximity morphism for each MT-algebra M .

(2) For each proximity morphism f :M → N between MT-algebras we have

1N ⋆ f = f = f ⋆ 1M .

Proof. (1) By the definition of 1M , 1M(x) = x for each x ∈ LCM . In particular, 1M
is identity on OM , and hence (P1) holds. In view of Section 3.6, an argument similar to
[Bez10, Lem. 4.8] yields that (P2) and Lemma 3.8(3) hold. It is also immediate from the
definition that (P4) holds. Thus, 1M is a proximity morphism by Lemma 3.8.

(2) Let a ∈M . Then

(1N ⋆ f)(a) =
∨
{1N(f(x)) | x ∈ LCM, x ≤ a}

=
∨
{f(x) | x ∈ LCM, x ≤ a} since f(x) ∈ LCN

= f(a)

=
∨
{f(1M(x)) | x ∈ LCM, x ≤ a} since x ∈ LCM

= (f ⋆ 1M)(a).

As an immediate consequence of Lemmas 3.10 and 3.12 we obtain:

3.13. Theorem. The MT-algebras and proximity morphisms between them form a cate-
gory MTP where composition is given by ⋆ and identity morphisms are 1M .

Proof. In view of Lemmas 3.10 and 3.12, we only need to check that if f : M1 → M2

and g :M2 →M3 are proximity morphisms, then so is g ⋆ f : M1 → M3. For this it is
sufficient to verify (P1)–(P4).

(P1) For u ∈ OM1, we have (g ⋆ f)(u) = (g ◦ f)(u). Thus, (g ⋆ f)|OM1 is a frame
morphism.

(P2) For a, b ∈M1, since LCM1 is closed under finite meets, we have

(g⋆f)(a) ∧ (g ⋆ f)(b)

=
∨
{g(f(x)) | x ∈ LCM1, x ≤ a} ∧

∨
{g(f(y)) | y ∈ LCM1, y ≤ b}

=
∨
{g(f(x)) ∧ g(f(y)) | x, y ∈ LCM1, x ≤ a, y ≤ b}

=
∨
{g(f(x ∧ y)) | x, y ∈ LCM1, x ≤ a, y ≤ b}

=
∨
{g(f(z)) | z ∈ LCM1, z ≤ a ∧ b}

= (g ⋆ f)(a ∧ b).
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(P3) Let S ⊆ LCM . By (P2), g ⋆ f is order preserving. Thus,∨
{(g ⋆ f)(s) | s ∈ S} ≤ (g ⋆ f)

(∨
S
)
.

For the reverse inequality, since (g ⋆ f)(a) ≤ (g ◦ f)(a) for each a ∈ M1 and f, g are
proximity morphisms, we obtain

(g ⋆ f)
(∨

S
)
≤ (g ◦ f)

(∨
S
)
= g

(∨
f [S]

)
=
∨
{g(f(s)) | s ∈ S}

=
∨
{(g ⋆ f)(s) | s ∈ S}.

(P4) For a ∈M1, we have

(g ⋆ f)(a) =
∨
{g(f(x)) | x ∈ LCM1, x ≤ a}

=
∨
{(g ⋆ f)(x) | x ∈ LCM1, x ≤ a} since x ∈ LCM1.

Not surprisingly, isomorphims in MTP are not structure-preserving bijections:

3.14. Example. Let □ be the identity on the two-element boolean algebra 2. Then
(2,□) is an MT-algebra. Also, let M = {0, a, b, 1} be the four-element boolean algebra.
Then (M,□) is an MT-algebra, where □ :M →M is defined by

□a =

{
1 if a = 1

0 otherwise.

Observe that 1M = □ and 12 is the identity on 2. Since 2 ⊆ M , we may view 1M as a
proximity morphism f : M → 2 and 12 as a proximity morphism g : 2 → M . We then
have g ⋆ f = 1M and f ⋆ g = 12. Thus, g is the inverse of f in MTP, and hence f is an
isomorphism in MTP. However, f is clearly not a structure-preserving bijection.

In Proposition 4.22, we will characterize isomorphisms in MTP, from which we derive
that isomorphisms between TD-algebras are indeed structure-preserving bijections (ob-
serve that M in the above example is not a TD-algebra). This requires more machinery,
which we turn to next.

4. Funayama envelope

It is a consequence of a well-known result of Funayama [Fun59] that each frame embeds
into a complete boolean algebra. In this section, we use this to define the Funayama
envelope of a frame L, denoted by FL, and show that it may be identified with a TD-
algebra whose opens are isomorphic to L. For this reason, we think ofFL as the TD-hull of
L. We prove that this assignment extends to categorical equivalences between Frm,MTP,
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and the full subcategory TDMTP of MTP consisting of TD-algebras. The equivalence
of the last two categories is explained by the fact that isomorphisms in MTP are not
structure-preserving bijections. We show that this unusual phenomenon disappears in
TDMTP.

The Funayama envelope of a frame can be constructed by taking the MacNeille com-
pletion of its boolean envelope (see below).

Boolean envelope of a frame. Recalling the categories Int and IntC (Definition 2.7),
we have:

4.1. Definition.

(1) An interior algebra A is essential if the least boolean subalgebra of A generated by
OA coincides with A.4

(2) Let EssC be the full subcategory of IntC consisting of essential algebras, and define
Ess similarly (as a full subcategory of Int).

Clearly Ess is a wide subcategory of EssC. These two categories are closely related
to the following categories:

4.2. Definition.

(1) Let Heyt be the category of Heyting algebras and Heyting homomorphisms, and
let Bool be the full subcategory of Heyt consisting of boolean algebras.

(2) Let DLat be the category of bounded distributive lattices and bounded lattice ho-
momorphisms, and let HLat be the full subcategory of DLat consisting of Heyting
algebras.

Clearly, Heyt is a wide subcategory of HLat. To connect these two categories with
Ess and EssC, we recall the definition of the boolean envelope of a distributive lattice
(see, e.g., [BD74, Sec. V.4]), which is the reflector B : DLat→ Bool.

The boolean envelope or free boolean extension of a bounded distributive lattice L is a
pair (BL, e), where BL is a boolean algebra and e : L→ BL is a bounded lattice embed-
ding satisfying the following universal mapping property: for any boolean algebra A and
a bounded lattice homomorphism h : L → A, there is a unique boolean homomorphism
Bh : BL→ A such that Bh ◦ e = h; i.e., the following diagram commutes:

L BL

A

e

h
Bh

4Esakia introduced essential algebras under the name of skeletal algebras (see [Esa19, Def. 2.5.6]).
Since the name “skeletal” is overused in topology, we prefer the name essential. This is justified by the
fact that we can think of A as an essential extension of OA in that for each congruence Θ of the interior
algebra A, if Θ is not identity then neither is Θ ∩ (OA×OA).
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We identify L with it image e[L] and treat L as a bounded sublattice of BL which
generates BL. If L is a Heyting algebra, then the embedding L ↪→ BL has a right
adjoint □ : BL → L and (BL,□) is an essential interior algebra (see, e.g., [Esa19,
Sec. 2.5]). Moreover, each bounded lattice homomorphism h : L1 → L2 lifts uniquely to
a continuous morphism Bh : BL1 → BL2. Furthermore, h is a Heyting homomorphism
iff Bh is a morphism of interior algebras (see, e.g., [BMM08, Sec. 2.2]). We thus obtain:

4.3. Theorem.

(1) Ess is a coreflective subcategory of Int that is equivalent to Heyt.

(2) EssC is a coreflective subcategory of IntC that is equivalent to HLat.

Proof. For (1) see [Esa19, Thm. 2.5.11], and (2) is proved similarly (see, e.g., [BMM08,
Thm. 2.14]).

We next restrict the equivalence in Theorem 4.3(2) to constructible algebras.

4.4. Definition.

(1) We call A constructible if it is essential and OA is a frame.

(2) A continuous morphism f : A→ B between constructible algebras is a constructible
morphism if f |OA : OA→ OB is a frame morphism.

(3) Let Cons be the category of constructible algebras and constructible morphisms.

Note that Cons is a non-full subcatgeory of EssC since not every bounded lattice
homomorphism between frames is a frame morphism. However, isomorphisms in Cons
are isomorphisms in EssC. We have the following consequence of Theorem 4.3(2):

4.5. Theorem. Frm is equivalent to Cons.

Proof. For a Heyting algebra L, we have that L is a frame iff (BL,□) is a constructible
algebra. Indeed, if L is a frame, then (BL,□) is an essential interior algebra for which
OBL is a frame since OBL = L (recall that we identify L with e[L]). Thus, (BL,□) is
a constructible algebra. For the same reason, if (BL,□) is constructible then L must be
a frame. Moreover, for a bounded lattice homomorphism h : L1 → L2 between frames,
since OBLi = Li (i = 1, 2) and Bh|L1 = h, we have that h is a frame morphism iff Bh is
a constructible morphism. Thus, since isomorphisms in Cons are isomorphisms in EssC,
the equivalence of Theorem 4.3(2) restricts to an equivalence between Frm and Cons.
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Funayama envelope of a frame.

4.6. Proposition. O : MTP → Frm is a functor.

Proof. By Theorem 2.10, OM is a frame; by (P1), if f : M → N is a proximity
morphism, Of : OM → ON is a frame morphism. Since OM ⊆ LCM , the restriction of
1M is the identity on OM , so O(1M) = 1OM . For the same reason, if f : M1 → M2 and
g :M2 →M3 are proximity morphisms then

O(g ⋆ f) = (g ⋆ f)|OM1 = (g ◦ f)|OM1 = g|OM2 ◦ f |OM1 = Og ◦Of.

Thus, O : MTP → Frm is a functor.

We show that O is an equivalence by describing its quasi-inverse using Funayama’s
result [Fun59] that there is a frame embedding of each frame L into a complete boolean
algebra B, where B can be constructed as the MacNeille completion5 of the boolean
envelope of L [Grä11].6

For a frame L, let BL be the MacNeille completion of its boolean envelope. We lift
the interior operator □ : BL→ BL to □ : BL→ BL by

□a =
∨
{□b | b ∈ BL and b ≤ a}.

Then
(
BL,□

)
is an MT-algebra such that OFL ∼= L (see e.g., [BR23, p. 8]).

4.7. Definition. For a frame L, we call the MT-algebra
(
BL,□

)
the Funayama envelope

of L and denote it by FL.

Note that the assignment L 7→ FL cannot be extended to a functor Frm→MT
with f = OFf for every frame morphism f . Indeed, there are frame morphisms that
do not lift to complete boolean homomorphisms between their Funayama envelopes. For
the reader’s convenience, we illustrate this with an example from [BR23, Example 4.4],
detailed below.

4.8. Example. Equip N with the cofinite topology and let Ω(N) be its frame of opens.
The boolean envelope of Ω(N) is isomorphic to the boolean algebra of finite and cofinite
subsets of N, and its MacNeille completion is isomorphic to P(N). We thus identify
FΩ(N) with P(N). Consider the frame morphism f : Ω(N) → 2 given by f(U) = 0 iff
U = ∅. Then Ff(F ) = 0 for every finite subset F ⊆ N. Therefore, if Ff is a complete
boolean homomorphism, then Ff(N) = ∅, a contradiction.

By contrast, we will show that the Funayama envelope does extend to a functor F :
Frm → MTP that is a quasi-inverse of O. This is, in fact, our main motivation for
introducing proximity morphisms.

5Recall that the MacNeille completion of a partially ordered set P is a complete lattice P together
with an embedding e : P → P such that e[P ] is both join-dense and meet-dense in P (see, e.g., [BD74,
p. 237].

6B can also be realized as the booleanization of the frame of nuclei of L [Joh82]. As was shown in
[BGJ13], the two constructions yield the same object up to isomorphism.
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4.9. Lemma. Each frame morphism h : L1 → L2 extends to a proximity morphism
Fh : FL1 → FL2 given by

Fh(a) =
∨
{Bh(x) | x ∈ LCFL1, x ≤ a}

=
∨
{Bh(b) | b ∈ BL1, b ≤ a}.

Proof. By identifying L1 with its image in BL1, we have OFL1 = L1, and similarly for
L2. Since LCFL1 ⊆ BL1 and each element of BL1 is a finite join from LCFL1, we have∨

{Bh(b) | b ∈ BL1, b ≤ a} =
∨
{Bh(x) | x ∈ LCFL1, x ≤ a}.

We show that Fh satisfies (P1)–(P4) of Definition 3.5. Clearly Fh|BL1 = Bh. In par-
ticular, Fh|L1 = h, and so (P1) holds. By [Bez10, Lem. 4.8], we have that Fh(a ∧ b) =
Fh(a) ∧Fh(b), and hence (P2) holds. Since LCFL1 ⊆ BL1 and Bh is a boolean homo-
morphism, for each finite S ⊆ LCFL1, we get

Fh
(∨

S
)
= Bh

(∨
S
)
=
∨

Bh[S] =
∨

Fh[S],

and thus (P3) holds. Finally,

Fh(a) =
∨
{Bh(x) | x ∈ LCFL1, x ≤ a} =

∨
{Fh(x) | x ∈ LCFL1, x ≤ a},

and so (P4) holds, yielding that Fh is a proximity morphism.

4.10. Proposition. F : Frm→MTP is a functor.

Proof. As we saw above, F is well defined both on objects and morphisms of Frm. We
show that F sends identity morphisms to identity moprhisms and preserves composition.
Let a ∈ FL. Since B(1L) = 1BL, we obtain

F(1L)(a) =
∨
{B(1L)(x) | x ∈ LCL), x ≤ a} =

∨
{x ∈ LCL1 | x ≤ a} = 1FL(a).

Therefore, F(1L) = 1FL. Now, let f : L1 → L2 and g : L2 → L3 be frame morphisms.
Then

(Fg ⋆Ff)(a) =
∨
{Fg(Ff(x)) | x ∈ LCFL1, x ≤ a}

=
∨
{Fg(Ff(b)) | b ∈ BL1, b ≤ a}

=
∨
{Fg(Bf(b)) | b ∈ BL1, b ≤ a} (Ff |BL1 = Bf)

=
∨
{Bg(Bf(b)) | b ∈ BL1, b ≤ a} (Fg|BL2 = Bg;

b ∈ BL1 ⇒ Bf(b) ∈ BL2)

=
∨
{B(g ◦ f)(b) | b ∈ BL1, b ≤ a} (Bg ◦ Bf = B(g ◦ f))

= F(g ◦ f)(a).
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As we pointed out earlier, each frame L is isomorphic to OFL. We denote the iso-
morphism by ρL : L→ OFL. By identifying L with OFL, we view ρL as the identity on
L. In addition, if M is an MT-algebra, then the boolean envelope BOM of OM embeds
into M by [Esa19, Prop.2.5.9], and hence so does FOM by [BD74, Thm. XII.3.4]. We
thus identify FOM with its image in M .

4.11. Lemma. For M ∈MTP, define ζM : FOM →M by

ζM(a) =
∨
M

{x ∈ LCM | x ≤ a}

and φM :M → FOM by

φM(b) =
∨

FOM

{x ∈ LCM | x ≤ b}.

Then ζM and φM are mutually inverse proximity isomorphisms.

Proof. Since each element of ConsM is a finite join from LCM , we have

ζM(a) =
∨
M

{x ∈ LCM | x ≤ a}.

Thus, it satisfies (P4). Since ζM is identity on both LCM and OM , it also satisfies (P3)
and (P1). Finally, it satisfies (P2) by [Bez10, Lem. 4.8]. Therefore, ζM is a proximity
morphism. That φM is a proximity morphism is proved similarly. It is left to show that
ζM and φM are mutually inverse in MTP. Since ζM(x) = φM(x) = x for each x ∈ LCM ,
for a ∈M , we have

(ζM ⋆ φM)(a) =
∨
M

{ζM(φM(x)) | x ∈ LCM, x ≤ a}

=
∨
M

{x ∈ LCM | x ≤ a} = 1M(a);

and for b ∈ FOM , we have

(φM ⋆ ζM)(b) =
∨

FOM

{φM(ζM(x)) | x ∈ LCM, x ≤ b}

=
∨

FOM

{x ∈ LCM | x ≤ b} = 1FOM(b),

concluding the proof.
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4.12. Remark. In general, the MTP-isomorphisms produced in the above result are not
bijections. For example, consider the MT-algebra M = {0, a, b, 1} of Example 3.14. We
have FOM = {0, 1}, and so (ζM ⋆ φM)(a) = 0 ̸= a. This behavior occurs as composition
in MTP is given by ⋆ rather than by usual composition of functions, and identities in
MTP are not identity maps.

4.13. Lemma.

(1) ρ : 1Frm → OF is a natural transformation.

(2) ζ : FO → 1MTP
is a natural transformation.

Proof. (1) Let f : L1 → L2 be a frame morphism. We must show that the following
diagram commutes.

L1 L2

OFL1 OFL2

f

ρL1
ρL2

OFf

As before, we identify L with ρL[L] and assume that L ⊆ FL. Since the functor O

sends a proximity morphism to its restriction to the frame of opens, commutativity of the
diagram amounts to showing that Ff(a) = f(a) for each a ∈ L1, which follows from the
definition of Ff .

(2) Let g :M1 →M2 be a proximity morphism between MT-algebras. We must show
that the following diagram commutes.

M1 M2

FOM1 FOM2

g

FOg

ζM1
ζM2

First let x ∈ LCM1. Then g(x) ∈ LCM2 by Lemma 3.7(3). Thus, FOg(x) = g(x), and
hence

ζM2(FOg(x)) = ζM2(g(x)) =
∨
{y ∈ LCM2 | y ≤ g(x)} = g(x) = g(ζM1(x)),

where the last equality holds since ζM1(x) = x. Now let a ∈ FOM1. Then

(ζM2 ⋆FOg)(a) =
∨
{ζM2(FOg(x)) | x ∈ LCM1, x ≤ a}

=
∨
{g(ζM1(x)) | x ∈ LCM1, x ≤ a} = (g ⋆ ζM1)(a).
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4.14. Theorem. The functors O and F establish an equivalence of MTP and Frm.

Proof. As we observed before Lemma 4.11, the natural transformation ρ is an isomor-
phism on all components. By Lemma 4.11, so is the natural transformation ζ. Thus, it
suffices to show that these are the unit and counit of the adjunction F ⊣ O.

Let M ∈ MTP. In view of our identifications, OζM and ρOM are identities. Hence,
for u ∈ OM , we have

OζM ◦ ρOM(u) = OζM(u) = u.

Let L ∈ Frm. For similar reasons, ρL and BρL are identities. Therefore, for b ∈ BL,

(ζFL ◦FρL)(b) = ζFL(BρL(b)) = ζFL(b) = b.

Thus, for a ∈ FL,

(ζFL ◦FρL)(a) =
∨
{ζFL(FρL(b)) | b ∈ BL, b ≤ a} =

∨
{b ∈ BL | b ≤ a} = a.

In Example 3.14 we have seen that MTP-isomorphisms are not necessarily structure-
preserving bijections. The fact that O : MTP → Frm establishes an equivalence of cate-
gories now gives us a characterization of such morphisms (see, e.g., [AHS06, Prop. 7.47]).

4.15. Proposition. Let f :M → N be a proximity morphism of MT-algebras.

(1) f is an isomorphism iff Of is an isomorphism of frames.

(2) f is a monomorphism iff Of is a monomorphism of frames.

(3) f is an epimorphism iff Of is an epimorphism of frames.

Note that, apart from isomorphisms not being bijections between the underlying sets,
in MTP we also have monomorphisms that are not injective and epimorphisms that are
not surjective:

4.16. Example. In Example 3.14, the maps f and g are both isomorphisms hence both
are monic and epic. However, f is not injective and g is not surjective.

This counterintuitive behavior disappears when we restrict our attention to TD-algebras.

4.17. Proposition. [BR23, Thm. 6.5] An MT-algebra M is TD iff M ∼= FOM .

4.18. Definition. Let TDMTP be the full subcategory of MTP consisting of TD-
algebras.

We have the following:

4.19. Theorem.

(1) TDMTP is equivalent to MTP.

(2) Frm is equivalent to TDMTP.
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Proof. (1) Let e : TDMTP → MTP be the inclusion functor. By Lemma 4.11 and
[ML98, Prop. IV.4.2], we obtain an adjoint equivalence between TDMTP and MTP via
the functors e and FO, making FO : MTP → TDMTP a quasi-inverse of e.

(2) Apply (1) and Theorem 4.14.

The isomorphism φM : M → FOM may be seen as the TD-reflection of M . Indeed,
FOM is always a TD-algebra, and if N is a TD-algebra and f : M → N is a proximity
morphism, we may define a proximity morphism f̂ : FOM → N by setting f̂ = f ⋆ ζM .
We then have a commutative diagram in MTP:

M FOM

N

f

φM

ζM

f̂

4.20. Remark. By definition, up to isomorphism, OφM = ρOM is the identity in Frm.
Therefore, the TD-reflection does not do anything in Frm. In fact, for frames there is no
concept of the TD-reflection since the language of frames is less expressive than that of
MT-algebras.

Since every MT-algebra is isomorphic to its TD-reflection, by considering the inverse of
the above isomorphism, we see that TDMTP is also a coreflective subcategory of MTP,
with the coreflector given by the counit ζ.

We conclude this section by showing that, unlike the situation in MTP, isomorphisms
in TDMTP are structure-preserving bijections. For this we use the following lemma,
which is a consequence of [Esa19, Thm. 2.5.11].

4.21. Lemma. For f : L → M a frame isomorphism, Bf : BL → BM is a boolean
isomorphism.

Proof. By Theorem 4.3(1), Heyt is equivalent to Ess. Therefore, Heyting isomor-
phims H1 → H2 correspond to interior algebra isomorphisms BH1 → BH2. But frame
isomorphisms between frames are Heyting algebra isomorphisms, and interior algebra iso-
morphisms are boolean isomorphisms, so the result follows.

4.22. Proposition. A proximity map f : M → N between TD-algebras is an isomor-
phism in MTP iff it is an order-isomorphism.

Proof. First suppose that f :M → N is a proximity isomorphism between TD-algebras.
By Lemma 4.15(1), Of is an isomorphism of frames. Therefore, by Lemma 4.21, BOf :
BOM → BON is a boolean isomorphism. Thus, it can be lifted to an isomorphism
betweenFOM andFON (see, e.g., [DP02, Thm. 7.41(ii)]). AsM andN are TD-algebras,
they are order-isomorphic to FOM and FON , and since the isomorphism lifting BOf
preserves arbitrary joins, it must coincide with FOf = f .
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Conversely, suppose that f : M → N is an order-isomorphism. Then its inverse
f−1 : N →M is an order-isomorphism. Therefore, for a ∈M , we have

(f−1 ⋆ f)(a) =
∨
{f−1(f(x)) | x ∈ LCM, x ≤ a}

=
∨
{x ∈ LCM | x ≤ a}

= 1M(a).

A similar argument yields that f ⋆ f−1 = 1N . Thus, f is a proximity isomorphism.

4.23. Remark. The category TDMTP has the following additional pleasant features:

(1) Identities in TDMTP are identity functions. In fact, an MT-algebra M is TD iff
the identity 1M in MTP is the identity function. Indeed,

M is TD ⇐⇒ ∀a ∈M, a =
∨
{x ∈ LCM | x ≤ a}

⇐⇒ ∀a ∈M, a = 1M(a).

(2) The category TDMT is a wide subcategory of TDMTP. For, if f : M → N
is a TDMT-morphism, it preserves all finite meets and joins by definition. By
Theorem 2.10, its restriction Of : OM → ON is a frame morphism. For a ∈ M ,
because M is TD, a =

∨
{x ∈ LCM | x ≤ a}. Since f preserves all joins, f(a) =∨

{f(x) | x ∈ LCM, x ≤ a}, so it is a TDMTP-morphism.

Fig. 1 summarizes the relationship between the categories introduced in this section.
The connecting “arrows” should be understood as follows:

• red two-sided arrows denote categorical equivalence;

• solid black hooks denote full embeddings, with reflections and coreflections noted;

• dashed black hooks denote non-full embeddings;

• blue hooks denote wide embeddings;

• squiggly lines denote same objects but different morphisms.

(The same color coding will be used in the rest of the paper.)

5. TD-duality for MT-algebras

In this section, we generalize the TD-duality of Banaschewski and Pultr [BP10] to the
setting of MT-algebras. This is done by generalizing the notion of a D-morphism between
frames to that of a D-morphism between MT-algebras. For TD-algebras, this notion is
stronger than that of a proximity morphism. We prove that the category STDMT of
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Bool

Int Ess Heyt

DLat

IntC EssC HLat

Cons Frm MTP TDMTP

MT TDMT

refl
corefl

4.3(1) 4.3(1)

corefl

4.3(2) 4.3(2)

4.5 4.14 4.19(1)

4.23(2)

Figure 1: Relationship between categories

spatial TD-algebras is a reflective subcategory of the category MTD of MT-algebras and
D-morphsims, and is equivalent to the category TDTop of TD-spaces. This, in particular,
yields a generalization of the TD-coreflection [BP10, 3.7.2] from T0-spaces to arbitrary
ones. We argue that the MT setting is more natural for the TD-duality than the frame
setting by observing that, unlike the case of TD-spatial frames, the spatial TD-algebras
form a full subcategory of MT.

TD-spectra of MT-algebras. In this subsection, we introduce the TD-spectrum of an
MT-algebra and connect it to the TD-spectrum of a frame.

5.1. Definition. For an MT-algebra M , let atDM be the collection of its locally closed
atoms.

We view atDM as a subspace of the spectrum atM of M as defined in Section 2. To
connect atDM to ptDOM , we recall:

5.2. Lemma.

(1) [BR23, Prop. 4.8] For every MT-algebra M , there is a continuous map θ : atM →
ptOM given by θ(x) = ↑x ∩OM .

(2) [BR23, Prop. 4.10] If M is a T0-algebra then θ is a subspace embedding.

We show that for T0-algebras, the above embedding yields a homeomorphism between
atDM and ptDOM .

For this, we use the following:

5.3. Lemma. For a T0-algebra M , an element x ∈ M is an atom iff for each u ∈ OM
we have x ≤ u iff x ≰ ¬u.
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Proof. Clearly if x ∈M is an atom, then the condition in the statement is satisfied. For
the converse, if x ∈M satisfies the condition, then x ̸= 0. Let y ≤ x with y ̸= 0. We show
that x ≤ y. Since M is T0, y =

∧
S ∧ ¬v for some S ⊆ OM and v ∈ OM . If x ≰ y then

either x ≰ u for some u ∈ S or x ≰ ¬v. By assumption, in the former case we get that
x ≤ ¬u, and in the latter case that x ≤ v. In both cases, x ≤

∨
{¬u | u ∈ S} ∨ v = ¬y.

Therefore, y ≤ x ≤ ¬y, a contradiction.

Recall (see, e.g., [PP12, Sec. II.3.3]) that in a frame L, we have a bijection between
completely prime filters and prime elements given by P 7→

∨
(L\P ). Moreover, since

every slicing filter is completely prime, one is able to identify those prime elements that
arise from slicing filters.

5.4. Lemma. [BP10, Prop. 2.6.2] For a completely prime filter P , the following are
equivalent:

(1) P is a slicing filter;

(2) The corresponding prime is a covered prime;

(3) The corresponding prime is completely meet-irreducible.

We are ready to prove the main result of this subsection.

5.5. Theorem. For a T0-algebra M , the embedding θ : atM → ptOM restricts and
co-restricts to a homeomorphism θ′ : atDM → ptDOM .

atM ptOM

atDM ptDOM

θ

θ′

Proof. To see that θ′ is well defined, let x ∈ atDM . Since x ∈ LCM , x = u ∧ ♢x for
some u ∈ OM (see footnote 3). Therefore, u∨¬♢x ∈ ↑x∩OM and ¬♢x /∈ ↑x∩OM . We
show that ¬♢x⋖ u∨¬♢x. Suppose ¬♢x ≤ v ≤ u∨¬♢x for some v ∈ OM . Since x is an
atom, either x ≤ v or x ≤ ¬v. In the former case, x ∨ ¬♢x ≤ v, so (u ∧ ♢x) ∨ ¬♢x ≤ v,
and hence u ∨ ¬♢x ≤ v. In the latter case, ♢x ≤ ¬v since ¬v is closed, so v ≤ ¬♢x.
Thus, ↑x ∩OM is a slicing filter.

That θ′ is one-to-one follows from Lemma 5.2(2). To show it is onto, we need to show
that every slicing filter F ⊆ OM is of the form ↑x ∩OM for some locally closed atom x.
Let

x =
∧

F ∧
∧
{¬a | a /∈ F}.

5.6. Claim. x is an atom.
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Proof of Claim. Since for each u ∈ OM we have x ≤ u or x ≤ ¬u, if x ̸= 0, it is an
atom by Lemma 5.3. Thus, it is enough to show that x ̸= 0. Let p be the covered prime
corresponding to F . Since p =

∨
(L \ F ), we have x = 0 iff

∧
F ≤ p. Indeed,

x = 0 =⇒
∧

F ∧
∧
{¬a | a /∈ F} = 0

=⇒
∧

F ≤ ¬
∧
{¬a | a /∈ F} =

∨
{a | a /∈ F} = p.

Conversely, ∧
F ≤ p =⇒

∧
F ≤

∨
{a | a /∈ F}

=⇒
∧

F ∧ ¬
∨
{a | a /∈ F} = 0

=⇒
∧

F ∧
∧
{¬a | a /∈ F} = 0

=⇒ x = 0.

But
∧
F ≤ p iff

∧
{u ∨ p | u ∈ F} = p. Since for A ⊆ OM ,

∧
A ∈ OM implies∧

A =
∧

OM A, the last condition implies that
∧

OM{u ∨ p | u ∈ F} = p. However,
because p is covered, by Lemma 5.4 this means that u ≤ p for some u ∈ F . The obtained
contradiction proves that x is an atom.

5.7. Claim. F = ↑x ∩OM .

Proof of Claim. Let u ∈ OM . First suppose that u ∈ F . Then x ≤
∧
F ≤ u, and so

u ∈ ↑x ∩OM . Next suppose that u /∈ F . Then x ≤ ¬u. By Claim 5.6, x is an atom, so
x ̸≤ u, and hence u /∈ ↑x ∩OM .

5.8. Claim. x is locally closed.

Proof of Claim. By Claim 5.7, F = ↑x∩OM . Since F is slicing, there exist a, b ∈ OM
such that a ⋖ b, a /∈ ↑x ∩ OM , and b ∈ ↑x ∩ OM . By Claim 5.6, x is an atom. This
together with M being a T0-algebra yields that x =

∧
S ∧ ¬v for some S ⊆ OM and

v ∈ OM . For each u ∈ S, we have a ≤ a∨ (b∧u) ≤ b. Since a⋖b, either a = a∨ (b∧u) or
b = a∨(b∧u). In the former case, x ≤ b∧u ≤ a, and hence a ∈ ↑x∩OM , a contradiction.
Therefore, b = a ∨ (b ∧ u), and thus

b ∧ ¬a = [a ∨ (b ∧ u)] ∧ ¬a = b ∧ u ∧ ¬a ≤ u.

Since this is true for each u ∈ S, we obtain that b ∧ ¬a ≤
∧
S. Consequently,

x ≤ b ∧ ¬a ∧ ¬v ≤
∧

S ∧ ¬v ≤ x,

yielding that x = b ∧ ¬a ∧ ¬v. Thus, x is locally closed since b is open and ¬a ∧ ¬v is
closed.

Consequently, since θ : atM → ptOM is a subspace embedding by Lemma 5.2,
θ′ : atDM → ptDOM is a homeomorphism.
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5.9. Corollary. For a TD-algebra M , atM is homeomorphic to ptDOM .

Proof. By Theorem 5.5, there is a homeomorphism θ′ : atDM ∼= ptDOM . Since M is a
TD-algebra, atDM = atM , yielding the result.

The assumption in Theorem 5.5 that M is a T0-algebra is necessary. (Note that the
assumption is used to show that θ′ : atDM → ptDOM is onto.)

5.10. Example. In the MT-algebra M of Example 3.14, ↑a ∩ OM = {1} is a slicing
filter. But a ∈ atM is not locally closed because LCM = {0, 1}. Thus, θ′ is not onto.

TD-reflection of MT-algebras and TD-coreflection of topological spaces. We now
focus our attention on morphisms and look at the MT-analogues of D-morphisms of
Banaschewski and Pultr (see Definition 2.2), which we will also call D-morphisms. Our
aim is to show that the spatial TD-algebras form a full reflective subcategory of the
category of MT-algebras and D-morphisms, thus yielding a pointfree version of the TD-
coreflection of T0-spaces defined in [BP10]. We emphasize that this TD-reflection is not
expressible in the language of frames.

5.11. Definition.

(1) We call a continuous map locally closed if it maps locally closed points to locally
closed points.

(2) Let TopLC be the wide subcategory of Top whose morphisms are locally closed
maps.

We point out that identity maps are locally closed and that the composition of two
locally closed maps is locally closed, so TopLC indeed forms a category. We let T0TopLC

be the full subcategory of TopLC consisting of T0-spaces
7, and note that TDTop is a full

subcategory of T0TopLC since every continuous map between TD-spaces is automatically
locally closed.

We show that locally closed maps between T0-spaces can be seen as topological duals
of D-morphisms. For this we recall the following result from [BP10, Prop. 2.7.1]:

5.12. Lemma. For a T0-space X, every slicing filter of ΩX is of the form Fx = {U ∈
ΩX | x ∈ U} for some locally closed x ∈ X.

5.13. Proposition. A continuous map f : X → Y between T0-spaces is locally closed iff
Ωf is a D-morphism.

7As follows from Proposition 5.13, T0TopLC is precisely the category DTop defined in [BP10, 3.7.2].
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Proof. Suppose that f : X → Y is a locally closed map between T0-spaces. Consider a
slicing filter of ΩX, which by Lemma 5.12 is of the form Fx for some locally closed x ∈ X.
Then f(x) ∈ Y is locally closed. We have

(Ωf)−1(Fx) = {U ∈ ΩY | f−1(U) ∈ Fx} = {U ∈ ΩY | x ∈ f−1(U)} = Ff(x).

Since f(x) is locally closed, Ff(x) is slicing, and hence Ωf is a D-morphism.
For the converse, suppose that Ωf is a D-morphism. If x ∈ X is locally closed, the

same computation as above shows that (Ωf)−1(Fx) = Ff(x), and because Ωf is a D-
morphism, Ff(x) is a slicing filter. Thus, f(x) is locally closed by Lemma 5.12, and hence
f is a locally closed map.

We next introduce D-morphisms for MT-algebras.

5.14. Definition.

(1) An MT-morphism f is a D-morphism if the left adjoint f ∗ maps locally closed atoms
to locally closed atoms.

(2) Let MTD be the category of MT-algebras and D-morphisms. We also let SMTD

be the full subcategory of MTD consisting of spatial MT-algebras and ST0MTD

the full subcategory of SMTD consisting of spatial T0-algebras.

We point out that identity maps are D-morphisms and that the composition of two D-
morphisms is a D-morphism, so MTD indeed forms a category. Also, note that STDMT
is a full subcategory of ST0MTD since each MT-morphism between TD-algebras is au-
tomatically a D-morphism (because every atom in a TD-algebra is locally closed). The
following result holds for arbitrary (not only T0) spaces.

5.15. Lemma. A continous map f : X → Y is locally closed iff f−1 : PY → PX is a
D-morphism.

Proof. For each x ∈ X, we have

(f−1)∗({x}) =
⋂
{S ∈ PY | {x} ⊆ f−1(S)} =

⋂
{S ∈ PY | f(x) ∈ S} = {f(x)}.

The result follows since a point in a space is locally closed iff the corresponding singleton
is a locally closed element in the MT-algebra of all subsets.

5.16. Remark. The above result is no longer true if we replace the functor P with Ω:
consider the inclusion {0} ⊆ {0, 1} where both sets are given the trivial topology. The
dualization of this map is the identity on the two-element frame, which is a D-morphism.
But {0} is locally closed in {0}, and not in {0, 1}. Of course, by Proposition 5.13, it does
remain true for Ω if the spaces under consideration are T0.

As an immediate consequence of Theorems 2.11, 2.13(1), and the above lemma we
obtain:
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5.17. Theorem.TopLC is equivalent to SMTD
op, and T0TopLC is equivalent to ST0MTD

op.

The above equivalences further restrict to give the equivalence of Theorem 2.13(2).
We thus arrive at the following commutative diagram:

TopLC SMTD
op

T0TopLC ST0MTD
op

TDTop STDMTop

We next study the relationship between D-morphisms of MT-algebras and D-morphisms
of frames. Recalling Theorem 2.10, we have:

5.18. Lemma. For a complete boolean homomorphism f :M → N between MT-algebras,
we have

(Of)−1(↑x ∩ON) = ↑f ∗(x) ∩OM,

for all atoms x ∈ N .

Proof. By the adjointness property, we have that x ≤ f(a) iff f ∗(x) ≤ a for each a ∈M .
This, by definition, means that for each a ∈ OM ,

a ∈ (Of)−1(↑ x ∩ON) ⇐⇒ x ≤ f(a) ⇐⇒ f ∗(x) ≤ a ⇐⇒ a ∈ ↑f ∗(x) ∩OM.

5.19. Proposition.

(1) An MT-morphism f : M → N between T0-algebras is a D-morphism iff Of is a
D-morphism.

(2) Any MT-morphism f :M → N between TD-algebras is a D-morphism.

Proof. (1) Let f : M → N be an MT-morphism between T0-algebras. First suppose
that Of is a D-morphism, and that x ∈ N is a locally closed atom. By Theorem 5.5,
↑x ∩OM is a slicing filter, and hence so is ↑f ∗(x) ∩OM by Lemma 5.18. Thus, f ∗(x) is
locally closed by reapplying Theorem 5.5.

Next suppose that f is a D-morphism. Let F ⊆ ON be a slicing filter. By Theorem 5.5,
F = ↑x ∩ ON for some locally closed atom x ∈ N . By assumption, f ∗(x) ∈ M is a
locally closed atom. By Theorem 5.5, ↑f ∗(x) ∩ OM is a slicing filter, and hence so is
(Of)−1(↑x ∩ON) by Lemma 5.18. Thus, Of is a D-morphism.

(2) This follows immediately from the fact that in a TD-algebra all atoms are locally
closed.
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By [BP10, Sec. 3.7.2], TD-spaces are a coreflective subcategory of the category of T0-
spaces and locally closed maps. The TD-coreflection of a T0-space X is ptD ΩX ⊆ X,
which up to homeomorphism is the inclusion of locally closed points of X into it. We
next define a pointfree analogue of this construction, without restricting to T0 objects on
either side.

5.20. Definition. For an MT-algebra M , define χM :M → PatDM by

χM(a) = {x ∈ atDM | x ≤ a}.
It follows directly from the definition that χM(a∧b) = χM(a)∩χM(b), and χM(

∨
i ai) =⋃

i χM(ai) because atoms are completely join-prime. Thus, χM [OM ] is a subframe of
PatDM . We will regard PatDM as an MT-algebra whose opens are precisely this
subframe. Thus, χM :M → PatDM is an MT-morphism onto a spatial TD-algebra.

5.21. Lemma. The map χM :M → PatDM is a D-morphism.

Proof. As observed above, the map is an MT-morphism. The atoms of PatDM are the
singletons. For x ∈ atDM , we have χ∗

M({x}) = x, which is locally closed. Thus, χM is a
D-morphism.

5.22. Theorem. The category STDMT is a full reflective subcategory of MTD.

Proof.The subcategory is full by Lemma 5.19(2). For any MT-algebraM , by Lemma 5.21,
the map χM : M → PatDM is a D-morphism onto a spatial TD-algebra. Suppose that
f : M → N is a D-morphism with N a spatial TD-algebra. Define f̂ : PatDM → N by
f̂(S) =

∨
{f(x) | x ∈ S}. We show that the following diagram commutes:

M PatDM

N

f

χM

f̂

For a ∈ M , f̂(χM(a)) =
∨
{f(x) | x ∈ atDM, x ≤ a}. It is clear, then, that f̂(χM(a)) ≤

f(a). For the other inequality, since N is spatial it suffices to show that y ≤ f(a) implies

y ≤ f̂(χM(a)) for all y ∈ atN . If y ≤ f(a), then f ∗(y) ≤ a. By assumption on f ,
f ∗(y) ∈ atDM . Therefore,

y ≤ f(f ∗(y)) ≤
∨
{f(x) | x ∈ atDM, x ≤ a}.

Thus, y ≤ f̂(χM(a)), as desired. Finally, we show that f̂ is an MT-morphism:

f̂

(⋃
i

Si

)
=
∨
{f(x) | x ∈

⋃
i

Si} =
∨∨

i

{f(x) | x ∈ Si}

=
∨
i

∨
{f(x) | x ∈ Si} =

∨
i

f̂(Si);

it is left to see that f̂ maps opens to opens. However, the commutativity of the diagram
gives f̂(χM(a)) = f(a) for a ∈ OM , and the result follows.
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5.23. Remark. It follows from [BP10, Prop. 3.5.1] that the category TD-SFrmD of TD-
spatial frames is a full reflective subcategory of FrmD, the TD-spatialization being the
reflector. Theorem 5.22 provides a generalization of this, but also an improvement since
TD-SFrmD is not a full subcategory of Frm (see Example 2.4), while STDMT is a full
subcategory of MT (see the end of Section 2).

We conclude this subsection by showing that the coreflection in [BP10, Sec. 3.7.2] may
be obtained as the dualization of the above reflection.

5.24. Definition. For a topological space X, let XD be the subspace of X consisting of
locally closed points.

Since x ∈ X is locally closed if and only if {x} is locally closed in the MT-algebra
PX, we have a homeomorphism hD : XD

∼= atDPX given by hD(x) = {x}. From now
on, we will identify these spaces.

5.25. Lemma. The inclusion iD : XD ⊆ X is such that P(iD) = χPX .

Proof. Since P(iD) = iD
−1, P(iD)(Y ) = Y ∩XD for each Y ⊆ X. Therefore, under the

identification described above,

P(iD)(Y ) = Y ∩XD = {{x} ∈ atDPX | {x} ⊆ Y } = χPX(Y ).

5.26. Theorem. The category TDTop is a full coreflective subcategory of TopLC. The
coreflection is given by the inclusion XD ⊆ X.

Proof. Let X be a space. By definition, the inclusion XD ⊆ X is a locally closed map.
Suppose that Y is a TD-space and f : Y → X is a locally closed map. By Lemma 5.15,
f−1 : PX → PY is an MTD-morphism. By Theorem 5.22, there is an MTD-morphism

f̂−1 : PatDPX → PY such that the diagram on the right commutes:

XD X

Y

⊆

f
f̂

PX PatDPX

PY

f−1

χPX

f̂−1

By Lemma 5.25 and Theorem 2.13(2), there must be a locally closed map f̂ : Y → XD

such that the diagram on the left commutes.

5.27. Remark.The above theorem yields the TD-coreflection of Banaschewski and Pultr.
In [BP10, 3.7.2] it was described as the embedding ptD ΩX → X for every T0-space X.
One of the advantages of our approach is that we do not have to restrict to T0-spaces.
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5.28. Remark. As we saw above, the TD-coreflection of a space is neatly captured by du-
alizing the spatial TD-reflection of MTD. By contrast, the frame setting is not expressive
enough for this purpose. Indeed, we recall from [BP10, 3.7.2] that the TD-spatialization
of a frame L is given by

σL : L→ Ω ptD L,

a 7→ {P ∈ ptD L | a ∈ P}.

If we dualize σL using ptD, we obtain a homeomorphism ptD Ω ptD L → ptD L, which
is a trivial TD-coreflection. On the other hand, if we dualize σL using pt, we obtain
pt σL : ptΩ ptD L→ ptL. Since ptD L is the subspace of locally closed points of ptL, this
gives the inclusion of the soberification of ptD L into ptL, which is not the TD-coreflection.
In fact, the soberification of a TD-space is TD only in the trivial case where the starting
space is both sober and TD. We will explore the interplay between soberification and the
TD axiom in Section 6.

6. Duality for spatial MT-algebras and proximity morphisms

In this final section, we generalize the duality of Theorem 2.11 between Top and SMT
to incorporate proximity morphisms between spatial MT-algebras. This is done by intro-
ducing the notion of a sober map, a continuous map from one space to the soberification
of another, and by showing that frame morphisms between spatial frames and their cor-
responding proximity morphisms between spatial MT-algebras are characterized by sober
maps. As a corollary, we obtain the topological and MT analogues of the category of
TD-spatial frames and frame morphisms.

We begin by recalling that Sob is a reflective subcategory ofTop, and that the reflector
s : Top → Sob is given by the soberification ptΩ (see, e.g., [Joh82, p. 44]). The unit
λ : 1Top → s is given by λX(x) = Fx for each X ∈ Top and x ∈ X.

6.1. Definition. For topological spaces X and Y , we call a continuous map f : X → sY
a sober map from X to Y , and denote it by f : X ⇝ Y .

If f : X ⇝ Y and g : Y ⇝ Z are two sober maps then their composition g•f : X ⇝ Z
is given by λ−1

sZ ◦ sg ◦ f : X → sZ, which is well defined since λsZ : sZ → ssZ is a
homeomorphism. By identifying sZ with ssZ, the composition g • f can be described as
sg◦f . By this identification, we have that sλX = λsX is the identity on sX. Consequently,
since λ is a natural transformation, for each f : X ⇝ Y , the following diagram commutes:

X sY

sX sY = ssY

f

λX λsY

sf
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Therefore, f • λX = sf ◦ λX = λsY ◦ f = f . Similarly, for each g : Y ⇝ X, we have that
λX • g = g. We thus arrive at the following new category:

6.2. Definition. LetTopS be the category of topological spaces and sober maps between
them, where composition is given by • and identity morphisms are λX .

6.3. Remark. A sober map f : X ⇝ Y is a TopS-isomorphism iff sf : sX → sY is a
homeomorphism. To see this, suppose there is g : Y ⇝ X such that g • f = λX and
f • g = λY , so sg ◦ f = λX and sf ◦ g = λY (see the left diagram below). By applying s

to the former, s(sg ◦ f) = ssg ◦ sf = sλX . Therefore, by identifying s = ss, we have that
sg ◦ sf is the identity on sX. Similarly, sf ◦ sg is the identity on sY , and hence sf is a
homeomorphism.

X sY

sX Y

f

g

λYλX
sg

sf

X sY

sX Y

f

λYλX
g′

sf

Conversely, suppose sf is a homeomorphism (see the right diagram, where we identify
s = ss). Then there is a continuous map g′ : sY → sX which is inverse to sf . Let
g : Y ⇝ X be given by g = g′ ◦ λY . By identifying s = ss, we have that sg′ = g′ and sλY
is the identity. Therefore, since g′ is the inverse of sf ,

g • f = sg ◦ f = sg′ ◦ sλY ◦ f = g′ ◦ f = g′ ◦ sf ◦ λX = λX .

Similarly, f • g = sf ◦ g = sf ◦ g′ ◦ λY = λY . Consequently, g is the inverse of f , so f is a
TopS-isomorphism.

Our aim is to show that TopS is dually equivalent to the full subcategory SMTP of
MTP consisting of spatial MT-algebras. To define a functor from SMTP

op to TopS, we
need the following lemma, where η is the counit of MT-duality (see Theorem 2.11).

6.4. Lemma. Suppose f :M → N is a proximity morphism between spatial MT-algebras.
Define atS f : atN ⇝ atM by

atS f(y) = {ηM(a) | a ∈ OM, y ≤ f(a)}

for each y ∈ atN . Then atS is a sober map.

Proof. Since f is a proximity morphism, its restriction f |OM : OM → ON is a frame
morphism, so pt(f |OM) : ptON → ptOM is a continuous map, as is θ : atN → ptON
by Lemma 5.2(1). Because M is spatial, ηM : OM → Ω atM is an isomorphism, so there
is a homeomorphism

ψ := pt(η−1
M ) : ptOM → ptΩ atM = s atM.



1138 G. BEZHANISHVILI, R. RAVIPRAKASH, A. L. SUAREZ, J. WALTERS-WAYLAND

The composition

atN ptON ptOM s atMθ pt(f |OM ) ψ

is clearly a sober map. But

ψ ◦ pt(f |OM) ◦ θ(y) = ψ ◦ pt(f |OM)({b ∈ ON | y ≤ b})
= ψ({a ∈ OM | y ≤ f(a)})
= {ηM(a) | a ∈ OM, y ≤ f(a)}
= atS f(y)

for each y ∈ atN , completing the proof.

The inverse of ψ : ptOM → s atM is given by sθ (where θ : atM → ptOM is
defined in Lemma 5.2). Indeed, recalling the counit σ : 1Frm → Ω ◦ pt from Section 2, for
x ∈ ptOM ,

(sθ ◦ ψ)(x) = sθ(ηM [x])

= {U ∈ Ω ptOM | θ−1(U) ∈ ηM [x]}
= {U ∈ Ω ptOM | ∃u ∈ x : θ−1(U) = ηM(u)}
= {U ∈ Ω ptOM | ∃u ∈ x : U = σOM(u)}
= {U ∈ Ω ptOM | x ∈ U}
= λptOM(x) = x,

(♥)

where the last equality is true by identifying s = ss since ptOM is sober. Moreover, for
each x ∈ atM ,

ψ ◦ θ(x) = ψ(↑x ∩OM)

= ηM [↑x ∩OM ]

= {ηM(a) | a ∈ OM, x ≤ a}
= λatM .

Thus, for each y ∈ s atM ,

y = s(λatM)(y) = s(ψ ◦ θ)(y) = ψ ◦ sθ(y).
6.5. Proposition. atS : SMTP

op → TopS is a functor.

Proof. For a spatial MT-algebra M , let atSM = atM and for a proximity morphism
f : M → N between spatial MT-algebras, let atS f : atN ⇝ atM be defined as in
Lemma 6.4. Then atS is well defined on both objects and morphisms. Moreover, for
proximity morphisms f :M1 →M2 and g :M2 →M3, by Lemma 6.4 and (♥),

atS f • atS g = s atS f ◦ atS g
= ψM1 ◦ pt(f |OM1) ◦ sθM2 ◦ ψM2 ◦ pt(g|OM2) ◦ θM3

= ψM1 ◦ pt(g|OM2 ◦ f |OM1) ◦ θM3

= ψM1 ◦ pt((g ⋆ f)|OM1) ◦ θM3

= atS(g ⋆ f).
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Furthermore, for y ∈ atSM ,

atS 1M(y) = {ηM(a) | a ∈ OM, y ≤ 1M(a)}
= {ηM(a) | a ∈ OM, y ≤ a}
= {ηM(a) | a ∈ OM, y ∈ ηM(a)}
= Fy = λatSM(y).

Thus, atS : SMTP
op → TopS is a well-defined functor.

To define a functor in the other direction, we require the following:

6.6. Lemma. If f : M1 → M2 is a proximity morphism and g : M2 → M3 is an MT-
morphism, then g ◦ f :M1 →M3 is a proximity morphism.

Proof. Since g is an MT-morphism, it satisfies (P1)–(P3), and hence so does the com-
position g ◦ f . For (P4), observe that

gf(a) = g
(∨
{f(x) | x ∈ LC(M1), x ≤ a}

)
=
∨
{g(f(x)) | x ∈ LC(M1), x ≤ a}

for each a ∈M1. Thus, g ◦ f is a proximity morphism.

Let M,N be MT-algebras. If h : OM → ON is a frame morphism, then h lifts to a
proximity morphism given by the following composition in MTP:

M FOM FON N.
φM Fh ζN

For a topological space X,

Ω(λX) = P(λX)|OPX : OPsX → OPX

is a frame isomorphism. Therefore, the frame isomorphism Ω(λX)
−1 lifts to a proximity

morphism hX : PX → PsX, which is a proximity isomorphism by Proposition 4.15(1).

6.7. Definition. For a topological space X, let hX : PX → PsX be the lift of Ω(λX)
−1

described above.

Recall from Section 3 that for proximity morphisms f, g and a locally closed element
x, we have (g ⋆ f)(x) = gf(x). Therefore, for D ∈ LCPX, by Lemma 4.11 we have

hX(D) = ζP Y ◦FΩ(λX)
−1 ◦ φPX(D)

= ζP Y ◦FΩ(λX)
−1(D)

= ζP Y (BΩ(λX)
−1(D))

= BΩ(λX)
−1(D).

(♣)

6.8. Lemma. If f : X ⇝ Y is a sober map then PP f := P f ◦hY is a proximity morphism
from P Y to PX.

Proof. By definition, f is a continuous map from X to sY . This means that the map
P f = f−1 : PsY → PX is an MT-morphism. Consequently, P f ◦ hY : P Y → PX is
a proximity morphism by Lemma 6.6.
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6.9. Lemma. Let f : M → N and g : M → N be proximity morphisms. If f(u) = g(u)
for all u ∈ OM , then f = g.

Proof. Let x ∈ LCM . Then x = u ∧ ¬v for some u, v ∈ OM . Therefore,

f(x) = f(u ∧ ¬v) = f(u) ∧ ¬f(v) = g(u) ∧ ¬g(v) = g(u ∧ ¬v) = g(x).

Thus, for a ∈M ,

f(a) =
∨
{f(x) | x ∈ LCM, x ≤ a} =

∨
{g(x) | x ∈ LCM, x ≤ a} = g(a).

Consequently, f = g.

We point out that for U ∈ ΩY ,

PP f(U) = (P f ◦ hY )(U)
= f−1(Ω(λY )

−1(U))

= {x ∈ X | f(x) ∈ Ω(λY )
−1(U)}

= {x ∈ X | U ∈ f(x)}.

(♠)

This will be used in what follows.

6.10. Proposition. PP : TopS → SMTP
op is a functor.

Proof. For X ∈ TopS, let PPX = PX and for a sober map f : X ⇝ Y , let PP f :
PP Y → PPX be defined as in Lemma 6.8. Then PP is well defined both on objects and
morphisms. For sober maps f : X ⇝ Y and g : Y ⇝ Z, we show that PP(g • f) =
PP f ⋆ PP g. By Lemma 6.9, it suffices to show that they agree on open elements. Let
U ∈ OPZ = ΩZ. Then

PP(g • f)(U) = PP(sg ◦ f)(U) = P(sg ◦ f) ◦ hZ(U) = P f ◦Psg ◦ hZ(U)

and since ⋆ is usual composition on open elements,

PP f ⋆PP g(U) = PP f ◦PP g(U) = P f ◦ hY ◦P g ◦ hZ(U).

Thus, it is enough to show that hY ◦ P g(V ) = P(sg(V )) for all V ∈ OPsZ = ΩsZ.
Using (♣), we have

hY ◦P g(V ) = Ωλ−1
Y (g−1(V )) = (sg)−1(V ) = Psg(V ),

where the second equality holds because

z ∈ Ω(λY )((sg)
−1(V )) ⇐⇒ λY (z) ∈ (sg)−1(V ) ⇐⇒ sg(λY (z)) ∈ V

⇐⇒ g(z) ∈ V ⇐⇒ z ∈ g−1(V ).

Finally, for W ∈ OPX, by (♠),

PP λX(W ) = {x ∈ X | W ∈ λX(x)} = {x ∈ X | x ∈ W} =W = Ω(1PX)(W ).

Thus, by Lemma 6.9, PP λX = 1PX .
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We next connect Top with TopS and MT with MTP.

6.11. Proposition.

(1) Λ : Top → TopS is a functor given by ΛX = X for each topological space X and
Λf = λY ◦ f for each continuous map f : X → Y .

(2) Γ : MT → MTP is a functor given by ΓM = M for each MT-algebra M and
Γg = g ◦ 1N for each MT-morphism g :M → N .

Proof. (1) It is sufficient to show that Λ preserves composition and identities. The latter
is immediate since Λ1X = λX ◦ 1X = λX . For composition, let f : X → Y and g : Y → Z
be continuous maps. Then

Λg • Λf = (λZ ◦ g) • (λY ◦ f) = sλZ ◦ sg ◦ λY ◦ f = sg ◦ λY ◦ f = λZ ◦ g ◦ f = Λ(g ◦ f),

where the third equality holds because sλZ is the identity and the fourth because λ is a
natural transformation.

X Y Z

sX sY sZ

f

λX

g

λY λZ

sf sg
sλZ

(2) Again, it is sufficient to show that Γ preserves composition and identities. For
an MT-algebra M , let IM be the identity in MT and 1M the identity in MTP. Then
ΓIM = IM ◦ 1M = 1M . Let f : M1 → M2 and g : M2 → M3 be MT-mophisms. Then, for
a ∈M1,

Γ(g ◦ f)(a) = g(f(1M3(a))) =
∨
{g(f(x)) | x ∈ LCM, x ≤ a} = (g ⋆ f)(a).

Thus, Γ is a functor.

6.12. Lemma. For a continuous map f : X → sY , the following diagram commutes:

X at PX s at PX

sY at P sY s at P sY

εX

f

λatPX

atPf satPf

εsY λatPsY

Proof. The left square commutes because ε : 1Top → at P is a natural transformation
(see Theorem 2.11). The right square commutes because applying the functor at P to the
natural transformation λ : 1Top → s yields a natural transformation λ ◦ (at P) : at P →
s at P.
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6.13. Lemma. Let f : X → sY be a continuous map.

(1) atSPP f(x) = at P f(x) for all x ∈ at PX.

(2) s atSPP f = s at P f .

Proof. Since (2) follows from (1), it is sufficient to prove (1). Let x ∈ at PX. Then
x = ε(x′) = {x′} for a unique x′ ∈ X. Thus, at P f(x) = εf(x′). Moreover, PP f(a) =
f−1Ω(λsY )

−1(a) = f−1(a) for every a ∈ OPsY since λsY is the identity on sY . Hence,

atSPP f(x) = {ηM(a) | a ∈ OPsY, x ≤ PP f(a)}
= {ηM(a) | a ∈ OPsY, x ≤ f−1(a)}
= {ηM(a) | a ∈ OPsY, {x′} ⊆ f−1(a)}
= {ηM(a) | a ∈ OPsY, f(x′) ∈ a}
= εf(x′).

Consequently, atSPP f(x) = εf(x′) = at P f(x).

6.14. Theorem. TopS is equivalent to SMTP
op.

Proof.We first define ε̂ : 1TopS
→ atS PP by setting ε̂X = λat PX ◦εX for each X ∈ TopS.

By Proposition 6.11(1), ε̂X = ΛεX : X ⇝ at PX is a TopS-isomorphism since εX is a
homeomorphism (see Remark 6.3). We show that ε̂ is a natural transformation by showing
that the following diagram on the left commutes in TopS. Using the identification s = ss,
this is equivalent to showing that the diagram on the right commutes in Top:

X at PX

Y at P Y

ε̂X

f atS PP f

ε̂Y

X at PX s at PX

sY at P sY s at P sY

f

εX λatPX

satSPPf

εsY λatPsY

By Lemma 6.12, it suffices to show that s at P f = s atSPP f , which is given by Lemma 6.13.
We next define η̂ : 1SMTP

op → PP atS by setting η̂M = ηM ◦ 1M for each M ∈ SMTP.
By Proposition 6.11(2), η̂M = ΓηM : M → PatM is a proximity isomorphism since ηM
is an isomorphism of MT-algebras (because M is spatial; see Theorem 2.11). We show
that η̂ is a natural transformation by showing that the following diagram commutes in
SMTP:

M PatM

N PatN

η̂M

g PPatSg

η̂N
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By Lemma 6.9, it is enough to show that the diagram commutes on open elements. Let
u ∈ OM . By (♠),

PP atS g ⋆ η̂M(u) = PP atS g ◦ η̂M(u)

= PP atS g(ηM(u))

= {y ∈ atN | ηM(u) ∈ atS g(y)}.

Moreover,

ηN ⋆ g(u) = ηN ◦ g(u) = {y ∈ atN | y ≤ g(u)}.

Thus, it is enough to recall from Lemma 6.4 that

atS g(y) = {ηM(u) | u ∈ OM, y ≤ g(u)}.

Hence, TopS is equivalent to SMTP
op.

Let TDTopS be the full subcategory of TopS, and let STDMTP be the full subcat-
egory of SMTP consisting of TD-algebras. We have:

6.15. Corollary. TDTopS is equivalent to STDMTP
op.

Proof. By Theorem 2.13(2), X ∈ TDTopS implies PPX = PX ∈ STDMTP
op, and

M ∈ STDMTP
op implies atSM = atM ∈ TDTopS. Thus, the equivalence of Theo-

rem 6.14 restricts to an equivalence between TDTopS and STDMTP
op.

Let TD-SFrm be the full subcategory of Frm consisting of TD-spatial frames. The
equivalence of Theorem 4.19(2) restricts to yield:

6.16. Proposition. TD-SFrm is equivalent to STDMTP.

Proof. It suffices to show that L ∈ TD-SFrm implies FL ∈ STDMTP, and M ∈
STDMTP implies OM ∈ TD-SFrm. If L ∈ TD-SFrm then there exists a TD-space
X such that L ∼= ΩX. Since X is a TD-space, PX is a TD-algebra by Theorem 2.13(2),
and hence FΩX ∼= PX by Proposition 4.17. Thus, FL ∼= FΩX ∼= PX is a spatial
TD-algebra, and hence FL ∈ STDMTP. If M ∈ STDMTP then M ∼= PX for some
TD-space X, and hence OM = ΩX ∈ TD-SFrm.

Putting together Theorem 6.14, Corollary 6.15, and Proposition 6.16, we arrive at the
following commutative diagram:

TopS SMTP
op

TDTopS STDMTP
op TD-SFrmop

∼=

∼= ∼=

full full
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Tables of relevant categories

For the reader’s convenience, we conclude by listing the categories considered in this
article, indicating the objects, morphisms, and where the categories appear for the first
time in the body of the text.

Category Objects Morphisms

Top topological spaces continuous maps Section 2

Sob sober spaces continuous maps Section 2

T0Top T0-spaces continuous maps Section 2

TDTop TD-spaces continuous maps Section 2

TopLC topological spaces locally closed maps Definition 5.11

T0TopLC T0-spaces locally closed maps Section 5

TopS topological spaces sober maps Definition 6.2

TDTopS TD-spaces sober maps Corollary 6.15

Table 1: Categories of topological spaces

Category Objects Morphisms

Frm frames frame morphisms Section 2

FrmD frames D-morphisms Section 2

SFrm spatial frames frame morphisms Section 2

TD-SFrm TD-spatial frames frame morphisms Section 2

TD-SFrmD TD-spatial frames D-morphisms Section 2

Table 2: Categories of frames

Category Objects Morphisms

MT MT-algebras MT-morphisms Definition 2.9

MTP MT-algebras proximity morphisms Theorem 3.13

MTD MT-algebras D-morphisms Definition 5.14

TDMT TD-algebras MT-morphisms Definition 2.12

TDMTP TD-algebras proximity morphisms Definition 4.18

T0MT T0-algebras MT-morphisms Definition 2.12

SMT spatial MT-algebras MT-morphisms Section 2

SMTD spatial MT-algebras D-morphisms Definition 5.14

SMTP spatial MT-algebras proximity morphisms Section 6

STDMT spatial TD-algebras MT-morphisms Section 2

STDMTP spatial TD-algebras proximity morphisms Corollary 6.15

ST0MT spatial T0-algebras MT-morphisms Section 2

ST0MTD spatial T0-algebras D-morphisms Definition 5.14

Table 3: Categories of MT-algebras
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Category Objects Morphisms

Bool boolean algebras boolean homomorphisms Definition 4.2

DLat bdd distr lattices bdd lattice homomorphisms Definition 4.2

HLat Heyting algebras bdd lattice homomorphisms Definition 4.2

Heyt Heyting algebras Heyting homomorphisms Definition 4.2

Int interior algebras int alg morphisms Definition 2.7

Ess essential algebras int alg morphisms Definition 4.1

IntC interior algebras continuous morphisms Definition 2.7

EssC essential algebras continuous morphisms Definition 4.1

Cons constructible algebras constructible morphisms Definition 4.4

Table 4: Other categories
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Joachim Kock, Universitat Autònoma de Barcelona: Joachim.Kock (at) uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
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