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MONOIDAL CLOSURE OF GROTHENDIECK CONSTRUCTIONS
VIA X-TRACTABLE MONOIDAL STRUCTURES AND DIALECTICA

FORMULAS

FERNANDO LUCATELLI NUNES AND MATTHIJS VAKAR

ABSTRACT. We examine the categorical structure of the Grothendieck construction
YcL of an indexed category L: C°? — CAT. Our analysis begins with characterisations
of fibred limits, colimits, and monoidal (closed) structures. The study of fibred colimits
leads naturally to a generalisation of the notion of extensive indezed category introduced
in CHAD for Expressive Total Languages, and gives rise to the concept of left Kan
extensivity, which provides a uniform framework for computing colimits in Grothendieck
constructions.

We then establish sufficient conditions for the (non-fibred) monoidal closure of the total
category XcL. This extends Godel’s Dialectica interpretation, and rests upon a new
notion of X-tractable monoidal structure. Under this notion, Y-tractable coproducts
unify and extend cocartesian coclosed structures, biproducts, and extensive coproducts.
Finally, we consider when the induced closed structure is fibred, showing that this need
not hold in general, even in the presence of a fibred monoidal structure.
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Introduction

It is a familiar fact that an indexed family of sets S(—): I — Set can be represented
equivalently by a pair of sets ) .., S; and I, together with a projection 71: >, ., S; — 1.
In direct analogy, an indexed category L: C°? — CAT may be represented by a category
YL equipped with a projection m: ¢ — C which is a cloven fibration. This corre-
spondence between indexed categories and fibrations is the Grothendieck construction,
also known as the X-type of categories. 1t is a fundamental device, providing a categorical
framework for dependent structure, and it reappears throughout mathematics, logic, and
theoretical computer science.

One of our main objectives is to understand the structural properties of categories of
the form ¢ L, including the existence of limits, colimits, and closed structures. While
the behaviour of limits in Grothendieck constructions is well understood, the situation
for colimits is more subtle. Several relevant results are part of the established folklore,
yet, to our knowledge, they have not been explicitly formulated in the literature, in
particular regarding their connection to (op)lax limits. We provide necessary and sufficient
conditions for the existence of fibred limits and colimits, and relate these to suitable
generalisations of classical notions such as extensivity.

From these considerations we derive a general principle that affords a uniform treat-
ment of colimits in Grothendieck constructions. This leads naturally to the notion of left
Kan extensivity, which generalises the concept of extensive indexed category introduced
in [60], and characterises when colimits in the total category arise coherently from those
in the base and in the fibres.

We then turn to the question of when the total category ¢ L carries a monoidal or
cartesian closed structure. Our analysis extends ideas originating in Godel’s Dialectica
interpretation and is formulated in terms of a new notion of Y-tractable monoidal struc-
ture. This provides a unified account of the existence of closed structures across a wide
range of examples, and clarifies how the general properties of Grothendieck constructions
account for the behaviour of these more intricate instances.

Contributions In summary, this paper makes the following contributions:

1. a proof of necessary and sufficient conditions for the existence of fibred limits in
a Grothendieck construction ¥¢£ — C (Theorem 6.3); while similar results are
known [27], our formulation appears to be new;

2. a proof of necessary and sufficient conditions for the existence of fibred colimits in
a Grothendieck construction (Theorem 6.5); unlike the case of limits, this result
seems to be novel in the literature; in particular, our characterisation of colimits
introduces natural generalisations of the classical notion of extensive categories and
the notion of extensive indexed categories from [60];

3. necessary and sufficient conditions for fibred monoidal closure of a Grothendieck
construction ¥¢L — C (Theorem 7.4);
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4. the introduction of the notion of X-(co)tractable monoidal structure, together with
examples showing that many monoidal categories arising in practice satisfy this
property (Section 8);

5. a proof that Y-cotractability, combined with the existence of II-types (fibred prod-
ucts), yields sufficient conditions for a Grothendieck construction over a suitable!
base category to be (non-fibred) monoidal closed, via a generalised Dialectica for-
mula for exponentials (Theorem 9.19);

6. several new examples of non-fibred monoidal closed and cartesian closed structures
arising naturally from Grothendieck constructions (Section 9).

A remark on size and set-theoretic foundations We work within a standard von
Neumann—Bernays—Godel set theory as a basis for our constructions. In particular, we
assume a predicative hierarchy of universes, of which we employ only the first three levels.
We refer to sets at these levels as small, large, and very large. Unless stated otherwise,
all categories are assumed to be large but locally small, meaning that each hom-set is
small. We write Set, Cat, and 2Cat for the large, locally small (2-)categories of small
sets, small categories, and small 2-categories, respectively. We also use SET, CAT, and
2CAT for the corresponding very large, locally large (2-)categories of large sets, large
categories, and large 2-categories.

1. Two-dimensional category theory

We begin by fixing some conventions for terminology in 2-dimensional category theory,
with particular attention to pseudofunctors, oplax natural transformations, and oplax
(co)limits. Our notation and conventions align with the standard usage in the modern
literature on 2-dimensional category theory; see, for example, [45, 46, 51, 70]. We start
by recalling the definition of a pseudofunctor, e.g. [4, 52].

1.1. DEFINITION. [Pseudofunctor| Let C,D be 2-categories. A pseudofunctor
L:C—D

is a pair L = (L, 0) consisting of the following data:

(a) A function on objects L : Ob(C) — Ob(D).

(b) For each pair of objects X,Y € C, a functor

Lyy:C(X,Y) — D(LX, LY).

LA model of dependent type theory with II-types and strong 3-types.
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(c) For each composable pair
xXLyhz
of 1-cells in C, an invertible 2-cell in D
L" = l,,: L(h) o L(g) = L(hog).
(d) For each object X € C, an invertible 2-cell in D

LX =lx:idrx = L(ldx)

These data are required to satisfy the following three coherence axioms below.
e Associativity: Equation (A-PS) holds for any composable triple of 1-cells
whxsyhyz
i C.
e Identity: Fquation (1d-PS) holds for any morphism f W — X in C.

e Naturality: Equation (Nat-PS) holds for any pair of 2-cells x : g = ¢ and w :
f=fmC.

L(f)

LW LX LW

gf
h £
(gf) \ / hg

LX (A-PS)

L(hgf)

LW LW

/ZX\ ()

W id

L(id f 1d f[(ldx\<:/ f1d ) L(1d<<:/wﬁ L(f) = L(f)
LX ——

) LW LX

(1d-PS)
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LX—LX——LX LX—=——LX H9) LY (Nat-PS)
L(x)
L(9) L(g)
Lhgy| L Y —— LY = Ly | 2L Ly == Lk

LZ LZ LZ LZ LZ LZ

1.2. DEFINITION. [Unitors and Compositors| Let L = (L,¢) : C — D be a pseudofunctor.
As already suggested in Definition 1.1, for each object X of C and each composable pair
of morphisms

XLvhz
we adopt the shorthand notation
X%, Ly, (1)

This terminology allows us, when convenient, to suppress explicit mention of ¢ and to

speak simply of the pseudofunctor
L:C—D.

The invertible 2-cell L is referred to as the unitor at X, while L is called the compositor
corresponding to the pair (h,g).

One may define 2-functors as CAT-enriched functors between 2-categories. However, with
the definition of pseudofunctor in place, we may state the following equivalent formulation.

1.3. DEFINITION. [2-Functor| A 2-functor between 2-categories C and D is a pseudofunc-

tor
L:C—7D

for which the unitor LX and the compositor L" are identities, for every object X of C
and every composable pair of morphisms

i C.
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1.4. DEFINITION. [Co-opposite] Every 2-category C has a co-opposite (or dual), denoted
C®. The objects of C*° are the same as the objects of C, and for each pair of objects A, B
m C,

€ (A, B) = (C(A,B)™. (2)

The composition is, then, defined by og”, where o¢ is the composition functor of C. More
precisely, for each triple (A, B,C) of objects, we define

(0ceo) e = (06)Fpe: : € (B, C) x € (A, B) = € (4,C) (3)
With this definition, each pseudofunctor L = (L,{) : C — D induces a co-opposite
L = (L%, () : ¢ —s D
where
(a) we define L % L : Ob(C®) = Ob(C) — Ob(D) = Ob(Dx);
(b) For each pair of objects X, Y € C, set

LRy = (Lxy)?:C*°(X,)Y) — D“(LX, LY).

(c) For each composable pair X Sy L Zin C®, define the compositor
co def -1
52 = (6hg) " L(h) o L(g) = L(h o g)
(viewed in D).

(d) For each X € C, define the unitor

fg? déf (gx)_l Cidpxy = L(ldx)

(viewed in D).

We now introduce our conventions concerning (op)lax natural transformations. Clas-
sical treatments may be found in [4, 28], while a succinct exposition is provided in [49].

1.5. DEFINITION. [Oplax Natural Transformation] Let L = (L,¢),M = (M,m): C — D
be pseudofunctors between 2-categories. An oplax natural transformation

0: L — M
consists of the following data:
(a) for each object X € C, a 1-cell
Ox: L(X) — M(X);
n D;
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(b) For each 1-cell f: X =Y inC, a 2-cell
Or: 0y o L(f) = M(f)obx.
in D.
These data are required to satisfy the following three coherence conditions.
1. Identity (Unit Coherence): For every object X € C, Equation (1d-OL) holds.

2. Associativity (Composition Coherence): For any composable pair of 1-cells
xLy 4z
in C, Equation (A-OL) holds.

3. Naturality: For any 2-cell a: f = [’ in C, Equation (Nat-OL) holds.

idLX idLX
LX LX
) / o - Zﬁ(
idprx =
MX MX LX LX
L(idx)
W 9X| / fax / lex
M(id x) MX ‘ MX
M(ldx)
(1d-OL)
Lx — " Ly M9 gy LY
, .~ . .7, L(P) h L(o)
X / f Y / g A ilf
MX MY Mz — LX Lz
M(f) M(g) L(gof)
|
W Ox / Ogy / 0z
M(gof) MX M(gof) MZ

(A-OL)
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LX L(f)/ LY idp, x
l
9X| 0 / |9Y L(x)
MX %4 2 MY = LX ! Ly
M) 9X| 0, / |9Y
Y /
M(F) MX MY

M(f")
(Nat-OL)
A lax natural transformation v: L — M consists of an oplax natural transformation
~: L — M. A pseudonatural transformation 8: L — M is an oplaz natural trans-
formation such that each component By is invertible. Finally, a 2-natural transformation
w: L — M 1is a pseudonatural transformation whose components wy are identities for

all 1-cells f in C.

1.6. REMARK. [Colax natural transformations| The terms oplaz and colax are commonly
used interchangeably in the literature, as they denote the same notion. In particular, colax
natural transformations are the same as oplax natural transformations. Throughout this
work, we treat the two terms as synonymous.

1.7. DEFINITION. [Modification] Let L, M : C — D be pseudofunctors between 2-categories,
and let v,0: L = M be lax natural transformations. A modification

E:vy=10
consists of a family of 2-cells in D
(&x: 0x = 7x ) xeob(e)

such that, for every 1-cell f: X — Y in C, Equation (Nat-M) holds.

LX 2. MX Ox

07 / |M(f) JL

MY = LX MX

X
i /
&y vf M(f)
— LY MY
(Nat-M)
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1.8. DEFINITION. [2-categories of pseudofunctors| Let C and D be 2-categories. We write
[C, Dloplax

for the 2-category of pseudofunctors and oplax natural transformations, defined as follows:

(a) objects: pseudofunctors L: C — D;
(b) 1-cells: in [C, Dloplax, the oplaz natural transformations 6: L = M ;

(c) 2-cells: modifications &: 0 = 0" between (op)lax natural transformations.

Composition and identities are defined objectwise. For oplax transformations 6: L =
M and ¢: M = N, their composite po@: L = N is given by

(pob)x Eoxoby,  (908); % (¢y0by) - (670 L(f)), (4)

where o denotes horizontal composition and - vertical composition of 2-cells in D.
The 2-category [C, Dliax of pseudofunctors and lax natural transformations is defined

by
def

[C, D]lax = [Cco’ Dco]oplax'

Finally, the 2-category of pseudofunctors and pseudonatural transformations
[07 D]PS

is the wide and locally full sub-2-category of [C®, D|oplax whose 1-cells are the pseudo-
natural transformations.

1.9. REMARK. [Convention and Terminology| The terminology distinguishing the direc-
tions of the 2-cells in laz and oplax natural transformations is not entirely uniform across
the literature. Here we adopt the convention that appears to be the most prevalent in
two-dimensional universal algebra, namely, the one aligning with the standard treatment
of pseudomonads and their pseudoalgebras; see, for example, [8, 9, 53, 54].

In this setting, given a pseudomonad, one considers the 2-categories of pseudoalgebras
and their morphisms, pseudo, lax, and oplax. Let C and D be 2-categories, and let disc(C)
denote the wide discrete sub-2-category of C. If D admits sufficient (weighted) bilimits
(see, e.g., [52, 55]), then the restriction functor

[C,D]ps — [diSC(C),D]pS (5)

is pseudomonadic; see, for instance, [8, 48] or [52, Sections 7 and 9] for details.

From this perspective, the 2-category [C,D]ps is (bi)equivalent to the 2-category of
pseudoalgebras and pseudomorphisms, while [C, D]oplax (as defined above) corresponds to
the 2-category of pseudoalgebras and oplax morphisms. Dually, [C, D]j.x corresponds to
that of pseudoalgebras and lax morphisms; see again [8, 9, 53, 54]. This convention is
therefore fully consistent with the one adopted throughout the present work.
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We now recall the definition of an (op)lax (co)limit. There is an extensive and rich
literature in two-dimensional limits, including interesting aspects on its variants. For basic
aspects of two-dimensional limits, we refer, for instance, to [28, 45, 55, 56, 75, 76, 77].
When 2-dimensional strict (co)limits exist, (op)lax limits and colimits can be constructed
from them; for coherence results relating (op)lax (co)limits to other forms of (co)limits,
we refer to [7, 47, 52, 54]. In our setting, however, it is more convenient to study oplax
(co)limits without relying extensively on these results. We recall the basic definition
below.

1.10. DEFINITION. [(Op)lax (Co)limits] Let S and C be 2-categories. Given pseudofunc-
tors D: S — C and W: § — CAT, the oplax limit of D with weight W, if it exists, is
an object

oplaxlim (W, D)

of C such that there is an equivalence
C (X, oplaxlim (W, D)) ~ [C,CAT]spax (W, C(X, D—)) (6)

that is pseudonatural in X € C. In this case, we say that oplaxlim (W, D) is the oplax
W-limit of D.
Dually, given a pseudofunctor 23: S°® — CAT, the oplax 2-colimit of D: & — C, if it
exists, s an object

oplaxcolim (20, D)

of C such that there is an equivalence
C (oplaxcolim (20, D), X) =~ [C?, CAT|opiax (W0, C(D—, X)) (7)

that is pseudonatural in X € C.
Codually, we define the lax W-limit and lax 25-colimit of a 2-functor D by the following.

laxlim (W, D) def oplaxlim (WCO, DCO), laxcolim (20, D) def oplaxcolim (Qﬁco, DCO). (8)

Analogously, one can define bilimits and strict 2-dimensional limits. For instance,
given pseudofunctors

D:S—¢C, 2: S — CAT, W:S — CAT,

if they exist, the W-bilimit bilim (W, D) and the 20-bicolimit bicolim (20, D) are objects
of C such that there are equivalences

C (X, bilim (W, D))

12

[C7CAT]PS (Wv C(X7D_)) ’ (9)
C (bicolim (20, D), X) ~ [C°?, CAT]ps (25, C(D—, X)), (10)
which are pseudonatural in X € C.

In what follows, we shall mainly work with conical (oplax/lax) (co)limits. A weighted
(oplax/lax) (co)limit is said to be conical when its weight is the constant pseudofunctor
at the terminal category in CAT. More precisely:



GROTHENDIECK CONSTRUCTIONS 1163

1.11. DEFINITION. [Conical (op)lax (co)limits| Let D: S — C be a pseudofunctor. The
conical oplax colimit colim gplax D and the conical oplax limit lim opiax D, if they exist, are
respectively defined by

oplaxcolim D o oplaxcolim (1, D), oplaxlim D o oplaxlim (1, D), (11)

where, by abuse of notation, 1 denotes the constant weight at the terminal category 1 €
CAT. Codually, the conical lax (co)limits are defined by

laxcolim D & laxcolim (1, D), laxlim D & laxlim (1, D). (12)

Analogously, the conical bicolimit bicolim D and the conical bilimit bilim D are respec-
tively defined by

bicolim D ¥ bicolim (1, D), bilim D % bilim (1, D). (13)

If the reader is familiar with the usual definition of (ordinary) conical limits, as pre-
sented for instance in [62], the following formulation of conical oplax (co)limits, expressed
in terms of oplax cones, may be appreciated.

1.12. LEMMA. [Conical oplax (co)limits] Let D: S — C be a pseudofunctor. We define
A:C— [S7C]Oplax

to be the 2-functor sending each object X € C to the constant 2-functor at X.
The conical oplaz colimit of D exists and is equivalent to an object € whenever there
18 an equivalence

C(Q:, X) =~ [S, C]oplax<D7 AX)

pseudonatural in X . Dually, the conical oplax limit of D exists and is equivalent to an
object £ whenever there is an equivalence

C<X7 2) = [87 C]Oplax(AX7 D)

pseudonatural in X.

2. Indexed categories

The study of indexed categories, fibrations, and Grothendieck constructions has a long and
intricate history, marked by several distinct stages of development. Foundational ideas
were introduced in the seminal works [30, 31] and subsequently systematized in the classi-
cal expositions [4, 27, 40, 74], which collectively established the categorical foundations of
the subject. More recent developments have considerably deepened and broadened these
foundations, as illustrated in [25, 55, 57, 60, 64, 58, 72, 83].

In this section we recall the principal definitions, review some basic results, and fix
the notation and conventions adopted throughout.
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2.1. DEFINITION. [Indexed Category| Let C be a category. An indexed category consists
of a pair (C, L), where
L:C? — CAT

1s a pseudofunctor, with C regarded as a locally discrete 2-category. Thus an indexed
category is determined by the following data:

(a) for each object A of C, a (possibly large) category L(A);
(b) for each morphism f: A — B inC, a functor L(f): L(B) — L(A);
(c¢) natural isomorphisms
nt oA idgay — L(id4)  (unitors)
for each A € C, and

9 L pte, L(f)oL(g) = L(go f) (compositors)

foral AL BS Cinc;
(d) coherence conditions: for every triple of composable morphisms
ALBSohp
in C, Diag. (14) and Diag. (15) hold.

L(f)

oty ) e m

£id) 0 £(f) === £(f) = £(f) 0 Lidy)

pidaf

. gh
1dﬁ(f)*/,L

L(f)o L(g) o L(h) L(f)o L(hog)
Hfg*idﬁ(h)ﬂ ﬂ#f(hog) (15)
L(go f)oL(h) o L(hogo f)

In this context, we say that L is a C-indexed category. If L is a 2-functor (that is, a
functor), we say that L is a strict C-indezed category.

We can now define morphisms of indexed categories. As in the case of morphisms
between 2-categories, several variants may be considered: lax, oplax, pseudo, and strict.
For our purposes, we regard the oplax version as canonical.
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2.2. DEFINITION. [Morphisms of Indexed Categories| Let
(C,L:C® = CAT) and (C',L':C°° — CAT)
be indexed categories. The following notions of morphisms may be distinguished.
(a) Lazx morphism (laz indexed functor): a laxz morphism
(C,L)—(C', L)
consists of a pair (F,0) where F': C — C' is a functor and
0: L— L' oF®
1s a lax natural transformation.

(b) Oplaz morphism (oplax indexed functor): an oplax morphism (C,L) — (C', L) con-
sists of a pair (F,~) where F': C — C' is a functor and

v: L — L o FP
s an oplax natural transformation.

(¢) Pseudomorphism (pseudo-indexed functor): a pseudomorphism
C,L)— (C', L)
consists of an oplax morphism (F,~) : (C,L) — (C', L") in which v is pseudonatural.
(d) Strict morphism (strictly indezed functor): a strict morphism
(C,L)— (C', L)
consists of an oplax morphism (F,~) : (C,L) — (C', L") in which v is 2-natural.

Henceforth, for indexed categories £: C°? — CAT, we shall, unless stated otherwise,
work with oplaxr morphisms. In other words, we consider the category whose objects are
indexed categories and whose morphisms are oplax.

2.3. DEFINITION. [Indexed modification] Let (F,0), (G,v): (C,L) — (C', L) be oplax
morphisms of indexed categories. An indexed modification

x: (F.0) = (G,7)

consists of a pair x = (X, x), where:

¥ FoP = GOP, (16) x: (idg*x) 0=, (17)

in which (16) is a natural transformation and (17) is a modification.
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2.4. REMARK. [2-categories] Up to size considerations, the foregoing structures assemble
into a 2-category, denoted Indexed, whose objects are indexed categories, whose 1-cells are
oplax morphisms, and whose 2-cells are modifications. We likewise write Strictlnd for the
2-category of strict indexed categories, strict morphisms, and modifications.

2.5. REMARK. [Strict indexed categories] In many, though not all, interesting cases, L is
a strict indexed category. By the classical strictification theorems of Giraud and Bénabou,
every indexed category is equivalent to a strict one, in two distinct ways.

These two ways correspond to the left and right 2-adjoints to the inclusion StrictInd —
Indexed of the 2-category of strict indexed categories into that of all indexed categories.

This result is a special instance of the general coherence theorem for strict algebras
and strict algebras for a 2-monad. We refer the reader to [8, 32, 44, 52, 54] for the
2-(co)monadic approach to coherence.

Let (C, L) be an indexed category. The Grothendieck construction, also referred to as
the X-type of £ and denoted by

YeL or equivalently / L,
C

is the conical oplax colimit of L. Dually, the category of sections oL is the conical oplax
limit of L. Explicitly, we have the following definition.

2.6. DEFINITION. [Grothendieck construction] Let L: C°® — CAT be an C-indexed cat-
egory.

(Gr) The Grothendieck construction of (C, L), denoted XL or [, L, is defined by
def .
YeL = oplaxcolim L.
(Sect) The category of sections of (C, L), denoted 1oL, is defined by
e L o oplaxlim L.

To justify Definition 2.6, we must first verify that such a conical oplax colimit and
limit indeed exist.

2.7. GROTHENDIECK CONSTRUCTION. It is well known that the following explicit con-
struction provides the oplax colimit, that is, the Grothendieck construction of an indexed
category (C,L) as in Definition 2.6. This is, in fact, the original formulation of the
Grothendieck construction, e.g. [40, Def. 1.3.1] or [60, 64, 58].
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2.8. PROPOSITION. [Explicit Grothendieck construction]/ Let (C, L) be an indexed cate-
gory. The Grothendieck construction L maybe equivalently described as follows.

(O) Objects: dependent pairs (A, X) consisting of an object A of C and an object X of
L(A), that is,

Ob(ZcL) Z Ob(L

A€Ob(C
(M) Morphisms: for (A, X) and (B,Y), a morphism
(A, X) — (B,Y)
is a dependent pair (f, f') where f+ A — B in C and f': X — L(f)(Y) in L(A);

equivalently,

SeL((AX),(BY) = Y LA(X L))

fEC(A,B)
(C) Composition: given morphisms

(A, X) 55 (B,Y) 55 (€.2),
their composite is defined by
(9.9) 0 (F.f) & (g0 f. LF o LG o f).
In the setting above, the identities of the Grothendieck construction YL of an indexed
category (C, L) are given by:
(I) for each object (A, X) of ¥¢L, the morphism

iday) © (ida, £3): (A, X) = (4, X)

is the identity on (A, X) in XcL.

2.9. REMARK. [Size of Grothendieck constructions| Let £ be a C-indexed category. The
category XcL is (locally) small, respectively large, whenever C and all fibres £(C) are
(locally) small, respectively large.

It remains to establish that the category of sections, as defined in Definition 2.6, also
exists. We proceed to do so below.

2.10. CATEGORIES OF SECTIONS. Let £: C°® — CAT be a pseudofunctor. Its category
of sections, also referred to as its II-type, as defined in Definition 2.6, is described explicitly
below.
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2.11. PROPOSITION. [Explicit category of sections| For an indexed category L: C? —
CAT, the category of sections llcL may be equivalently described as follows.

(O) Objects are pairs (X,€), where X = (X¢)ceobe with each X € ob L(C), together
with, for every morphism f: A — B in C, a morphism

1 Xa — L(f)(Xp) in L(A),
satisfying, for all A ENYSRER C,

Gaa =%,  and  Eop = pgL o L(f)(&) o,
where 1 and p are respectively the unitor and compositor of L.

(M) Morphisms a: (X,&) — (Y,() are families of morphisms ac: X¢ — Yo in L(C)
such that, for every f: A — B,

L(f)(ap)o&s = (foaa.
(C) Composition is defined componentwise: that is to say, for
a: (X,8) = (Y.¢) and B:(Y,() = (Z,0),

(Boa)c o Bcoac  for each C.

In the setting above, the identities of the category of sections IIoL of an indexed category
(C, L) are given by:

(I) for each object (X, &) of IloL, the morphism

id(x ) = (idx,)ceobe : (X, 6) = (X, §).

is the identity on (X, &) in L.

It will be particularly useful in Section 6 to consider the following alternative explicit
construction.

2.12. PROPOSITION. [Alternative characterization] Let L£: C°®® — CAT be an indexed
category. The category of sections Il L may equivalently be described as the full subcate-

gory
cL C CAT(C,ScL)

spanned by those functors F': C — YcL for which m o F' = ide.
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3. Grothendieck fibrations

Let (C, L) be an indexed category. Consider the canonical projection
m: el — C, (18)

which assigns to each dependent pair its first component, that is, = (f, f') = f. It
is well known that the projection (18) is a Grothendieck fibration (see, for instance,
Proposition 3.5 below and Section 4, where the biequivalence induced by the Grothendieck
construction is recalled in detail).

It is well known that, given an appropriate choice of cleavage, fibrations and indexed
categories coincide as notions in the 2-categorical sense. Accordingly, the fibration of (18)
embodies precisely the same data as the indexed category from which it arises. To re-
call and substantiate this correspondence, we briefly review the pertinent definitions of
fibrations for subsequent use.

3.1. DEFINITION. [Cartesian lift] Let P: € — B be a functor, and f: A — B a morphism
n B.

A cartesian lift of f with codomain F € £ (where P(E) = B) is a morphisme: D — E
in € such that P(e) = f, and such that the induced functor

Pgr: £/E — B/B, (D', €'Y — (P(D"), P(e)),
has the following property: for every object (D' €') of £/E, the induced function
Pg: E/E((D',¢'),(D,e)) — B/B((P(D"),P(¢')), (A, f))
15 a byection. Fquivalently, P induces a natural bijection
P:E/E(—,(D,e)) — B/B(—, (A, f)).
In this context, we write esp to indicate that e is the chosen cartesian lift of f with

codomain E.

Let P: £ — B be a functor, f: A — B a morphism in B, and E an object of £ with
P(E) = B. By the Yoneda lemma, any two cartesian lifts of f with codomain E are
uniquely isomorphic over B. Thus, while the choice of a cartesian lift is not canonical, it
is determined uniquely up to a unique isomorphism. The existence of such lifts, however,
is an additional condition on P, and is not automatic.

3.2. DEFINITION. [Grothendieck fibration] A functor P: € — B is a Grothendieck fibra-
tion if, for each f: A — B in B and each E with P(E) = B, there is a cartesian lift e; p
of f with codomain E.
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3.3. DEFINITION. [Cloven fibration and cleavage] Given a fibration P: € — B, a choice
er.p of representatives of the isomorphism class of cartesian liftings of f with codomain
E is called a cleavage of p. A fibration equipped with a chosen cleavage is called a cloven
fibration.

Under a suitable form of the axiom of choice, every Grothendieck fibration may be
endowed with a cleavage. For completeness, we recall the classical characterization of
cloven fibrations. Recall that a rari, e.g. [16, Definition 1.2], for a functor F is a right
adjoint G with an adjunction (F < G,e,n) such that the counit € is the identity.

3.4. PROPOSITION. A functor P: & — B is a cloven fibration if and only if, for each
object £/ € &, the induced functor

Pp: EJE —> B/P(E)

admits a (chosen) rari (and hence a fully faithful right adjoint). We denote the right
adjoint by -
Pp: B/P(E) — £/E.

PROOF. See, for instance, [27, Theorem 2.10]. n

3.5. PROPOSITION. [Grothendieck construction| Given an indexed category (C,L), the
functor given by the first projection

7'(-1:26"6_)67 (fvf,)va (19)
which assigns to each dependent pair its first component, is a cloven fibration.

PROOF. More details are given in Section 4. [

As any two-dimensional notion, there are four dual notions corresponding to fibrations.
Among these, we focus on the following.

3.6. DEFINITION. [Opfibration and bifibration] A functor P: € — B for which P°?: £ —
B is a fibration is called an opfibration. A functor that is both a fibration and an opfi-
bration is called a bifibration.

3.7. DEFINITION. [Split fibration] A cloven fibration P : € — B is said to be split if its
cleavage satisfies eiq, p = idg and egp o €5 g = €405.p, where E' denotes the domain of
eg,E-
3.8. DEFINITION. [Morphisms of fibrations] Given two fibrations P: £ — B and P': £ —
B', we distinguish the following notions of morphism:

e oplax morphisms: commutative squares of functors

Fy

& g
P P’
B B’

Fo
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e pseudomorphisms (sometimes called fibred functors): oplaxz morphisms for which

Fy sends cartesian liftings along P of morphisms f in B to cartesian liftings along
P’ of Fy(r).

If cleavages e_ _ and e’ _ are fived for both p and p', we further define:

e strict morphisms (sometimes called split functors): pseudomorphisms that respect
the chosen cleavages, in the sense that Fi(esp) = €p 1 p (-

3.9. DEFINITION. [Fibred natural transformation] Given two (oplax) morphisms of fibra-
tions

(Fl,Fo), (Gl,Go)Z (P E— B) — (P,Z g — B/),
a fibred natural transformation between them is a pair of natural transformations
(aoi FO — G(),Oéli F1 — Gl) (20)

such that Equation (FibNat) holds.

£ & g G

R G N

B Go B = &£ Jl g (FibNat)
1!0 B - B

This gives rise to the 2-categories of general, cloven, and split fibrations, together
with their respective oplax, pseudo, and strict morphisms, and the corresponding fibred
natural transformations.

4. Grothendieck construction revisited

Since we shall freely move between cloven fibrations and indexed categories, it is conve-
nient to recall the classical correspondence between the two; namely, we describe below
how the Grothendieck construction establishes various biequivalences.

4.1. PROPOSITION. [Grothendieck construction] The Grothendieck construction induces
a biequivalence of 2-categories between

* the 2-category of indexed categories, together with their oplax morphisms and mod-
ifications; and

* the 2-category of cloven fibrations, together with their oplax morphisms and fibred
natural transformations.
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Furthermore, this equivalence restricts in the following ways:
(a) pseudomorphisms of indexed categories correspond to pseudomorphisms of fibrations;

(b) strict morphisms of indexed categories correspond to strict morphisms of cloven fi-
brations;

(c) strict indexed categories correspond to split fibrations;

(d) cloven bifibrations correspond precisely to indexed categories that factor (pseudofunc-
torially) through the 2-category Cat aq4; of categories and adjunctions, i.e. to indexed
categories equipped with chosen left adjoints Li(f) 4 L(f) that satisfy the usual Beck—
Chevalley/coherence conditions; see [38, Lemma 9.1.2].

PROOF. We construct mutually pseudoinverse 2-functors between the 2-category of in-
dexed categories, oplax morphisms, and modifications and the 2-category of cloven fibra-
tions, oplax morphisms, and fibred natural transformations.

From indexed categories to cloven fibrations. Let (C,L: C? — CAT) be a C-indexed
category. Its Grothendieck construction

mp: Nl — C, m(f. f) =1,

is a cloven fibration (Definition 2.6, Proposition 2.8, and Proposition 3.5).
We take the canonical cleavage by declaring, for f: A — B in C and (B,Y) € XL,

ermy) 2 (f, idene) o (A LY)) — (B,Y), (21)

and verify that e py) is cartesian in the sense of the universal property in the slice (see
Def. 3.1): given ¢ = f o h and a morphism (h,s): (C,Z) — (A, L(f)Y) with §': Z —
L(R)(L(f)Y), the composite

ermy) o (hs) = (foh, Ly o L(h)(id)os) = (g, Ly o).

Conversely, given any morphism (g,t): (C,Z) — (B,Y) with g = f o h, there is a unique
s': Z — L(R)(L(f)Y) such that t = L2 o ¢/, namely s’ = (£3)~! o t. Hence the induced
map on slices is bijective, and ey gy is cartesian. This proves that 7 is a cloven fibration.

Now, let (F,7): (C,L) — (C', L") be an oplar morphism of indexed categories in our
sense (Definition 2.2). We write the components of v as

Yoi L(C) —» L(FC)  and  yp: 900 £(f) = L(Ffove (f: C—C).
We define a functor
(C,X) = (FC, ye(X)),

S(F,v)1: XL Yol b
i sk = Serk by {(f, w: X = L)) = (Ff, (p)y 07e(w),
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and set X(F, 7)o © F. Then 7 0 X(F, 7)1 = 3(F,v)p o m by construction, so (X(F, 7)1,

Y(F,7)o) is an oplax morphism of fibrations (commutative square of functors, see Defini-
tion 3.8). The axioms of a oplax natural transformation ~ (identity, composition, natu-
rality; see (Id-OL), (A-OL), (Nat-OL)) translate exactly into functoriality of X(F,v);.
Finally, a(n indexed) modification x: (F,v) = (G,d) between oplax morphisms of
indexed categories (Definition 2.3) consists of a natural transformation y: F'? — G and
a modification y: (id; * x) - v = 0.
It should be noted that the modification

x: (idg*X)-v=0
is a family of natural transformations
(xc: £L(Xc) e — 0¢)cee s

satisfying the modification conditions (Definition 1.7). We then denote by

xox: L(xe) (ve(X)) — dc(X)

the component of the natural transformation yc at X € L(C).
This induces a fibred natural transformation

()1 Z(F, )1 = (G, 0)1, E(X)l(c,X) o ()ZC, XC,X>7

over 3(x)o o X, and the fibred naturality square commutes by Equation (Nat-M). Thus
we have a 2-functor

Gr: Indexed — Fibred®, (C, L) — (m: XL — C with the cleavage (21)).

From cloven fibrations to indexed categories. Conversely, let P: £ — B be a cloven

fibration with a fixed cleavage ey (Definitions 3.2 and 3.3).
We define a pseudofunctor
Lp: B? — CAT

by
Lp(B) ¥ &5 (the fibre over B),  Lp(f) & f*: &5 — Eu,

where f*(E) is the domain of the chosen cartesian lift ey p: f*E — E and f*(u) is defined
by cartesianness: ef g o f*(u) = wo ey . The unitors and compositors

nP:idg, = (idp)*, w9 ffogt = (go f)*

are the unique isomorphisms obtained by comparing the two evident cartesian liftings (by
the uniqueness part of the cartesian universal property); they satisfy the pseudofunctor
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coherence by the same uniqueness. Thus Lp is a B-indexed category. If (F}, Fp) is an
oplax morphism of fibrations

between cloven fibrations (no cartesian preservation required), we define
(Fo,7): (B, Lp) — (B, Lpr)
on objects by vp det File,: Ep — 5},0( B) and on morphisms by the natural transformations

Y yao ff= (Fof) o

whose component at £/ € £p is the unique morphism in £ over id g (4) factoring Fi(es g)
through the chosen cartesian lift e (), Fi(B)-

elzro(f)fl(E)o(’Yf)E = F1(6f,E)-

The naturality and oplax axioms for v are immediate from cartesianness and functoriality.
If & (F1, Fo) — (Gh,Go) is a fibred natural transformation, its components define a

~

modification £: (Fy,v) = (Go,0) in the evident way. Altogether we obtain a 2-functor
Idx: Fibred” — Indexed,  (P: & — B)+—— (B,Lp).

The unit and counit of the biequivalence. First, for any cloven fibration P: & — B, there

is a canonical isomorphism of fibrations over B
Ep: Zlgﬁp — &

defined by

ep(B,E)YY B, ep(fiu: X = V)% eiyou: X oY,

Its inverse sends t: X — Y over f to (f, X — f*Y), the unique factor through the
chosen cartesian lift efy (Definition of cartesian lift and cleavages). It is routine to check
that ep is natural in P with respect to oplax morphisms of fibrations, hence a 2-natural
isomorphism

£: Groldx = idpg,eqetov-

Second, for any indexed category (C, L), there is a pseudonatural equivalence of indexed
categories (over C)

Ne: Eéﬁm
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whose component at C' € C is the equivalence
neo: L(C) — (ZeL)e, X+— (C,X), u: X =Y +— (idg, nf ou),

with pseudo-inverse (C, X) — X and the coherence 2-cells built out of the unitors n“
and compositors /9 of £ (Definition of indexed category). Compatibility with reindex-
ing is exactly the definition of L,,; pseudonaturality follows from the axioms for the
unitors/compositors. Thus we obtain a 2-natural equivalence

n: idlndexed = Idx o Gr.

Altogether, (Gr, Idx, 7, ) exhibit a biequivalence between the two 2-categories in the first
part of the statement. The listed restrictions. We now verify the four refinements.

(a) Pseudomorphisms < preservation of cartesian liftings. If (F,~) is a pseudomor-
phism of indexed categories, each 7y is invertible. Then ¥(F’); sends the canonical
cartesian lift e pyy = (f,id) to the arrow

(Ffv (’Vf)Y) : (FAvlyAX) — (FBa’VBY)?

which is cartesian over F'f because (7;)y is an isomorphism in the fibre.® Hence
(X(F, 7)1, 2(F, 7)) preserves cartesian arrows, i.e. it is a pseudomorphism of fibra-
tions. Conversely, given a pseudomorphism of fibrations (Fi, Fp), the mate defining
7y above is invertible because F} preserves cartesian arrows: both Fi(ey ) and the
chosen e, (), F1 () @€ cartesian over Fy(f) with the same codomain, so the induced

2

comparison in the fibre is an isomorphism. Hence (Fp,~) is a pseudomorphism of
indexed categories.

(b) Strict morphisms < split (strict) morphisms. If (F,~) is strict (2-natural), then
each v, is an identity; it follows that 3(F),~); preserves the chosen cleavage (21)
on the nose, hence is a split (strict) morphism of cloven fibrations. The converse
is proved by the same mate argument as in (a): strict preservation of cartesian
morphisms forces each ¢ to be an identity, i.e. (F,~) is strict.

(c) Strict indexed categories < split fibrations. If L is strict (a 2-functor), then the
cleavage (21) on m satisfies eia,(c,x) = id and ey (cry) © €5, x) = €gor,(c,y) Strictly,
i.e. 7 is split. Conversely, if P is split, then the composites of the reindexings f*
assemble strictly to a functor Lp: B? — CAT.

(d) Bifibrations < factorisation through Catag. By the standard characterisation
(proved, e.g., in [38, Lemma 9.1.2]), a cloven fibration is a bifibration iff each rein-
dexing f* admits a left adjoint fi. Transporting along the biequivalence, this says
exactly that the associated indexed category sends f to a functor with a chosen
left adjoint, i.e. that it factors through the 2-category Cat,g of categories and
adjunctions.

%In the Grothendieck construction with the canonical cleavage, a morphism (f,u) is cartesian iff u is
an isomorphism; in particular the chosen lift is (f,id).
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This completes the proof of the biequivalence and its listed refinements. ]

4.2. REMARK. [Lax vs. oplax under the Grothendieck correspondence] Proposition 4.1
establishes a biequivalence between oplaxr morphisms of indexed categories and oplaz
morphisms of cloven fibrations (i.e. strictly commuting squares of functors). By contrast,
laxz morphisms of indexed categories do not in general correspond to any obvious notion
of morphisms of (cloven) fibrations.

Indeed, let 0: L = L' o F°P be a lax natural transformation of pseudofunctors C°? —
CAT. For each f: C'— C" in C, the laxity constraint has the direction

Gf : £/<Ff> o 90/ — ec o ,C(f) (SO (Qf)y : E/(Ff)(QC/Y) = 90(£<f)Y))

To define a functor ¥¢L — ¥/ L" on morphisms (f,u) in the total category, one needs,
functorially in u: X — L(f)Y, a canonical arrow

Oc(X) — LI(Ff)(0c(Y))

in the opposite direction to 6f; without invertibility of 6, this is unavailable. Thus, in
general a lax indexed morphism does not induce a functor between Grothendieck con-
structions over F'.

Concrete counterexample. Take C to be the category 0 Lo 1. Let £ and £ have fibres
L£(0) = L(1) = L'(0) = L'(1) = Set, and set the reindexing functors on f to be

L(f) = Al : Set — Set, L'(f) = A2:Set — Set.
Let F' =id, and let 6 be the lax transformation with 6y = 6; = idge; and with
Op: L'(f)ob =A2 = Gyo L(f)=Al

the unique “fold” natural transformation (induced by 2 — 1), which is not invertible.
Consider a morphism (f,!): (0,X) — (1,Y) in 3¢L (necessarily !: X — 1). A total
functor determined by 6 would have to assign a morphism

(0,60X) = (0,X) — (LY)=(1,6Y),

i.e. a map

X — L'(f)(61Y) = A2(Y),

but from the given u : X — A1(Y) there is no canonical way to obtain such a map
X — A2(Y), and the laxity 2—cell §; points in the opposite direction needed to transport
u. Hence no functor X¢L — Y¢ L' can be induced by this lax 6.

Henceforth we shall work with indexed categories (equivalently, cloven fibrations) and
pseudomorphisms, except where stated otherwise. We conclude this section with a note
on terminology.
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4.3. REMARK. [Terminology: fibred structure] Let (C,L£) be an indexed category. We
say that a structure on ¥¢L is fibred when the projection

T ZC,C —C (22)

preserves it. This usage will be maintained throughout, particularly when the structure
concerned is that of a monoidal structure, or of limits, colimits, or exponentials.

5. Examples of Indexed Categories

Before turning to structural aspects of the Grothendieck construction, we illustrate the
generality of our setting through a series of standard examples.

5.1. EXAMPLE. [Pullback] Given an indexed category L: C°® — CAT and a (pseudo)functor
F: D — C, composition yields a new indexed category Lo F°P: D — CAT. Choosing a
cleavage, this corresponds to the familiar fact that for a fibration p: £ — C, the pullback
F*p in CAT is again a fibration.

5.2. EXAMPLE. [Composition] The composite of two fibrations is again a fibration. In
terms of indexed categories, given L: C°® — CAT and L': (X:L£)°? — CAT, the indexed
Grothendieck construction yields

(X.L): C°P — CAT
with fibre over C' given by (X.L)(C) = X)L (C, —).

5.3. EXAMPLE. [Dual] Postcomposition with op: CAT — CAT sends any indexed cat-
egory L: C°® — CAT to its dual L°P: C°? — CAT.

5.4. EXAMPLE. [Domain fibration| For any category C, composition of morphisms defines
an indexed category L: C® — CAT by £L(C) = C/C. The corresponding fibration is the
domain functor dom: C7 — C. (The dual construction using overcategories yields an
opfibration.)

5.5. EXAMPLE. [Codomain fibration] If C admits pullbacks, the codomain functor cod:
C7 — C is a fibration. Using the axiom of choice, one may select a cleavage, obtaining
an indexed category whose fibres are the overcategories of C.

5.6. DEFINITION. [Locally indexed category| Following [50], a CAT(C, Set)-enriched
category 1s called a locally indexed category. Fquivalently, these are indexed categories
L: C? — CAT whose objects are independent of C, and for each ¢: C' — C, the functor
L(c) acts as the identity on objects.

5.7. EXAMPLE. [C-enriched category] Any C-enriched category D, for a cartesian monoidal
category C, is CAT(C°P, Set)-enriched via the Yoneda embedding, and hence determines
a locally C-indexed category.



1178 FERNANDO LUCATELLI NUNES AND MATTHIJS VAKAR

5.8. EXAMPLE. [Product self-indexing] Let C be a category with chosen finite products.
Define a locally indexed category self(C): C® — CAT by

obself(C)(C) = ob(, self(C)(C)(C",C")y =C(C x C',C").

For each ¢: C" — C, the induced functor self(C)(C) — self(C)(C") acts as the identity on
objects and sends f: C' x C7 — Cy to fo(c xidg,).

5.9. EXAMPLE. [Scone| Combining Examples 5.1 and 5.5, a functor F': D — C into a
category C with pullbacks induces a D-indexed category £ with fibres £(D) = C/FD.
This indexed category is the Scone or Artin gluing of F. It plays a central role in the se-
mantics of programming languages, where logical-relations arguments over a denotational
semantics in D are organised as one valued in XpL; see [63].

5.10. EXAMPLE. [Lax comma] Given a 2-category C, the CAT-enriched Yoneda embed-
ding yields a strict indexed category

2CAT(-°?,C): Cat®* — CAT,
whose morphisms are oplax natural transformations. The Grothendieck construction
Ycat2CAT(—P,C)

is the lax comma category over C; see, for instance, [16, 15, 17]. Taking C = Cat yields
the large indexed category 2CAT(—°P, Cat): Cat®® — CAT of small strict indexed
categories and oplax natural transformations.

5.11. EXAMPLE. [Families construction| Precomposing the indexed category of Exam-
ple 5.10 with the embedding Set < Cat of sets as discrete categories yields Cat(—,C):
Set®” — CAT. Its Grothendieck construction YgetCat(—,C) is the familiar category
Fam(C), the free coproduct completion of C.

5.12. EXAMPLE. [Subobject fibration] Assume C has pullbacks. For each C' € C, let
Sub¢(C') be the poset of subobjects of C' (isomorphism classes of monos into C'), and for
f:C"— C, let

f*: Sube(C) — Sube(CY)

be inverse image along f (pullback of monos). This defines an indexed category
Sub: C°* — CAT, Sub(C') = Sube(C'), Sub(f) = f*,

whose Grothendieck construction 71 : ¥¢Sub — C is the subobject fibration, a cloven posetal
fibration (cleaved by chosen pullbacks). If C is reqular (images exist and are pullback-
stable), each f* admits a left adjoint

Yt Sub(C") — Sub(C)

given by (regular) image along f, so that Sub is a bifibration; see, e.g. [40, §A1.3].
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Example 5.12 may be generalised by considering the right class M of an orthogonal
factorization system (£, M) on a category C with pullbacks, in place of monos. A related
and widely used construction is the subscone, which may be viewed as a composite of
Examples 5.9 and 5.12 (or their generalisation to orthogonal factorization systems); see,
for instance, [26].

6. Limits and colimits in Grothendieck constructions

We begin our study of the structural properties of Grothendieck constructions with a sys-
tematic discussion of limits and colimits. While several of the results presented here are
part of the folklore, or appear implicitly in the literature, a comprehensive and detailed
account seems not to have been written down. In particular, we emphasize our intro-
duction of slight generalizations of the notion of extensive indexed categories originally
formulated in [60].

For both technical and practical purposes, we shall make use of the category of sections
of indexed categories, including the alternative descriptions presented in Subsection 2.10.
Moreover, we observe the following.

6.1. PROPOSITION. Given a category € and a functor J: £ — Xe L, there exists a unique
decomposition of J as (Ji,J2), where Jy: € — C is a functor and Jo € Ug(L o J¥) is a
section of Lo J*. In particular, there is a canonical isomorphism of categories

CAT(E, Ecﬁ) = EJleCAT(g,C)HE(L: @) pr),
where the right-hand side is the Grothendieck construction of the indexed category
CAT(£,C) — CAT, Jp — eg(L o JP).

6.2. LiMITS IN GROTHENDIECK CONSTRUCTIONS. We now turn to a general character-
ization of fibred limits in a Grothendieck construction 7;: XL — C, that is, limits pre-
served by the projection 7. A related formulation appears in [27, Theorem 4.2], although
the precise statement given here does not seem to appear explicitly in the literature.

6.3. THEOREM. [Fibred limits in a Grothendieck construction| Let
J=(J1,J2): &= XL
be a functor. Then J admits a fibred limit if and only if the following conditions hold:
1. the functor Jy: &€ — C admits a limit (L, \) in C; and

2. the induced functor
LN (Jy): &€ — L(L)

admits a limit that is preserved by every L(u): L(L) — L(K) foru: K — L inC.
In this case, the limit of J is given by

(L, lim e L,(A)(J2)(E)).
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PROOF. First, given a limit cone (L, A : Ay, = Jp) in C, reindexing the section
Jy € Ue(Lo JiP)
along A yields L£.(\)(J2) € TIg(L o A?), which under
e(L o AP) =2 CAT(E,L(L))

we view as a functor &€ — L(L).
Then we have natural isomorphisms

CAT(E, EC’C) (A(CI,CZ)7 (Jla JZ))
= Xf Ao =0 Hg(Lo Aocpl)(ACw L*(f)(J2))
= Suec(cr,r) He(L o AL ) (Acy, Li(Aou)(J]z))
= Suecicr,r) He(Lo AZ ) (Acy, Lo(u)(Li(N)(S
>~ Yuee(cr,r) CAT(E, L(C1))(Ac,, L(w) 0 L.(N)(J2))
)
)

> e z(cl)(cz, lim gL (w) (£.(\) (o (E))) {limit in £(C1) )
(£)))

FE { L(u) preserves the limit }

{limit in C, f =Xou}

))) { pseudofunctoriality of L }

= Yuecor,n) ﬁ(Cﬁ)(C% L(u) (lim gL, (A) (2
SeL((Ch, Ca), (L, lim gL (N)(J2)(E))).

I

Conversely, if J has a fibred limit (L, X)) with limiting cone (Ag, xg) : (L, X) — (J1(E),
Jo(E)), then since m preserves fibred limits we get that (L,\) is a limit of J; in C,
while unpacking the universal property in ¥¢£ shows X = lim gL, (\)(J2)(E) in L(L);
moreover, for each u : C; — L the cone

(Mg ou, (L") 1) © L(u)(xE))

exhibits £(u)X as the limit of E — L(Ag o u)(J2(E)), so each L(u) preserves this limit.

[60, Theorem 52| shows that a similar construction relates fibred terminal coalgebras
of fibred endofunctors on ¥¢£ — C to pairs of a terminal coalgebra L in C and a terminal
coalgebra in L£(L) that is preserved by change of base.

6.4. CoLIMITS IN GROTHENDIECK CONSTRUCTIONS. By duality (and as noted in [27,
Theorem 4.2]), Theorem 6.3 also tells us how to compute fibred colimits in an opfibration.
In particular, it applies to colimits in bifibrations 71 : ¥¢£ — C in the sense of a fibration
such that all £(f) have a left adjoint £,(f). Indeed, in that case, (L)% = Yeop L;7 —
C°  which lets us construct fibred colimits in ¥¢£ out of colimits in C and colimits in £
that are preserved by change of base in £,. However, there are also other cases of colimits
in YcL that we are interested in. In general, we have the following result. (We imagine
that it is known, but have not found a reference to it in the literature.)
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6.5. THEOREM. [Fibred colimits in a Grothendieck construction] A functor
J = (Jl,JQ) € — Zcﬁ

has a fibred colimit iff J, : € — C has a colimit (L, \) (i.e. a cocone X : J; = Ar) and the
functor
L) : L(L) — Tg(Lo JP), Co— (B L(g)(C))

has a left adjoint L£,(\). The colimit of J is then given by (L, Li(N)(J]3)).

PROOF. Write L < colim gJ1(E). We have natural isomorphisms

CAT(E,%eL) ((J1, 12), Acy.cn)
> S peac, He(LoJP) (T, E s L(f5)(Cs))

= EgEC(L C1) Hg(ﬁ 9 pr) (JQ, E— ;C(g O )\E)(C )) { colimit in C: fgp =goAg }
&= EgEC(L,C1 Hg(c o pr) (J27 E— E()\E)( (g) (CQ))) { pseudofunctoriality of £ }
= N geew.en) LIL)(Li(N)(T2), L£(g)(Ca)) { L) LM}

I

SeL((L, Li(AN)(2)), (C1, ).

Conversely, if J has a fibred colimit (L, X') with cocone (Ag, xg), then 7 preserves fibred
colimits, so (L, ) is a colimit of J; in C. For each Cy € L(L), the universal property of
the colimit yields natural bijections

L(L)(X,Cy) = Tg(Lo Ji¥) (]2, B L(AE)(Cy)),

exhibiting X as the value at J; of a left adjoint to £(A). If such fibred colimits exist for
all Jo (naturally in J5), these representatives assemble to a functor L£(\). =

[60, Theorem 48] shows that a similar construction relates fibred initial algebras of
fibred endofunctors on XL — C to pairs of a initial algebra L in C and an initial algebra
in £(L). Next, it may be instructive to specialize the colimit construction above to the
special cases of coproducts and equalisers.

Coproducts. A coproduct diagram is a functor J; : I — C with I discrete, i.e. an I-
indexed family {X;};e;. Then Theorem 6.5 expresses coproducts in X¢L in terms of the
coproduct | |,.; X; in C and a left adjoint to the canonical comparison functor

c(Lx) — mco ) = [ex,
el icl

(Here II; is the category of sections over the discrete I, hence the strict product of
categories.) For Jy € I1;(L o J{¥) given by a family (A;);e;, the coproduct in XL is

( |—|X"’ [’!()\)((Ai)iel) >

i€l
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Coequalizers. Let us now specialise the colimit construction above to coequalizers. Let
€ be the category with a single parallel pair r,s : 0 = 1. A functor J = (Jy, J2) : € — XL
is precisely a parallel pair

(f, @), (g,8) : (X, 4) = (Y, B)

with
frg: X=2YinC, a:A— L(f)(B), p:A— L(g)(B).

Let ¢ : Y — @ be the coequalizer of f and ¢g in C, so go f = qo g. Writing A\ for the
colimiting cocone, with components \; = g and A\g = qo f = q o g, Theorem 6.5 says: if
L(A): L(Q) = Tg(L o JP) has a left adjoint £y()), then the colimit of J in XL is

(Q, L1(A)(S2))-

This adjoint acts as follows. An object Jo of Ig(L o Ji¥) is a quadruple (A, B, «, ()
with A € L(X) and B € L(Y), a: A — L(f)(B), B: A — L(g)(B). The left adjoint
Li(\) sends (A, B,«, 8) to C* € L(Q) equipped with maps 19 : A — L(g o f)(C*) and
m : B — L(q)(C*) satisfying

pblo L(fm)oa = no, o L{g)(m)oB = 1o,

(with compositors p of £) and is universal: for any C' € £(Q), giving C* — C in L£(Q)
is the same as giving maps 7y : A — L(qo f)(C), ny : B — L(q)(C) satisfying these
equations.

6.6. COROLLARY. [Coequalizers in a Grothendieck construction from coequalizers in the
fibres| Assume that the reindexings L(\o), L(A\1) admit left adjoints

Lixo) 4 LX) and LA = Li(q) 4 L(q).

Then, the fibre component C* of the coequalizer in the Grothendieck construction is
precisely a coequalizer in L(Q) of two canonical morphisms derived from o and 3.

PROOF. We claim that C* above is computed as the coequalizer in £(Q) of the two
canonical maps

a,B: Li(M)A= Li(q)B

that we define next. Let n? : id = L(q) o £i(q) be the unit of £i(q) 4 L(q). Define & to
be the mate (along L£i(Ag) = L(Ag)) of the composite

fia
Ky

L(f)(nE) ﬁ(f)(ﬁ(q>(£'(Q)B)) —q)B> E()\o)(£'<Q)B)7

A= L(f)(B)
and define B analogously using g and 8 as the mate of

9,9
Hey(g)B

—— L(9)(L(9)(Li(a)B)) L(X0)(L1(q)B).
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If we then write down the universal property of the coequalizer of & and 3, we see
that it is precisely the universal property of C* above. Indeed, let

Li(\)A —= Li(q)B — C*
B

be a coequalizer in £(Q). Then the cocone maps

def def

m = L(@)(e)onfy : B— L(g)(C7), 1m0 = LOo)(€)opgy poL(f)(nf)oa : A= L(A)(C7)
(equivalently, using g, 8) satisfy

pgto L(fm)oa = mne  and  pgto L{g)(m)o B = m,

and are universal with this property: for any C € L(Q), postcomposition with e :
Li(q)B — C* induces a bijection between morphisms C* — C in £(Q) and pairs (n), 7))
with

Mo : A= L(A)(C), my: B = L(g)(C)

satisfying
pE o L) o o= 1y = " o L(g) (1) © 5
|

So, in this case, the coequalizer of (f,«),(g,8) in XcL is constructed precisely as
(Q, C*) where @ is the coequalizer of f and g in C and C* is the coequalizer of @ and

in £(Q).

6.7. (LEFT KAN) E-EXTENSIVITY OF INDEXED CATEGORIES. We now introduce a
generalisation of the notion of extensive indexed category developed in our earlier work [60]
and in [57]. There, we observed that the classical notion of an extensive category admits
a fibrational reformulation: a category is extensive precisely when its basic fibration is
extensive. This perspective leads naturally to the notion of an extensive indexed category,
capturing the fibrational essence of extensivity for dependent structure.

In the present work we take a further step, introducing the concept of a left Kan
E-extensive indexed category. Intuitively, this relaxes the preservation of colimits (of
shape &) from preservation up to equivalence to requiring the existence of a left adjoint.
This refinement provides the natural categorical setting in which colimits in Grothendieck
constructions can be described and computed uniformly, clarifying how colimits in the
total category arise coherently from those in the base.

6.8. DEFINITION. [E-extensivity and left Kan E-extensivity| Let C admit all colimits of
shape €. An indezed category L: CP? — CAT is said to be E-extensive if, for every
diagram Jy: & — C with colimit (L, \), the canonical comparison functor

LO): L(L) — Mg (L0 J)
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18 an equivalence. If, instead, this comparison functor merely admits a left adjoint, then
L is called left Kan £-extensive.

Since C is a 1-category, oplax limits in C coincide with strict limits; thus, & -extensivity
amounts to the preservation of oplax limits of shape £ up to equivalence, while left Kan
extensivity weakens this to preservation up to an adjunction.

The following corollary, immediate from Theorem 6.5, provides the main motivation
for the definition.

6.9. COROLLARY. [Colimits in (Left Kan) extensive fibrations] IfC has colimits of shape €
and L: C? — CAT is (left Kan) E-extensive, then the Grothendieck construction ¥cL
admits fibred colimits of shape &.

Evidently, an indexed category is (left Kan) E-extensive for all small £ if and only if
it is (left Kan) extensive for small coproduct and coequalizer diagrams.

When € ranges over (finite) discrete categories I, one obtains the notion of a (finite)
coproduct-extensive indexed category [60, §6.5], [57, §4.5]: a pseudofunctor £: C? — CAT
that preserves (finite) products, that is, for which the canonical comparison

.c( || ci) — [c@)

il i€l

is an equivalence. We refer to this special case (for £ = I finite) simply as an extensive
indexed category. In particular, this recovers [60, §6.5]: extensive indexed categories have
(finite) coproducts in their Grothendieck construction.?

If £ is the codomain fibration of C of Example 5.5, it is extensive for (finite) coproducts
if and only if C is extensive in the classical sense (see, e.g. [10, 19, 59]). Other examples in-
clude the lax comma and families fibrations of Examples 5.10 and 5.11, since representable
2-functors preserve products. From the discussion at the beginning of Subsection 6.4, the
following observation is immediate.

6.10. COROLLARY. [Left Kan E-extensivity of bifibrations] Let £: C®? — CAT be an
indezed category over a base C such that both C and each fibre L(C') admit colimits of
shape £. Suppose further that each reindexing functor L(f) admits a left adjoint Li(f),
for all f: C — C" in C; equivalently, that the projection XcL — C is a bifibration. Then
L is left Kan &-extensive, and XcL — C has fibred colimits of shape E.

PROOF. Since (XcL)? =2 Yeop(L)”), the result follows by applying Theorem 6.3 to the
indexed category L£;7: (C?)®* — CAT, observing that each left adjoint £(f) preserves
colimits. ]

In particular, the codomain fibration C7 — C of Example 5.5 is left Kan £-extensive
whenever C admits colimits of shape &.

In general, left Kan extensivity for coequalizer diagrams is far more common than
extensivity. Indeed:

3See also the iteration-extensive notion in [57].
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6.11. LEMMA. [Coequalizer extensivity forces fibres to be groupoids] Let £ : C? — CAT
be an indexed category that is extensive for coequalizer diagrams (i.e. E-extensive for the
E={0=1}). Then, for every X € C, the fibre L(X) is a groupoid.

Proor. We fix X € C and take the parallel pair f = g = id x, whose coequalizer is
g=1idyx : X —- X.
By extensivity, the comparison
L) : LX) — He(Lo JP)

is an equivalence, where objects on the right are quadruples (A, B,«, ) with A, B €
L(X)and o, : A — L(idyx)(B) = B. The essential image of £(\) consists of objects
(B, B, 6,0) where 0 is the canonical isomorphism (built from the unitors/compositors of
the pseudofunctor L£).

Given any morphism v : A — B in L£(X), we consider (A, B,u,u). Since L£L(\) is
essentially surjective, there exist C'in £ (X), a: A 5 B'and b: B> B’ such that

bou=~0oa.

Hence uw = b~! 0 f o a is invertible. This proves that every arrow in £(X) is invertible,
that is to say, £(X) is a groupoid. ]

In particular, the families (and lax comma) fibrations tend not to be extensive for
coequalizer diagrams. However, observe that, by Corollary 6.6, the families indexed cate-
gory Cat(—, D)|set is left Kan extensive for coequalizer diagrams as long as D has enough
coequalizers. There do exist non-trivial examples of extensivity for coequalizers, though,
as the following example shows.

6.12. EXAMPLE. [Representables are extensive for all colimits| Let C' € C. Then the
representable functor C(—,C') : C%? — CAT, where we consider a set as a discrete cate-
gory, preserves all limits, so it defines an indexed category (with discrete fibres) that is
extensive for all colimits, including coequalisers.

7. Monoidal structures in Grothendieck constructions

Theorem 6.3 entails, in particular, that for a cartesian monoidal category C, there is an
equivalence between indexed cartesian monoidal structures on £: C°® — CAT (that is,
monoidal structures on the fibres £(C') preserved by the reindexing functors £(f)) and
fibred cartesian monoidal structures on XL (in the sense of fibred functors, or pseudo-
morphisms of fibrations).

This correspondence is realized by taking

1s.. = (1c; 120ay)) (C,L) 5oz (C', L) = (C x¢ C', L(m1)(L) X goxeen L(m2)(L)),
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where 7, and 7, denote the product projections C' <= C x ¢’ =5 " in C.

As shown by Shulman [72], this correspondence extends beyond the cartesian case,
encompassing monoidal, braided monoidal, and symmetric monoidal structures on 3¢.L,
provided that the monoidal structure on C itself is cartesian.

7.1. THEOREM. [Monoidal structures on a Grothendieck construction [72, Theorem 12.7]]
Assume that C is a cartesian monoidal category. Then the following definitions of the
monoidal unit I and tensor product @ determine an equivalence between fibred monoidal
structures on YL and indexed monoidal structures on L:

Ise.c = (1c, Ir(ag)) and (C,L) @, (C',L') = (C xc ', L(m1)(L) @gioxecny L(m2) (L)),
IE(C) = E(!C)(T"Q([Ecﬁ)) and L ®£(C) L' = £(<idc, idc>)(71'2((c, L) ®Ec£ (C, L/)))

Moreover, fibred braidings for ®sx.. correspond bijectively to indexed braidings for @,
and a braiding for s, is symmetric if and only if the corresponding braiding for Q@ is
symmetric.

A detailed analysis of monoidal structures on Grothendieck constructions lies beyond
the scope of this work. Our interest here concerns the circumstances under which the
above monoidal structure is closed. For the general results underlying Theorem 7.1, we
refer the reader to [72], and for a comprehensive treatment of monoidal Grothendieck
constructions, to [64].

7.2. MONOIDAL CLOSED STRUCTURES ON GROTHENDIECK CONSTRUCTIONS. A natural
question is how monoidal closure of the projection 71: XcL — C relates to the monoidal
closure of the fibre categories of £. The remainder of this paper is devoted primarily to
this question.

The closest result in this direction that we are aware of is the following, due to Shulman.

7.3. LEMMA. [72, Proposition 13.25] Suppose that L is an indexed monoidal category
over a cartesian monoidal category C, and that for every morphism f: C — C" in C, the
reindexing functor L(f): L(C") — L(C) admits a right adjoint L.(f) satisfying the right
Beck-Chevalley condition. Then the following are equivalent:

o the functors (—) ®s.c (Ca, La): L(Cy) = L(Cy x Cy) have right adjoints if and only
if the functors (=) ®zcy L: L(C) = L(C) have right adjoints;

o the functors (Cy, Ly) ®@x.c (—): L(Cy) = L(Cy x Cy) have right adjoints if and only
if the functors L @y (—): L(C) = L(C) have right adjoints.

As observed in [72, Remark 13.12], Lemma 7.3 does not, in itself, imply that XL
is monoidal closed. Indeed, many naturally arising monoidal closed structures on total
categories YL of fibrations are not fibred, and the sufficient conditions ensuring their
existence are typically subtle. In the present work, we shall introduce one such sufficient
condition on the monoidal structure, which we call (X, C)-cotractability.
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This condition is implied, in particular, by indexed monoidal closure of £, but it is
strictly more general. Before turning to it, we record the following result, which provides
a fibred analogue of Shulman’s theorem.

7.4. THEOREM. [Fibred <= indexed monoidal closure] Let C be a cartesian monoidal
category, and let L be an indexed monoidal category over C. By Theorem 7.1, the projec-
tion XL — C is canonically a fibred monoidal category. Then the following conditions
are equivalent:

(i) (Indexed side): C is cartesian closed, L is indexed monoidal left-closed (resp. right-
closed), meaning that each fibre L(C) is left-closed (resp. right-closed) and that
every reindexing functor preserves the closure; furthermore, for every projection
mo: C'x C" — (', the reindexing functor L(mg): L(C") — L(C x C') admits a right
adjoint L.(ms) satisfying the right Beck—Chevalley condition for pullback squares
along projections .

(ii) (Fibred side): The Grothendieck construction ¥ecL — C is a fibred monoidal left-
closed (resp. right-closed) fibration.

Moreover, when these equivalent conditions hold, the closures determine one another
via the explicit formulas

(C.L) —oser (€' 1) = (C=e Oy Lum) (Lm)(L) =cexicmecn Lev)(E))), (1)

and

L —ogiey I = L(A(m2)) (m2((C, L) —oxec (G, 1)), ®)

where 1, Ty are the product projections, ev: C x (C =¢ C') — C" is the evaluation map,
and AN(my): C — C =¢ C 1is the transpose of mo: C' x C — C' under the exponential
adjunction in C. In both (x) and (I), m(—) denotes the second (fibre) component of an
object of XeL; in () we reindex along A(idgyer): C"— C =¢ (C x C"), and in (I) along
A(my): C — C =¢ C.

In particular, when (ii) holds, the right adjoints along projections are determined
uniquely by

L(m)(M) = L(Alidewen) (72((C, 1) —osee (€ x €M) (*)
and they satisfy the right Beck-Chevalley condition. The right-closed case is entirely

analogous.

PROOF. Suppose that C is cartesian closed and that £ is indexed monoidal left-closed
(so each —o is preserved by base change) and that L£(my) - L.(m2) satisfies right Beck—
Chevalley for projections. Then we have the following natural isomorphisms
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SeL((C, Ly) @ (Cy, Ly), (Cs, Ls)) =
Efgq CixCacn £(Cy x Ca) (L(m1)(Ly) @ L(ma) (Lo L)) = { left-closure in £(Cy x C2) }
BrL(C) x Cy) (L ( 2)(L2), L(m1)(L1) —o£(crxa) L(f)(LQ)% { £(m2) 4 Lu(m2) }
SpL(Co) (La, La(ma) (L(m)(L1) —or(crxes) £(f)(Ls))) = { exponential adjunction in C }
Zgec( 201:>cC3)‘C 2)([/ * 7TQ ( (7T1 Ll) —OE(eVO(Cl g))(LS))) = { £ pseudofunctor }
oL(Co) (Lo, La(m2) (L(C1 x g)(L(m1)(L1) —o L{ev)(Lsy)))) =
A L. o) (EAm) = £ o) L) & P
£(00) (Lo £() (L. (72) (L) (L) — L(ev)(Es))) = { Bk Chevly for 7. G
)

SeL((Cy, L2)7 (C1 = Oy, Lu(ma)(L(m)(L1) —o L(ev)(L3))))
= SeL((Cy, La), (C1, L) —os,r (Cs, L3)).

Thus (T) defines a left-exponential in ¥¢£, which is clearly fibred by construction. This
shows (1)=(ii).

Conversely, if Y¢L — C is fibred monoidal left-closed, then for every projection 7y :
C x C" — " the change of base L(ms) : L(C") — L(C x C") has a right adjoint given by
the (corrected) formula

Lo(m)(M) = L(Aldere)) (m((c, [) —osz (C % C, M))) e L(C),

and this adjunction satisfies right Beck—Chevalley for pullback squares along projections.
Indeed, using (C,I) ® (C', X) = (C x C', L(m2)(X)) and monoidal closure of YL yields

natural isomorphisms:

ﬁ(C X Cl)(ﬁ(ﬂ'g)X, M) = { by (%) with ¢/ =idcxcr }

{( € (BcL)((C x C', L(m)X),(C x C'",M)) | h= id} = ((C, 1)@ (C",X) = (C x O, L(m2)X) }
{(k:,n) € (3eL)((C.I)® (C', X),(C x C', M) | k= id} o { closure in S £ }
{(g, p) € (5cL)((C", X), (C, 1) o,z (C x C', M)) | g = (ldCXC,)} S {apply () with ¢ = AGdeyer) }

£(C) (X, £(AGdewe)(ma((C,T) —over (Cx €, M))) ) = { defnition of £. (r2) vin (+) }

L(C)(X, La(m2)(M)).

exhibiting £(my) - L, (m2).
Right Beck—Chevalley for these adjoints. For any g : C' — C” consider the pullback
square

CxC 2% 0w
ml lm
¢ —— "

The pseudofunctoriality of £ gives an invertible 2-cell L(C' x g) o L(me) = L(ma) o L(g).
Taking mates under the adjunction £(mg) 4 L.(m2) (whose unit/counit are defined via
the fibred internal hom in XL as above) yields the Beck—Chevalley isomorphism

L(g) Lu(m2) = Li(m) L(C X g),
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natural in M € L(C x C").

Let
(C=¢C' E) = (CI)—os,c (C', ).

Define ev : C' x (C' =¢ C") — C' to be the base component of the counit
(O,]) ® (C =c ClaE) — (0/71)

in X¢L. The transpose bijection C(X xC,C") = C(X, C = C") is induced by the internal
hom adjunction in ¥¢L; hence C is cartesian closed.
For any ¢ : C' — C' we have

L(C)L, L)L) = {(c,m) € (BL)((C, L), (C", L)) | e =} (%)
Define, for L, L' € L(C),
L —ope) L' = £(Mm)) (72((C, L) —osee (G, 1)),

where A(mg) : C — C =¢ C is the transpose of m : C' x C — C. Then, naturally in
X,L, L,

L(C)(X,L— L") =
{(g.m) € (5eL)((C, %), (C . c (0.5~ (€ D) |9 = Almo)} =
{(h,n) € (ZcL)((C, X) ® (C, L)) |h=evo( 1dc x A(m2)) } = { closure in S L }
{(h,n) € (ZcL)((C,X) ® (C,L L)) |h=m} = {evo(id x A(m)) = m2 }
L(C x C)(L(m)X @ L(m2)L, L(wz) ') = { by (%) with ¢/ = 5 }
L(O)(La(m)(L(m1) X ® L(my)L), ') =2 ( £(na)  La(n2) }
LIO)(X®L, L. { right Beck Chevalley }

So the formula (I) equips each fibre £(C') with a left internal hom; its indexedness follows
from the fibred closure and Beck—Chevalley. This shows (ii)=(i), with L.(ms) given by
(%).

The constructions () and (I) are mutually inverse, yielding the desired equivalence.
The right-closed case is analogous. [

We now turn to the more general situation of closed structures on ¥¢L which are not
necessarily fibred.

8. X-(Co)tractable Monoidal Structures

We now seek more general sufficient conditions ensuring that a fibred monoidal structure
on XL is closed. To this end, we focus on a particularly well-behaved class of monoidal
structures on £, which we call X-tractable. Intuitively, these are monoidal structures
that admit a canonical decomposition of morphisms A — B ® C' into a component that
depends only on A and B, together with a residual morphism into C'.
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8.1. DEFINITION. [%, C-tractable monoidal structure] Let C be a category with a terminal
object. A monoidal category (L,1,®,a,l,r) is said to be X, C-tractable if it is equipped
with:

o a functor (—) — T(—): L’ x L = C;

e a functor

2 14 (=) —~ T(-) — L,
from the comma category of 1: 1 — C and (—) —o T(—): L x L — C;
e a natural isomorphism between functors LP x L x L — Set:

‘C(A> B® C) = EfGC(l,AHaTB)'C(ac(‘Aa Ba f)7 C)

Dually, (L,1,®,a,l,r) is said to be 3, C-cotractable if (LP, I, P a1, [71 r~1) is 3, C-
tractable.

In most cases, X, C-tractable monoidal categories arise from a more intrinsic notion,
which we call simply X-tractable.

8.2. DEFINITION. [X-tractable monoidal structure] A monoidal category (L,1,®,a,l, 1)
is said to be Y-tractable if it is equipped with:

e a functorT: L — L;

e a functor
0 LT — L,

from the comma category L | T ofidy: L — L and T: L — L;

e a natural isomorphism between functors L°P x L x L — Set:

LIAB®C) = Spepars)L(0°(A B, f), C).

Dually, (L, 1,®,a,l,r) is said to be X-cotractable if (LP, [, @, a~ L, 71 r~1) is S-tractable.
8.3. LEMMA. [X-tractable, C-enriched = X, C-tractable] Suppose that
e L is a X-tractable monoidal category;

o L(—,—): LP x L — Set factors over C(1,—) : C — Set for some category C with
a terminal object 1 (for ezample because L is enriched over C).

Then, L is 3, C-tractable.

PROOF. Write (—) —o (—) for the functor L x L — C, such that C(1, A — B) = L(A, B).
Then, using 7' : £ — £ and (—) — (—), we have a composite functor (—) — T'(—) :
L? x L — C. Observe that we have an equivalence of comma categories 1 | ((—) —o
T(—)) ~ L | T to get our desired 9°. We get the desired natural isomorphism by definition

of (=) — (—). ]
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8.4. COROLLARY. Any X-tractable monoidal category L is, in particular, 3, Set-tractable.

We will be most interested in such Y-tractable monoidal structures as they give us the
vast majority of our examples of 3, C-tractable monoidal structures.

Given a Y-tractable monoidal structure, observe that we have a natural transformation
L(A, B®C) — L(A,TB), hence, by the Yoneda lemma, a natural transformation BQC' —
TB.

8.5. LEMMA. In case L has a terminal object 1 and a X-tractable monoidal structure,
then T = (—) ® 1.

PRroOOF. Take C' = 1 in the definition of Y-tractable monoidal structure:
LA, BR1)=Xfe L(ATB).LOYA,B,f),1)=2XfeL(ATB)1=L(ATB).

Then use that the Yoneda embedding is fully faithful. ]

The basic example of ¥-(co)tractable monoidal structures are given by products and
coproducts.

8.6. EXAMPLE. [Products and coproducts| A cartesian (resp., cocartesian) monoidal
structure on L is always X-tractable (resp., X-cotractable) with 7' = id ; and 9°(4, B, f) =
A.

In Section 8.10, we study examples of categories for which the coproducts are -
tractable or the products are Y¥-cotractable, which is not always guaranteed.

8.7. PROPOSITION. [Monoidal closure] Suppose that L carries a left closed monoidal
structure. Then L is 3, C-cotractable for any category C with a terminal object. Indeed:

o we take T'(—) —o (—=): L? x L — C to be the constant functor Aq;
o we define 0¢ = (m —om): 1} Ay = (LP X L) — L by

(B, A,id;) — (B — A);

e there is a natural isomorphism
‘C(B ® C7 A) = [»(C, B — A) = EfGC(l,l) ‘C(CJ (7'('1 - TQ)(Bu A> f))v
since B —o (=) is right adjoint to B ® (—).

If, in addition, L has an initial object 0, we may take T: L — L to be the constant
functor Ao, so that T(—) —o (=) = Ay. In this case L is X-cotractable.
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8.8. ExXAMPLE. Typical examples of categories £ satisfying Proposition 8.7 include any
cartesian closed category, such as Set, Pos, or Cat.

A further broad class of examples arises from Eilenberg—Moore categories S-Alg(C)
for a commutative monad S on a symmetric monoidal closed category C with equalisers
and coequalizers. The induced symmetric monoidal structure on S-Alg(C) is described
in [42], while the closed structure is due to [43]; a concise modern account is given in [80,
Theorem 2.3.3].

Other standard sources of monoidal closed categories—hence of Y-tractable monoidal
structures—are categories of V-enriched presheaves V-CAT(C,V), equipped with the
Day convolution [21].

8.9. EXAMPLE. [Product categories] Observe that any product [],.; V; of categories V;
with Y-tractable (resp., Y-cotractable) monoidal structures has a Y-tractable (resp., 3-
cotractable) monoidal structure. Similarly, if C has products, then any product [],.; Vi
of categories V; with 3, C-tractable (resp., 3, C-cotractable) monoidal structures has a
Y., C-tractable (resp., 3, C-cotractable) monoidal structure.

8.10. X-TRACTABLE COPRODUCTS AND Y-COTRACTABLE PRODUCTS. Recall that co-
products B LI C' in a category L (like all colimits and left adjoints) are defined via a
mapping-out property: morphisms B L C % A out of the coproduct are easy to analyse.
Such @ always correspond precisely to pairs of B <2 A and C' 2% A. Put differently, we
have a natural isomorphism

L(BUC,A) = L(B,A) x L(C, A).

We can convert between both representations using coprojections and copairing. Indeed,
that is precisely the universal property of coproducts. In particular, coproducts are always
Y-cotractable.

Problematically, however, we might not have any tools for analysing morphisms A —
B U C into a coproduct. To be able to say anything about such morphisms, we need
to impose extra axioms. The same goes for analysing morphisms B x C' — A out of a
product.

Interestingly, large classes of coproducts (resp., products) we encounter in practice are
Y-tractable (resp., ¥-cotractable). We give some important classes of examples.

8.11. ExAMPLE. [Biproducts] Suppose that £ has binary products and binary coprod-
ucts that coincide (for example, because £ has biproducts/has finite products and is
CMon-enriched). Then, these are ¥-tractable coproducts, and, by duality, 3-cotractable
products, by Example 8.6.

Concrete examples are the categories CMon of commutative monoids and homomor-
phisms and Vect of vector spaces and linear functions.

8.12. ExXAMPLE. [Cartesian closure] By Proposition 8.7, products are ¥, C-cotractable
in a cartesian closed category £ (for any C with a terminal object). Further, they are
Y-cotractable if £ additionally has an initial object.
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8.13. ExAMPLE. [Extensive category] Recall that a (finitely) extensive category L is a
category with finite coproducts such that

(- U (=): L/BxL/C — L/(BUC)

defines an equivalence. (That is, if the codomain fibration is extensive.) As a consequence,
the equivalence inverse is given by the pullbacks g — (t1g, t5g).

Assuming that £ is extensive, let us write dg — A «= 0°g for the coproduct diagram
that is obtained as the pullback along g : A — B LU C of the coproduct diagram B ~—
Buc —/C.

Then, if £ further has a terminal object, its coproducts are Y-tractable:

e we have coproducts by assumption;

e we take T'= (—)U1: L — L to be the functor that takes the coproduct with the
terminal object;

e we take 0°: L | (—) U1 — L to be the functor that takes (A, B, f: A— BU1) to
the pullback 0°f;

e we have the natural isomorphism

L(A,BUC) = YfeLlL(A,BU1).LOS,C)
g — ((BUlc) © g,39)
[Llo(qf>7b2ofl} A (fvf/)

because in the following diagram all commutative rectangles are pullbacks and all
horizontal and diagonal arrows are coproduct inclusions

0g LI 0%
L1
dg A 0%
lqg lg=[bf9¢§9] t5g
B BUC «———C
| ek
B—"— BU1 1

L2

Some concrete examples are the categories Set of sets and functions and Top of
topological spaces and continuous functions.
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8.14. EXAMPLE. [Free coproduct completions] Consider the free coproduct completion
Fam(C) of C. Recall that Fam(C) has objects that are a pair of a set I and an [-indexed
family [C; | i € I] of C-objects C;. The homset Fam(C)([C; | i € I],[C}, | i € I']) is

Hielzi'el’c(ch Cé')'

In case C has a terminal object, then Fam(C) is an extensive category with a terminal
object, so by Example 8.13, it is has >-tractable coproducts. However, even if C does not
have a terminal object, Fam(C) always has ¥, Set-tractable coproducts. Indeed, while
we cannot define the monad (—) L/ 1 on Fam(C), unless C has a terminal object, we can
always define the functor

(=) — (=)U1:Fam(C)” x Fam(C) — Set

by
([Cl |7 €T),[C; | i€ T)) = TyepSiernyC(Ciy CL) if i # L else {L}.

Further, we can define
0([CL | eI, [C i el), f)=[CL|i el f(i')=(L,1)].
Then,

Fam (C)([Cl), | i" € I"],[Cl | e I'|U[Ci | i€ I]) =
C, ifkel

Fam(C)(Ch | € I'l[ o 4y €

7/”

kel ul)) =

C. ifkel \ o
Hi”GI”EkEI’UIC< 2{1’7 CZ if k c I > =
S M S g 1y CCCly) it k £ L etse (LY Limerr, p(imy=(1,1) BierC(Cin, Ci) =
Yf € Set(1,[Cll | i" € I"] — [C, | i € I'|U1).Fam(C)(d°([Cl | i" € I"),[Cl | i € I'], f),[Ci | i € I)).

By duality, products are always ¥, Set-cotractable in a free product completion Fam (CP)°
of C.

8.15. EXAMPLE. [Product categories] Specialising Example 8.9, observe that any prod-
uct of categories with Y-tractable coproducts has Y-tractable coproducts. This gives us
examples of Y-tractable coproducts that do not arise from our Examples 8.11, 8.12, and
8.13, like Set” x Set, which has Y-tractable coproducts, but does not have biproducts
(as Set does not have biproducts), is not (co)-cartesian (co)-closed (as Set® is not carte-
sian closed), and is not extensive (as coproducts in Set” are not disjoint). By a similar
argument (as a self-dual category) Set x Set has Y-cotractable products.
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8.16. ExAMPLE. [Partial functions] Consider the category pSet of sets and partial func-
tions. The coproduct S U S’ is the usual disjoint union of sets while the product S x,, S’
is given by S x 8"U S U S, where we write x,, for the product in pSet and x for the
usual product in Set. Obviously, pSet does not have biproducts. Clearly, pSet is not
distributive hence not extensive:

Xx, YUu2)=2XxYu2)uXxXulyuz)
=X xYUXxzZUXUuYuZz
X xYUXxZUXUYUZUX
X xYUXUYUXXZUXUZ2Xx,YUX x,Z

Moreover, pSet with the cocartesian monoidal structure is not monoidal coclosed as
X U (—) does not preserve products:

XUulY x,2)=2=XUYxzZuYyYuz
ZXUYXZUYUZUX xXUXXxZUY xXUX
X XxXUXXxZUY xXUuYxzZuXuyYyuXxXuz
2 (XUY)x(XUZ2)uXuyuxuz
= (XUY)x,(XUuZ)

However, pSet does have Y-tractable coproducts, for T' = id and 0°(A, B, f) = A\ f~Y(B).
Indeed,
pSet(A,BLIC) = X f € pSet(A, B).pSet(A\ f'(B),C).

This shows that the cocartesian structure on pSet is a Y-tractable coproduct that does
not arise from our Examples 8.11, 8.12, and 8.13.

8.17. EXAMPLE. [X-tractable posets] Let X be a poset with Y-tractable coproducts.
Observe that we have a natural transformation X (z,y V z) — X(x,Ty). Therefore, by
the full and faithfulness of the Yoneda embedding, we get a morphism yV z < Ty and, in
particular, a morphism z < T'y. We see that T'y is the terminal object T of X. Therefore,
the condition for -tractability is that

X(x,yVz)=2XfeX(x,Ty). X0z, y, f),2) = X(z, Ty) x X(0(z,y),2)
= X(x, T) x X(0%z,y),2) =1 x X(0(z,y),2) = X(0%x,y), 2).

That is, X having finite coproducts that are Y-tractable is equivalent to X being carte-
sian closed with an initial object (Example 8.12).

As an aside, note that posets with biproducts are trivial (a Ab < a,b < a V b implies
that aAb = aVbiff a = b) and extensive posets are trivial (extensive posets are distributive
lattices, by definition, and disjointness of coproducts implies that a A b = L if a # b; in
particular if a < b, a =aANb= 1).
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8.18. COUNTEREXAMPLE. [Non-distributive lattices| From Ezample 8.17, we see that for
any non-distributive lattice X (the typical examples being Ms and N5 ), X°P has coproducts
that are not Y-tractable. To make this counterexample very concrete, consider the lattice
M3 J

a/ \c
NP

s —

Then, X = X is not distributive as aN\(bVc) = aAT = a while (aAb)V (aNc) = LV L =
L. In particular, X = X° is not cartesian closed (not a Heyting algebra), as a A (—)
does not preserve coproducts. Therefore, the coproducts in X are not all X-tractable.

9. Monoidal Closed Grothendieck Constructions

We now turn to our main result: sufficient conditions ensuring the existence of a monoidal
closed structure on a Grothendieck construction. The resulting formula for the closed
structure generalises Godel’s Dialectica construction [24]. Its formulation requires certain
dependent type-theoretic primitives—namely Y- and II-types—to express. While these
notions are familiar from type theory and proof theory, their categorical expression is
necessarily more elaborate. We therefore begin by recalling the relevant definitions and
terminology.

9.1. SUFFICIENT CONDITIONS FOR THE MONOIDAL CLOSURE OF Y¢L. In what follows
we make systematic use of the language of dependent type theory. For this reason, we
first recall the categorical structure underlying models of dependent type theory with II-
and strong >-types, following Jacobs [38] and Vakar [80].

A model of (cartesian) dependent type theory C': C? — CAT. Let C': C”? —
CAT be a model of (cartesian) dependent type theory with II-types and strong X-types.
That is, C’' is an indexed category satisfying comprehension in the sense of [80, Defi-
nition 2.1.4], or equivalently a cloven comprehension category (with unit) in the sense
of [38, Definitions 10.4.2, 10.4.7], equipped with II-types, terminal types, and strong -
types (see [80, Theorem 2.1.7] or [38, Definitions 10.5.1, 10.5.2(i)]).

For completeness, we spell out the relevant data.

9.2. DEFINITION. [Model of dependent type theory with II-types and strong X-types| A
model of dependent type theory consists of the following data:

e An indexed category C': C? — CAT over a base category C with a terminal object
1.
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e Indexed terminal objects, given by a right adjoint 1: C — XcC' to the projection
m: neC — C.

e Comprehension: a further right adjoint (_._): 3cC" — C to 1; we write

def
p_: ZCC/ — Cﬂa Pww = 7"-1(E(W,w)>7

where € is the counit of 1 4 (—.—)..

e Strong Y-types, that is, left adjoints ¥,,: C'(W.aw) — C' (W) to C'(pw.w), satisfying
the left Beck—Chevalley condition: the canonical natural transformations

Yer(pw) © C(Apw) — C'(f) 0 T

are isomorphisms, where qy,, is the unique morphism making the following square
a pullback:

W'.C'(f)(w) L% W
pW’,C’(f)(w)l lpw,w

w’ w

f

Moreover, there is a canonical isomorphism Pw.y, © Pwaww = Pw.s.w - 1N particular,
C’ has indexed binary products, given by

wxw € S,Cpww)w)  forw,w € obC'(W).

For our purposes, the weaker assumption of non-dependent Y-types—Ieft adjoints
to C'(my) for mi: W x W' — W —suffices.

o Il-types, defined as X-types in C'°P; that is, right adjoints I1,,: C'(W.aw) — C'(W)
to C'(Pww), Satisfying the right Beck—Chevalley condition: the canonical natural
transformations

C/(f) 0] Hw — HC/(f)(w) o} Cl(qjﬁw)

are isomorphisms. In particular, C' has indexed exponentials given by

w=w € T, (pww) (W) forw,w € obC'(W).

Throughout, we freely use the bijections C'(W)(1,z) = C/W (idyw,pw.) coming
from the adjunction 1 = (—.—); no fullness or faithfulness of p is required. For

our applications, the weaker assumption of non-indexed Il-types—right adjoints
II,: C'(1.w) — C'(1) to C'(p1w) —is sufficient.
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9.3. EXAMPLE. [Families of sets| Let C = Set and C'(S) o CAT(S,Set). Then X:C' =
Fam(Set), the category of families of sets (the free coproduct completion of Set). The
comprehension functor (—.—): Fam(Set) — Set is given by disjoint union. Strong -
types correspond to disjoint unions, and II-types to products. See [33] for details.

9.4. EXAMPLE. [Continuous families of w-cpos] Let C = wCPO be the category of w-
cocomplete partial orders and w-cocontinuous maps, and define

C'(X) = wContFunc(X,wCPO,,),

the category of w-cocontinuous functors from X into the category of w-cpos and em-
bedding—projection pairs, with lax natural transformations. This yields a model of w-
continuous families of w-cpos; see, for example, [68, 2.

9.5. EXAMPLE. [Locally cartesian closed categories] Another fundamental source of ex-
amples is given by codomain fibrations cod: C~ — C (with a chosen cleavage) over locally
cartesian closed categories [71, 11]. In this case we take C'(C') = C/C. The compre-
hension (—.—): C7 — C is given by the domain functor dom: C~ — C. Strong X-types
correspond to composition, and IlI-types to the right adjoints of pullback functors.

9.6. EXAMPLE. [Product self-indexing] Given a cartesian closed category C, we can form
the locally indexed category self(C) : C? — CAT (see Example 5.8). Then, self(C) is a
model of dependent type theory. Indeed, the comprehension (. —.) : ¥¢self(C) — C is
defined as (C, C") — C'xC" on objects and (f : C; — Cy, g : C1 xC| — C) > ((fom, g) :
Cy x 7 — Cy x C%) on morphisms. Strong YX-types are defined as XoC’' = C' x C and
[I-types are defined as [IoC' = C' = (.

9.7. EXAMPLE. [Indexed category of indexed categories| This example categorifies the
families construction of Example 9.3 and replaces Set with Cat and CAT with 2CAT.
We have a model of dependent type theory: C = Cat and C'(C) = 2CAT(C, Cat)piaz
is the category of (strict) C-indexed categories and oplax natural transformations. This
indexed category satisfies the comprehension axiom with

(_'_> : ZCat2(j‘AT(Copv Cat)wﬂam — Cat

given by the Grothendieck construction [67]. It has strong Y-types ¥¢L given by the
oplax colimit, which exists as a functor

ZD : 2CAT<<CD)OP, Cat)oplam — 2CAT(COP, Cat)oplax

and is precisely the Grothendieck construction (as should be clear from Proposition 4.1; see
[29] for the original reference and details — note that Gray calls these quasi-(co)limits). It
also has non-parameterised II-types IIo L given by the oplax limit, which exists as a functor
IIp : 2CAT(D?, Cat)opier = 2CAT((1.D)?, Cat)opiar — 2CAT(17, Cat)ypiar = Cat
and is given by the category of sections of the Grothendieck construction (i.e., functors
F . C — X¢L such that m ' = ide and natural transformations « : ' — G such that
ma = idiq.) [29].
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9.8. EXAMPLE. [Indexed groupoids] [34] restricts Example 9.7 to indexed groupoids in-
dexed by another groupoid. That gives us another model of dependent type theory and
it is the starting point for homotopy type theory, where people consider variants of this
model based on oo-groupoids rather than 1-groupoids [41].

Needless to say, many other models exist, such as ones based on polynomials [66].

A Y-cotractable indexed monoidal category L : C? — CAT with II-types Fur-
ther, assume that we have a model £ of linear dependent type theory [80, Chapter 2| over
the same base category C, with a X-tractable monoidal structure, in the following sense:

e an indexed category L : C? — CAT;

e L has Il-types in the sense of right adjoints II,, : L(W.w) — L(W) to L(Pww)
that satisfy the right Beck—Chevalley condition, i.e., the canonical natural trans-
formations L(f) o Il, — Iler(pyw) © £(dysw) are an isomorphism; in fact, for our
purposes, the weaker assumption of non-dependent Il-types in the sense of right ad-
joint functors to £(m;) for (non-dependent) product projections m : W x W' — W
suffice;

e £ has an indexed X, C’-cotractable monoidal structure* in the sense of an indexed
monoidal structure on £ such that on each fibre £(C) the monoidal structure is
¥, C'(C)-cotractable and T'(—) —o (—) and 0¢ are C-indexed functors.

For example, the fibre categories of £ could have Y-cotractable monoidal structure because
they are monoidal closed with an initial object, because they have biproducts, or because
they are co-extensive with an initial object).

9.9. EXAMPLE. [£ = ('] Take £L = (" : C°” — CAT to be any model of dependent type
theory with II-types and strong >-types. Then, £ is an indexed cartesian closed category
and C has a terminal object. By Proposition 8.7, products in £ are X, (C’-cotractable.
Observe that XL = X:C'.

4Observe that this last condition is, in particular, implied by the following pair of conditions that
often holds in practice:

— L is enriched over C’, or more weakly, we have £L— —o-types in C’ in the sense of that we have an
indexed functor (—) —o (=) : L°? x £ — C’ and a natural isomorphism

L(W)(A,B) =C'(W)(1, A — B);

— L has an indexed Y-cotractable monoidal structure in the sense of an indexed monoidal structure on
L such that on each fibre £(C) the monoidal structure is X-cotractable and T and 9¢ are C-indexed
functors.
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9.10. EXAMPLE. [£ = (', extensive| Take C' : C%? — CAT to be any model of depen-
dent type theory with Il-types and strong Y-types. Further, assume that C' has indexed
coproducts and that the categories C'(C) are extensive. Then, by Example 8.13, £ = C'P
has indexed Y-cotractable products. Further, it has II-types, given by the X-types of C’.
Observe that oL = XC'P.

9.11. ExampLE. [Coproducts/biproducts| Let C' : C®? — CAT be a model of depen-
dent type theory with II-types and strong Y-types. Let £ : C°? — CAT be any indexed
category with finite indexed coproducts, such that the hom-functor of £ factors over C’.
(For example, we can take £ = C'P.) Seeing that coproducts always form a Y-cotractable
monoidal structure, it follows that they are a 3, C’-cotractable monoidal structure. Ob-
serve that the case where £ has indexed biproducts is of particular interest as, in that
case, L has X, C'-cotractable products.

9.12. EXAMPLE. [Locally indexed categories] This Example builds on the choice C' =
self(C) of Example 9.6. Suppose that D is a C-enriched category. Then, it, in particular,
defines a locally C-indexed category L(C)(D, D’) = C(C,D(D, D")). If D is L is C-powered
in the sense that C(C,D(D, D")) = D(D,C = D'), then L has ll-types: IIlocD = C = D.
If D has a Y-cotractable monoidal structure, then it meets our conditions.

9.13. ExAMPLE. [Dual product self-indexed] This Example builds on the choice C' =
self(C) for a cartesian closed category C of Example 9.6, and it specialises Example 9.11.
Observe that self(C)? is a (locally) C-indexed category with indexed coproducts (products
in C). Further, it has Il-types given by IIoC’" = C x C’ products in C. Seeing that
coproducts are always Y-tractable and seeing that self(C) is self(C) enriched, it follows
that self(C)° has a ¥, self(C)-cotractable monoidal structure.

9.14. EXAMPLE. [Families] Building on the choice of C’ of Example 9.3, for any category
D with a ¥, Set-cotractable monoidal structure (for example, D monoidal closed, a free
product completion, co-extensive with an initial object, or a category with biproducts)
and small products, £ : Set” — CAT with £(S) = CAT(S, D) meets our conditions.
The Il-types are given by products in D (see [79]).

For example, we may take D to be a product-complete monoidal closed category

such as a category of algebras for a commutative algebraic theory on Set. Observe that
YL = Fam(D).

9.15. EXAMPLE. [w-Continuous families| This Example builds on the choice of C’ of Ex-
ample 9.4. Given an wCPO-enriched Lawvere theory, we may take D to be its category

of algebras in wCPO and £(X) = wContFunc(X, D,,) to be the wCPO-indexed cate-
gory of w-cocontinuous functors into the category of D-objects and embedding-projection
pairs. Then, £ is an indexed monoidal closed category, hence an indexed X3, C’-cotractable
monoidal category. Details are discussed in [2, Section 6]. Observe that ¥¢£ = wContFam (D)
is the category w-continuous families of D-objects.
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9.16. ExXAMPLE. [Lextensive locally cartesian closed categories| This example specializes
Examples 9.5 and 9.10. Assume that C is a lextensive locally cartesian closed category
category (for example, C an elementary topos). Consider the codomain fibration C'(C) =
C/C, which we can turn into an indexed category by making use of the axiom of choice
to choose pullbacks. Observe that C/C' is also lextensive (lextensive categories are locally
lextensive [10, Proposition 4.8]) with a terminal object hence has 3-tractable coproducts.
Define £ = C'?. Then, £ has Y-cotractable products and Il-types (X-types in C').
Observe that XcL = 3¢(C/—)? is a kind of generalised category of polynomials (or
containers).

9.17. EXAMPLE. [Lax comma] This Example takes C’ to be defined as in Example 9.7.
Let D be some 2-category with oplax limits. (For example, we already obtain many
interesting examples for D a 1-category with limits.) We have a Cat-indexed category
L(C) = 2CAT(C?, D) opiaz- Its non-dependent II-types are simply given by oplax limits
(ordinary limits, if D is a 1-category). If D has a X, Cat-cotractable monoidal structure
(such as a X, Set-cotractable one), then £ meets our conditions. Observe that XL =
Cat//D is the lax comma category of D in Cat. Some important subcases of this example
are worked out in more detail in [17], where the structure of exponentials is presented in
terms of ends.

9.18. MONOIDAL CLOSURE OF Y:L. We can now phrase our main theorem.

9.19. THEOREM. [Monoidal closure of ¥¢L via a Dialectica formula] Assuming the con-
ditions of Section 9.1, XL is monoidal left-closed with

(X,z) —o (Y,y) & (xS (T —o y), TxL(C)(0%))

for two morphisms v and ( that we define below. By co-duality, we obtain monoidal
right-closure if L is X3, C'-cotractable instead.

PRrOOF. By Theorem 7.1, (1¢, Iz@,)) is the monoidal unit of XL and (X x Y, L(m)(z) ®
L(m3)(y)) is the monoidal product of (X, z) and (Y, y) in XcL.

The novel part is the existence of exponentials, which we turn to next. We have
(natural) bijections (where, to aid legibility, we abuse notations a bit by leaving implicit:
(1) some weakening functors £(pw,,) and C'(pw.), (2) the equivalence C'(1) ~ C, and
(3) isomorphisms X.XyZ = X.Y.Z where they are obvious from the context):
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ZC‘C((pr) ® (VVv w)v (Y7 y)) =
= S L((X x W, L(m)(x) ® L(m)(w)), (Y, y))
= oy £ X W)(L(m)@) © £(m2)(w), £07) (1)

= Drecroawy) Zgee Xaw) 1L (m) @) L) w) (X X W)(L(m)(w), 0°g) {® ©,C'-cotractable }
= Nrec(x xwy) Bgec! (xxW) (1.1 (m) @) —L(£) ) L(X X W) (L(m2)(w), ) {14 (=) (implicit) }
= 1908 rectxmwn O OOW) 1 TL(m) @) L) ) £ (X X W(L(m) (w), 0%) { S-types in Set }
= (1908 rectxwn O OW) 1, TE(m) @) L)) £ (W) (w, TLx0g) { T-types in £ )
= (102 rectxawn € () (1 Ta—(5) ) LW (w, T1x ) {implicit £(m) for legibility }
= D(9)€% rectx e €)1, T (1) ) £ (W) (w, TLxd* (C' (71, £, 9))(v))) { definition v }
= X (1,9)E% e xxw) (X XW)(L,Ta—L(f)(y) NL(W) (w, Hx L((71, £, 9))(0°v)) { ¢ indexed functor }
= (9 recxwan ¢ oW Tz (f) ) L (W) (w, TLx L(C 0 (A(f, 9), m)) (0°v)) { definition ¢ }
= X (r9)eS ecioam @ W) oL () L W) (w, ILx L(A(f, 9), 7)) (L(C) (0°0))) { £ pseudofunctor }
= B (10e cerxnmwan @ w1, Te—c(nH) LW (w, LIS, 9)) [x £(C) (0%))) { Beck Chevalley for IT }
& Ehee (xxw) 1,8y To—oy) LW (w, LIA(R)) (ILx L() (%)) { strong Y-types in C' }
= hec'(XxW)(C'(m)(1),zyTgHy)£<W)( L(A(R))ILx L(¢)(0v))) {lindexed 1in C" }
& Ve w)(1,1x 5y Ta—oy) LW) (w, L(k)(ITx L(C)(3V))) { T-types in ' }
= SheeWilly sy To—y) LW) (w, L(F) ILx L(¢) (0°))) {14(-)}

= YeL((W,w), xSy Tz —o y, Ix L(¢)(2%))).

Here, we have used the obvious morphisms (again leaving weakening / change of base
along projections implicit, for legibility):

vel (XY Tr —y)(1,Tx —y) { representing element of the comprehension }
— 0 € L(X.Y.Tr —oy) {0°:14T(=) = (-) =L}
— L)) € LI xEyTx — y.X) { change of base along ¢ }
— Hx L£(¢) () € LUIxEyTx —o y) { H-types in £ }

and
¢ = (7r2, ev o (m xid), ev o (my X id)) Xy 2. X — XY Z.

9.20. REMARK. It is useful to note that the first component of (X,z) —o (Y,y) is iso-
morphic to

Exﬁynle' —0 ,C(GV) (y)

Observe that any of the Examples from Section 9.1 now give us monoidal closed
Grothendieck constructions. We would like to highlight just a few concrete Examples,
because they show up a lot in practice.

9.21. ExXAMPLE. [Monoidal closure of Fam/(—)-constructions] By Proposition 8.7, and
Examples 8.11, 8.13, 8.14, and 8.16, we have that
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Fam(D) is monoidal left-closed (resp., right-closed) for any monoidal left-closed
(resp., right-closed) category D; in this case, the monoidal-closed structure on
Fam (D) is fibred over the cartesian closed structure on Set:

D;|iell=[D,|iel]= [|_|D:»Df |f€I:I’]

el

Fam (D) is (non-fibred) cartesian closed for a category D with biproducts and small
products (such as D = CMon or D = CMon”):

[Dl |7’€[] [D/ ’Z ell [|_|D7r1 (f(@) | fGHzEIEzEI’D(DzaD/ )]

el

Fam (D) is (non-fibred) cartesian closed for an extensive category D with a small
coproducts and a terminal object (such as D = Set or D = Top):

el

[Dz | 1€ ]] [D/ | 1€ [/ [UD 7T2 | f € H'LEIEz EI”D(D;I7D7: L 1)]

here, 0¢(g) should be thought of as the complement of the domain of g; in particular,
for D = Set that is precisely what it is;

free doubly-infinitary distributive categories Dist(C) = Fam(Fam/(C)) are al-
ways (non-fibred) cartesian closed (see also [61]):

(Cjilie L) |jeJl=UChw i€l | eJ]=

(Cha |5 €T (G 9)=f0),i" € L g(i') = (L, 1)) |
;€ WierSjesMer, Sier,uyC(Cji, Cry) if i # L else {L}];

using the same formula for the exponentials, we see that finite coproducts of prod-
ucts of C-objects are exponentiable in the free infinitary distributive category on
C; further, [59] shows that a similar formula for exponentials also exists in free
lextensive categories;

Fam (pSet”) is (non-fibred) cartesian closed:
Dy i€ 1) = (Dl |7 € 1) = ||| Dl \ (ra(f () H(Di) | £ € e SyerpSet(Dl, D) |
el

this example is reminiscent of the variant of the Dialectica interpretation discussed
by [6].
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9.22. EXAMPLE. [Monoidal closure of lax comma categories| We can categorify Example
9.21 by building on Example 9.17. Theorem 9.19 tells us that the lax comma category
Cat//D is monoidal closed for any small complete category D with a 3, Cat-cotractable
monoidal structure (including any >, Set-cotractable one). In particular, this is true
for any small complete category D that is monoidal closed, has finite biproducts, or is
co-extensive with an initial object. In the last two cases, Cat//D is cartesian closed. Sim-
ilarly, Cat//pSet® is cartesian closed. For example, Cat//CMon and Cat//CMon®”

are cartesian closed with exponentials given, respectively, by
(X,2) = (Yy) = Ex=vilxe — (yoev),lim xy o (m(—)))

and
(X,z) = (Y,y) = (Ex=yllx(yoev) —o x,colim xy o (m(—))) .

That is, the first component consists of the Grothendieck construction of categories of
natural transformations between x and y o ev and the second component consists of a
(co)limit in CMon of y considered as a diagram indexed by X (via the functor X — Y
from the first component). Note that these exponentials are not fibred.

9.23. EXAMPLE. [Predicate-free Dialectica] Building on Example 9.13, we have a sym-
metric monoidal structure (U, X)®(V,Y) = (UxV, X xY) on Dial,; = X¢self(C)°. This
has a corresponding closed structure: (U, X) — (VYY) = (U =V x (Y = X),U xY).
This is a predicate-free version of the Dialectica interpretation [24]. The original Dialec-
tica interpretation has a further fibration of predicates over this category, which we omit
as it would distract from the main point of this paper. See Section 10 and [37] for details.

9.24. EXAMPLE. [Predicate-free Diller-Nahm| Building on Example 9.12, assume that D
is a C-enriched category with biproducts and C-copowers C'® D. Then, L(C)(D,D’) =
C(C,D?(D,D")) defines a locally C-indexed category with Il-types given by IloD =
C ® D. It then follows that Dill,; = Y¢L is cartesian closed with products given by
(U, X)x (V,Y)=(UxV,X xY) and exponentials given by (U =V xD(Y, X),URY).
This is a predicate-free version of the Diller-Nahm interpretation, where one classically
considers the case where D is the Kleisli category for an additive monad on C. Like the
Dialectica interpretation, the Diller-Nahm variant can also be extended with a further
fibration of predicates over this category. See Section 10 and [37] for details.

9.25. EXAMPLE. [Fibred closed structures| From the formula given in Theorem 9.19, it
is immediately clear that the monoidal left-closed structure on L will be fibred, if £
is an C-indexed left-closed monoidal category (Proposition 8.7), as we can then choose
Tx —oy=1€CC'(W) for all x,y € L(W), resulting in the formula

(X7 x) - <Y> y) = (X = Y, lIxz —o E(ev)(y)),

for the left-exponential in ¥:£. The converse also holds: if the monoidal left-closed
structure resulting from Theorem 9.19 is fibred, then Tx — y = 1 € C'(W). Then,
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3., C-cotractability of ® tells us that
LW)(y@z,2) 2 Ef € C'(W), Tz —o y).LIW)(2,0(z,y, f)) = LIWV)(2,0%(z,y,11)).

We see that £(1V) is monoidal left-closed with exponential y —o z = 9°(x,y, 1), which is

an indexed functor, as ¢ and 1 are. Co-dually, we get fibred right-exponentials in ¥¢L

from our Theorem 9.19 if and only if £ is an indexed monoidal right-closed category.
These results are a special case of those of Theorem 7.4.

9.26. EXAMPLE. [Cartesian closure for indexed co-extensive categories] We build on Ex-
ample 9.10. In the special case that £ is an indexed extensive category with an indexed
terminal object 1, XL is cartesian closed and we have the following formula for expo-
nentials:

(X, 2) = (Yy) = (Mx Xy L(m2)(y) — (L(m)(x) U 1), BxL(()(9)),

i.e. the second component is the ¥-type (sum, in £, so product in £°) of all complements
of the domains 0°(g) of definition of the morphisms ¢ : £(m3)(y) —o L(m)(x) U1 (which
we think of as partial functions) in the first component. This special case can be seen as
a generalisation of the results of [3] on higher-order containers.

9.27. EXAMPLE. [Cartesian closure for indexed coproduct/biproduct categories] We build
on Example 9.11. In the special case that L is a C'-enriched indexed category with indexed
coproducts and Il-types, ¥¢L is symmetric monoidal closed and we have the following
formula for exponentials:

(X, ) — (V) = (Hx By L(m) () — L(m2)(y), [xL(ev1)(y)),
where we use the obvious morphism
evl : x>y Z.X =Y,
that is, the morphism obtained as the composition (where we write m; for the projection
Sy Z =Y)

(HxTrl)XX
e

xSy Z.X = xSy Z) x X IxY)x X 2 (X =Y)x X Y.

Of particular interest are the cases that

e £ =C'"?: in this case, the required Il-types and coproducts always exist (as C' has
Y-types) and the C’-enrichment exists as C' has II-types so its fibres are cartesian
closed; we conclude that for any model C’ : C°? — CAT of dependent type theory
with II-types and strong Y-types, X¢C'°P is symmetric monoidal closed;

e L has biproducts: in this case, the monoidal structure, if it exists is a cartesian
one, giving us a cartesian closed structure on ¥¢L, assuming that the required C’-
enrichment and Il-types exist; further, observe that L% is then also cartesian
closed as long as the required -types exist in L:

(X, 2) = (Yy) = (MxXy L(m2)(y) —o L(m1)(2), ExL(evl)(y))
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This shows that we reproduce the results of [65, Proposition 4.6.1] and [60, Section 6.4],
as a special case of Theorem 9.19.

Finally, we can also use our result as a tool to show that a monoidal structure is not
Y-cotractable.

9.28. COUNTEREXAMPLE. Let D be a infinitary distributive category, i.e. a category
with small coproducts and finite products such that | | : Fam(D) — D preserves finite
products. Suppose further that D is not cartesian closed. For example, D could be the
category of locally connected topological spaces and continuous functions [61, Example 8]
or the category of finite dimensional smooth manifolds of varying dimension and smooth
functions [36, Appendiz A]. Then, by [61, Theorem 4.2/, Fam(D) is not cartesian closed.
As a consequence, by Example 9.21, it follows that the products in D are not X-cotractable.

10. Related Work and Outlook

We situate our results within the broader literature, tracing their antecedents in the Di-
alectica and Diller-Nahm interpretations, in lax comma 2-categories, and in connections
with higher order containers and CHAD. We then relate them to freely generated categor-
ical structures and their dependently typed extensions, before concluding with prospects
for further -cotractable monoidal structures and observations on efficient implementa-
tion.

10.1. DIALECTICA AND DILLER-NAHM INTERPRETATIONS (WITH PREDICATES). The
categorical study of Dialectica constructions originates in Valeria de Paiva’s Cambridge
thesis and her paper in the volume Categories in Computer Science and Logic [22, 78].
The earliest examples of similar techniques for constructing exponentials on Grothendieck

constructions that we are aware of arose in proof theory when demonstrating the relative
consistency of Heyting arithmetic: Godel’s Dialectica interpretation [22, 78, 37, 24] and
Diller and Nahm’s CMon-enriched variant of that interpretation [23] also show a similar
presentation. In Examples 9.23 and 9.25 we give simplified (predicate-free) presentations
Dial,; and Dill,s of these constructions. Here, we briefly point out how to extend them
with predicates, following [37]’s categorical presentation of these interpretations. We first
quote the presentation in [37] for definitions, and next briefly explain how the closed
structures are obtained from Theorem 9.19 by building on the closed structures described
in Examples 9.23 and 9.25.

[[37], Dialectica] Suppose that we have a category T which we can think of
as interpreting some type theory; and suppose that over the category T" we
have a pre-ordered fibration p : P — T, which we can regard as providing
for each I € T' a pre-ordered collection of (possibly non-standard) predicates
P(I) = (P(I),F). Starting with this data we construct a new category Dial =
Dial(p) which we regard as a category of propositions and proofs. We do this
as follows.
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e The objects A of Dial are U, X € T together with o € P(U x X). (--+)
Our understanding of the predicate « is not symmetric as regards U and
X : we read o as Ju € UVze € X.a(u,x), in accord with the form of
propositions in the image of the Dialectica interpretation.

e Maps of Dial from A = (U, X, ) to B = (V,Y, ) are (---) of the form
f:U=V, F:UxY — X with a(u, F(u,y)) F 8(f(u),y) in P(UXY).
We can observe that® Dial is precisely the category YyerDial(U) for
Dial(U) = (Sxesarr) ) P(U x X)7)”.

It is a more involved version of the category discussed in Example 9.23, where we addi-
tionally endow all objects with predicates.

If we assume that P — T is fibred cartesian closed, it follows from our Theorem 9.19
that Dial is monoidal closed for the (symmetric) monoidal structure (U, X, a)®(V,Y, 8) =
(UxV,X xY,aAp). Then

VY, B) = (W, Z,7) = ((V=>W)x (VxZ=Y),VxZ p),

p((9,G), (v, 2)) = B(v,G(v,2)) = 7(g(v), 2).
Indeed, the indexed monoidal structure on Dial(U) with unit (1, T) and product
(X,0) ® (X',a') = (X x X', P(id x m;)(a) A P(id x m)(c))
is X, self(T")(U)-cotractable because
Dial(U)((X, o) ® (X', &), (X", a")) =
{F:Ux X" = X xX'| a(u,m (F(u,2")) A (u, 72 (F(u,2"))) - o (u, 2")}
=Y F eself(T)(U)(1,X" = X).Dial(U) (X', '), (X", p)),

where p(u, z”) = a(u, Fi(u)(x)(z")) = o (u,z"). Therefore,
Dial(U)((X', &), (X", p))
={F:Ux X" = X"|d(u, Fr(u,z") b a(u, Fi(u)(x)(z") = o (u,z")},

showing that we can choose T(X”, ") — (X, ) = X" = X and 0°((X",a”), (X, a), F}) =
(X", p), where p(u,2") = a(u, Fi(u)(x)(z")) = o’(u,2”). Further, the indexed category
U — Dial(U) has II-types, given by IIy (X, a) = (V x X, P(m3)(«)), meaning that the
assumptions of Theorem 9.19 are met.

[[37], Diller-Nahm| Suppose again that we have a pre-ordered set fibration
p : P — T, providing for each type I € T a collection of (possibly non-
standard) predicates P(I) over I. We need some additional structure. We
suppose that p: P — T is equipped with a commutative monoid (—)® in the
following sense.

®We use the locally indexed category self(T') for the category with products 7" here. See Example 5.8.
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e Firstly, 7" is a category with products and (—)® is a strong monad on
T such that each algebra is equipped naturally with the structure of a
commutative monoid.

e Secondly, we suppose that we have an indexed extension of (—)® to P.
For ¢ € P(I x A) we have ¢* € P(I x X*). For each I € T, the strength
gives an action of (—)® on the (simple slice) category T'/I . And the
operation ¢ — ¢°* just described is an extension of this to the global
category P/I — T/I.

The example to have in mind here is the finite multiset monad on the category
of sets; of course, that is exactly the monad whose algebras are commutative
monoids. This monad extends naturally to the subset lattices: if ¢ C I x X
then ¢* C I x X* is defined by ¢°(¢,€) if and only if Vo € £.¢(i,x). From
the data just described we construct a new category Dill = Dill(p) which we
regard again as a category of propositions and proofs.

e The objects of Dill are still pairs U, X € T together with a € P(U x X).
e Maps of Dill from A = (U, X, «) to B = (V,Y, ) are (---) of the form
f:U—=V, F:UxY — X*with a®(u, F(u,y)) F B(f(u),y)in P(UXY).

That is,
Dill is precisely the category XyerDill(U) for

Dill(U) = (Kleisli((—).)(ZXeself(T)(U)P(U x X )"p))opa

for the lifted monad (—)* on Xxesar(ryw)P(U x X). It is a more involved version of
the category discussed in Example 9.25, where we additionally endow all objects with
predicates.

If we assume that P — T is a fibred cartesian closed category over a bicartesian
closed category T', and that P is an extensive indexed category in the sense that we
have a natural isomorphism [—] : [T, P(X;) = P(| |\, X,), and that (—)* is an additive
monad in the sense that (| X, X;)* =Y, X? (we will abuse notation slightly and leave
these two isomorphisms implicit), then it follows from our Theorem 9.19 that Dial has
the cartesian closed structure (U, X, a) x (V,Y,5) = (U x V, X UY, [a, #]) and

(VY. 8)= (W, Z,) = (V=>W)x (VxZ=Y"), VxZ p),

where p((g, G), (v,2)) = B*(v,G(v, 2)) = 7(g(v), 2).
Indeed, the indexed product structure on Dill(U) with unit (0, []) and product

(X,a) x (X', d)=(XUX' [a,a])
is X, self(T")(U)-cotractable because
DIll(U) (X, a) x (X', /), (X", 0")) =
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{F:Ux X" X*x X2 (XuX)|a®(u,m(F(u,2")) Ao (u, ma(F(u, ")) F o’ (u,2")}
=X F € self(T)(U)(1, X" = X) .Dill(U) (X', &), (X", p)),

where p(u, z”) = o®(u, Fy (u)(*)(2")) = o’ (u,2"). Therefore,

DIIL(U) (X', ). (X", )
={F:Ux X" = X" | o/*(u, Fs(u,2")) b a® (u, Fy (u)(x)(2")) = " (u,2")},

showing that we can choose T(X”, ) —o (X, o) = X” = X* and 0°((X", o), (X, @), F}) =
(X", p), where p(u,z”) = a®(u, Fy (u)(x)(z")) = o(u,2"). Further, the indexed category
U — Dill(U) has [I-types, given by IIy(X,a) = (V x X, P(m)(«)), meaning that the
assumptions of Theorem 9.19 are met.

These Examples raise the more general question under what circumstances, given two
fibrations p: P — @ and ¢: @ — R, the fibration (q o p°?)° (using the fibrewise opposite
fibration and composition of fibrations) has a monoidal closed total space. Assuming that
q is a model of dependent type theory with II-types and strong >-types, that amounts,
in the light of our Theorem 9.19, to characterising when an indexed monoidal structure
on the fibres of (q o p?)% is 3, Q(—)-cotractable and when (q o p°?)° has II-types.

10.2. LAX COMMA 2-CATEGORIES. There has recently been a renewed interest in the
study of lax comma 2-categories in the literature; see, for example, [12, 13, 14, 16, 15, 17,
18, 69]. As illustrated in Examples 9.17 and 9.22, lax comma categories fall within the
scope of our results. In particular, we have established that

CAT | X

is complete and cartesian closed whenever X is complete and cartesian closed. Moreover,
we have shown that

CAT ) CMon

is cartesian closed. This strengthens existing results in the literature, such as [15], which
considered only the case of fibred exponentials.

We also observe that lax comma 2-categories, in full generality, extend the Grothendieck
construction, which they subsume as a special case. Thus, the present work points to-
wards a more general theory of closed structures on lax comma 2-categories. Developing
such a theory is the subject of ongoing research.

10.3. HIGHER ORDER CONTAINERS. [3] previously gave the special case of our formula
for exponentials in Fam (Set”) = Ygot CAT(—, Set’), which they interpret as a category
of containers (or polynomial endofunctors). Such containers are useful in programming
as they give a certain, concrete representation of datatypes. As such, the authors use
it to give a notion of “higher-order container”. Our construction shows that the same
construction can be carried out for more general notions of containers valued in a category
with a YX-tractable monoidal structure, such as an extensive category with its coproduct
structure or a category with biproducts. Some examples of such containers (such as
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additive containers, as in CHAD, see below) have already found useful programming
applications. However, we believe there might be potential for many more notions of
container and lens to find use in programming. We hope that the formulas given in this
work can contribute to principled programming idioms for such data representations.

10.4. CHAD: COMBINATORY HOMOMORPHIC AUTOMATIC DIFFERENTIATION. Re-
cent work [81, 82, 60] has analysed the special case of our formula for exponentials in
the case that the fibre categories £ have biproducts. They show that this case can be
used to prove correctness (see loc. cit.) and to give an efficient implementation [73] of a
programming technique called Automatic Differentiation (AD), typically the method of
choice for efficiently computing derivatives of numerical programs. It is tempting to give
a similar analysis, based on Grothendieck constructions, for reverse-mode AD methods
for calculating higher derivatives [5, 35].

10.5. Freely generated categorical structures. The case of our formula for exponen-
tials in Grothendieck constructions ¢ L indexed cartesian closed categories indexed by a
cartesian closed category seems to be well known. It is used, in particular, for the case of
families Fam (D) = Xget CAT(—, D) valued in a cartesian closed category D (that is, the
freely generated category with small coproducts on D) by [1].

Recently, [61] and [59] analysed exponentiability in freely generated distributive and
lextensive categories generated from an arbitrary locally small category D (which need
not be cartesian closed), respectively. The formula used for the exponentials arises as a
special case of the present work. These works raise the question whether our method is
suitable for a study of exponentiability in further kinds of freely generated categorical
structures.

10.6. DEPENDENTLY TYPED DIALECTICA. In a recent tour de force, [84, 66, 65] showed
that the Dialectica and Diller-Nahm interpretations can be extended to dependently
typed languages. In particular, they show the following two results, which are in a sense
dependently typed variants of two of our examples:

e starting from a model of dependent type theory with strong Y-types, II-types and
identity types that is extensive in a suitable sense, they construct another model of
dependent type theory with X-types, II-types and identity types, generalizing our
Example 9.10, in a sense;

e starting from a model of dependent type theory with strong >-types, II-types and
identity types with an additive monad, using a Kleisli construction, they construct
another model of dependent type theory with X-types, [I-types and identity types;
this is closely related to but not quite a generalisation of our Example 9.11.

Compared to their work, on the one hand, we do not consider the considerable amount of
structure needed to interpret dependent types in a Grothendieck construction, so in this
sense our work is more limited. On the other hand, we generalise from two examples of
products in extensive categories and Kleisli categories of additive monads to X-cotractable
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monoidal structures. The latter also give rise to various new examples of cartesian and
non-cartesian (even non-symmetric) monoidal closed structures on Grothendieck construc-
tions. In that sense, our work is more general.

Dependently typed (X-type) equivalents of non-cartesian monoidal structures are sur-
prisingly subtle [80], so it is not clear if a common generalisation of both approaches is
possible. The most promising avenue might be to limit oneself to cartesian type theo-
ries and to pursue a notion of Y-cotractable Y-type to generalise Y-cotractable binary
products as well as the examples in [66].

10.7. OTHER X-(CO)TRACTABLE MONOIDAL STRUCTURES. So far, we have shown that
typical examples of Y¥-cotractable monoidal structures are:

coproducts in any category;

products in a coextensive category with an initial object;

a monoidal left-closed structure on a category with an initial object;

products in pSet®.

In fact, we have seen that for posets (and, more generally, preorders) Y-cotractability of
the product is equivalent to cartesian closure plus an initial object. For non-thin cat-
egories, we have no such characterisation of Y-cotractability. This raises the question
whether there are other interesting, naturally occurring examples of »-cotractable prod-
ucts and non-cartesian monoidal structures for non-thin categories.

10.8. EFFICIENT IMPLEMENTATION. [73] shows that, when [60] is interpreted as a recipe
for generating code in a functional programming language, programs that make use of
the Dialectica-like monoidal closed structure presented in this paper can be inefficient.
Interestingly, the non-fibred nature of the exponentials can result in recomputation. In
the particular example of CHAD-style automatic differentiation, a workaround is possible
by closure converting the code, essentially by using a representation for the exponential
as a coend via the co-Yoneda lemma.

Containers and lenses are an increasingly important data representation, particularly
in machine learning applications where data needs to flow in both directions [20]. There-
fore, it would be interesting to have a better understanding of the precise nature of these
efficiency pathologies arising for higher-order containers, as well as generally applicable
solutions.
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