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ON EXTENDED FROBENIUS STRUCTURES

A. CZENKY, J. KESTEN, A. QUINONEZ, AND C. WALTON

ABSTRACT. A classical result in quantum topology is that oriented 2-dimensional topo-
logical quantum field theories (2-TQFTs) are fully classified by commutative Frobenius
algebras. In 2006, Turaev and Turner introduced additional structure on Frobenius al-
gebras, forming what are called extended Frobenius algebras, to classify 2-TQFTs in
the unoriented case. This work provides a systematic study of extended Frobenius al-
gebras in various settings: over a field, in a monoidal category, and in the framework of
monoidal functors. Numerous examples, classification results, and general constructions
of extended Frobenius algebras are established.

1. Introduction

The goal of this work is to study extended Frobenius algebras in various settings. Before
providing further context, note that linear structures here are over an algebraically closed
field k of characteristic zero, unless stated otherwise. Categories C are assumed to be
locally small, and will have further structure as specified below. We will also read graphical
diagrams from top to bottom.

We are motivated by the vast program on producing topological quantum field theories
(TQFTs), which are categorical constructions that yield topological invariants. Loosely
speaking, a TQFT is a (higher) functor from a (higher) category of topological data to
a (higher) target category with extra structure. In the 2-dimensional case, 2-TQFTs are
symmetric monoidal functors from a symmetric monoidal category of 1-manifolds and
2-cobordisms to a choice of a symmetric monoidal category C. Often, C is taken to be the
symmetric monoidal category Vec of k-vector spaces. A classical result is that a 2-TQFT
with values in C is classified by where it sends the circle, which in the oriented setting, is
a commutative Frobenius algebra in C; see, e.g., [Koc04]. Turaev and Turner expanded
this correspondence in the unoriented setting, by tacking on extra structure to Frobenius
algebras to form what are called extended Frobenius algebras [TT06, Section 2].
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Turaev-Turner’s 2-TQFT Result (x): Isoclasses of unoriented 2-dimensional TQFTs
in Vec are in bijection with isomorphism classes of commutative extended Frobenius al-
gebras over k.

Since then, extended Frobenius algebras have appeared in many works, such as in an
adaptation of (x) to compute virtual link homologies [Tub14], for an analogue of (%) for
homotopy quantum field theories [Tagl2], in a modification of (x) to examine linearized
TQFTs [Cze24], in a categorical expansion of (x) [Oca24], and in a study of topological
invariants of ribbon graphs [CL24].

We expect that extended Frobenius algebras will continue to play a crucial role in the
TQFT program. Thus, we focus on the algebraic side of the program and study extended
Frobenius algebras in detail- producing numerous examples, classification results, and
general constructions.

We begin by taking C = Vec, hence working over the field k. Consider the terminology
below.

1.1. DEFINITION.

(a) A Frobenius algebra overk is a tuple (A,m,u, A, ), where (A, m,u) is an associa-
tive unital k-algebra, and (A, A, €) is a coassociative counital k-coalgebra, satisfying
the Frobenius law: (a ® 14)A(b) = A(ab) = A(a)(1a ®b), for all a,be A. A mor-
phism of Frobenius algebras over k is a morphism of the underlying k-algebras and
of k-coalgebras.

(b) [TT06, Definition 2.5] A Frobenius algebra (A, m,u, A, ¢) is an extended Frobenius
algebra over k if it is equipped with a morphism ¢ : A — A and an element 0 € A
such that:

(i) ¢: A— Ais an involution of Frobenius algebras,
(ii) 0 € A satisfies p(0a) = ba, for alla € A,
(iii) m(p®@ida)A(14) = 62,

A morphism f : (A, ¢a,04) — (B, ¢p,0p) of extended Frobenius algebras over k
is a morphism f : A — B of k-Frobenius algebras such that foa = ¢ f and
f(04) = 05p.

(c) We refer to (¢,0) in part (b) as the extended structure of the underlying Frobenius
algebra A, and say that A is extendable when ¢ and 6 exist. We also call an extended
structure (¢,0) on A ¢-trivial when ¢ = id, and call it f-trivial when 6 = 0.

Note that we do not assume that algebras are commutative in our work. Our first main
result is the classification of extended structures for well-known examples of Frobenius
algebras over k.



1220 A. CZENKY, J. KESTEN, A. QUINONEZ, AND C. WALTON

1.2. THEOREM. [Propositions 2.9-2.11, 2.12-2.14, 2.16-2.17] Take n = 2, and w, € k an
n-th root of unity. The extended structures for the Frobenius algebras below are classified,
recapped as follows.

(a) k: all extensions are ¢-trivial.
(b) C over R: all extensions are ¢-trivial or 0-trivial.

(c) k[z]/(x™): all extensions are ¢ trivial when n is odd, and is not extendable when n
s even.

(d) kCy: all extensions are ¢-trivial or O-trivial.

(e) kCs: all extensions are ¢-trivial or ¢ maps a generator g of Cs to wsg?.
(

(
(

)
)
f) kCy: all extensions are ¢-trivial, or O-trivial, or ¢ maps a generator g of Cy to wyg®.
g) k(Cy x Cq): here, ¢ maps g to wag', where g, g are generators of Cy x Cs.

)

h) Ty(—1) :=k{g,z)/(g*> — 1,2% gz + xg) : all extensions are ¢-trivial.

Next, we move to the monoidal setting. See Section 3.1 for background material
on monoidal categories C := (C,®, 1) and on algebraic structures within C, especially
(extended) Frobenius algebras in C. This specializes to the setting above by working in
(Vec, ®x, k). Let ExtFrobAlg(C) denote the category of extended Frobenius algebras in C
[Definition 3.2]. We first establish monoidal structures on ExtFrobAlg(C). Namely, if C is
also symmetric, then ExtFrobAlg(C) is monoidal with ® = @ and 1 = 1¢ [Proposition 3.6].
Moreover, if C is additive monoidal, then ExtFrobAlg(C) is monoidal with ® being the
biproduct of C and 1 being the zero object of C [Proposition 3.7].

Now we focus on separability in a monoidal category C. A Frobenius algebra in
C is separable if its comultiplication map is a right inverse of its multiplication map
[Definition 4.2]. Separability (or specialness) is a widely used condition in quantum theory
(see, e.g., [MOB, RFFS07, HV19]). In particular, it is used to construct state sum 2-TQFTs
[INR15]. This brings us to the result below.

1.3. PROPOSITION. [Proposition 4.3] A separable Frobenius algebra in a monoidal cate-
gory s always extendable.

Next, we turn our attention to Hopf algebras, which also play a role in quantum theory
and TQFTs (see, e.g., [KLO1, BBG21, CCC22)). It is well-known that finite-dimensional
Hopf algebras over k (or more generally, Hopf algebras over k with a certain integral)
admit a Frobenius structure. A lesser known result is that in a symmetric monoidal
category C, integral Hopf algebras in C [Definition 4.6] are Frobenius [Proposition 4.8]. A
graphical proof of this result is in Appendix A, which may be of independent interest to
the reader. Building on this, we introduce extended Hopf algebras in symmetric monoidal
categories [Definition 4.13], and obtain the result below.
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1.4. PROPOSITION. [Proposition 4.14] If an integral Hopf algebra in a symmetric monoidal
category is extendable, then so is its corresponding Frobenius structure (via Proposi-

tion 4.8).

Finally, we examine functors that preserve extended Frobenius algebras in monoidal
categories. To start, take monoidal categories C and C’, and note that a Frobenius
monoidal functor C — C' [Definition 5.2] sends Frobenius algebras in C to those in C'.
It is also known that the separability condition is preserved when such a functor is sep-
arable [Proposition 5.4], and that such functors can be used to form higher categorical
structures [Remark 5.6]. See also [DP0S] and [BI8, Chapter 6] for more details. Our
last set of results extends the theory of Frobenius monoidal functors by introducing the
notion of an extended Frobenius monoidal functor [Definition 5.8]. We establish that this
construction satisfies many desirable conditions as discussed below.

1.5. THEOREM. [Propositions 5.9, 5.11, Theorem 5.13, Remark 5.14] The following state-
ments hold.

(a) A separable Frobenius monoidal functor is extended Frobenius monoidal.
(b) An extended Frobenius monoidal functor preserves extended Frobenius algebras.

(¢) The composition of two extended Frobenius monoidal functors is extended Frobenius
monoidal.

(d) The collections of monoidal categories and extended Frobenius monoidal functors
between them forms a (2-)category (with 2-cells being certain natural transforma-
tions).

Parts (b,c) require intricate arguments (deferred to an appendix only appearing in
the ArXiv preprint of this work). Various separable Frobenius monoidal functors appear
in the literature; see, e.g., [Sz105, MS10, Mor12, BT15, HLRC23, FHL23, Yad24]. So,
parts (a,b) above imply that each of these constructions produce extended Frobenius
algebras in monoidal categories. There are also extended Frobenius monoidal functors
that are not necessarily separable [Examples 5.17, 5.18].

Organization of the article. In Section 2, we study extended Frobenius algebras over
a field, proving Theorem 1.2. In Section 3, we focus on extended Frobenius algebras in a
monoidal category C, and introduce graphical calculus diagrams for such structures. We
also establish monoidal structures on the category of extended Frobenius algebras in C
in Section 3. In Section 4, we make connections to separable algebras in monoidal cate-
gories, and verify Proposition 1.3. We also strengthen ties to Hopf algebras in monoidal
categories in Section 4, obtaining Proposition 1.4. The result that integral Hopf algebras
are Frobenius is verified in Appendix A via graphical calculus arguments. In Section 5,
we introduce extended Frobenius monoidal functors, and establish Theorem 1.5. Portions
of the proof of Theorem 1.5 involve lengthy commutative diagram calculations; these are
included in Appendix B, appearing only in the ArXiv preprint version of this work.
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2. Extended Frobenius algebras over a field

In this section, we study extended Frobenius algebras over a field k as introduced in
Definition 1.1. We provide many examples of, and preliminary results for, such structures
in Section 2.1. Then, in Section 2.8, we establish Theorem 1.2 on the classification of
extended structures for several Frobenius algebras over k.

The roman numerals (i), (ii), (iil) here will refer to the conditions in Definition 1.1(b).

2.1. PRELIMINARY RESULTS AND EXAMPLES. We begin with some useful preliminary
results on extended Frobenius algebras A over k. First, the Frobenius law from Defini-
tion 1.1(a) implies that

Afa) = a(1a)' ® (14)*,  for A(la) == (14)' ® (14)%, (1)

for a € A. So, A(14) determines the Frobenius structure of A.

2.2. LEMMA. If A is a Frobenius algebra that is a domain, then an extended structure of
A (if it exists) must be either ¢-trivial or O-trivial.

PROOF. Suppose that an extended structure (A, ¢, 0) exists. Then, 0¢p(a) = ¢(0)d(a)
= ¢(fa) = Oa, for all a € A by condition (i). Hence, O(¢(a) —a) = 0 for all @ € A, and the

result follows from A being a domain. [

2.3. LEMMA. Let A be a Frobenius algebra over k, and let (A, ¢,0) and (A, ¢',0') be two
extended structures of A. If 0 € kla and 0 # 0, then an extended Frobenius algebra
morphism from (A, ¢,0) to (A,¢',0") does not exist.

PROOF. Suppose by way of contrapositive that 6§ = A1 4 for some A\ € k and there is a
morphism f : (A, ¢,0) — (A, ¢, 8') of extended Frobenius algebras. Since f is unital and
preserves the extended structure, = A1y = Af(14) = f(Ala) = f(0) = ¢, as desired. =

We will see in Proposition 2.12 that Lemma 2.3 fails when 6 ¢ k1,4. We now include
some examples of extended structures for well-known Frobenius algebras.

2.4. EXAMPLE. Let GG be a finite group. Its group algebra kG has a Frobenius algebra
structure determined by A(eg) = X, .o h® h ' Then,

gb:idkg, 92 i |G|'EG

yields extended structures of kG. Now, conditions (i) and (ii) are trivially satisfied.
Condition (iii) holds as m(¢ ® idxg)A(eq) = m (X, h®@h 1) = |G| - eq = 6> .
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2.5. EXAMPLE. Let (), denote the cyclic group of order n > 2, and let g denote a

generator of C,,. Consider the Frobenius structure on kC), as defined in Example 2.4.

Then

&(g) = wag ™", =+ Do wig

is an extended structure of kC), for any n-th root of unity wn €k Itisa quick check

that condition (i) holds. Towards condition (ii), let a := Y a;¢" be an element in kC,,.
Then,

—2j

o(ald) = _IZ” Jawip(g)i=¥ = i%ﬁ Z:L;:lo aiwi I g =i+
=+ =30 Lawkg ™ = af.

For condition (iii), we compute:
m(¢ ®idic)Alec,) = m(¢ ®idyc,) (Z;-‘;S FOgI) = Yiwlg¥
_ 1 Z k -2k _ 1 Z pl szJr]ng(erj)
= l(Zn ! ‘gzj>2 = 02

2.6. EXAMPLE. Let w := w,, be a primitive n-th root of unity, for n > 2. Consider the
Taft algebra,

Th(w) :=k(g,z)/(¢" — L, 2", gr — wzg),
with Frobenius structure determined by
Alr,w) = 20 (/g @g Uz + ¢z @g77).
Then, this Frobenius structure on T,,(w) can be extended via
¢ = 1d, (w), 0 € @] 0,k=1 kg’a*.

To show this, we compute: m(¢ ® idr,(.))A(1) = 0 = 62, so condition (iii) holds. Condi-
tions (i) and (ii) are trivially satisfied.

2.7. EXAMPLE. Let Mat, (k) be the algebra of n x n matrices over k, with basis { £; ;}7;_,

of elementary matrices. Consider the Frobenius structure determined by A(E;;) =
Sie1 Bie® Eyj, for all 1 <4, j <n. Then,

¢ = idMatn(]k)a 0 = i\/ﬁ 1y

give extended structures of Mat, (k). Indeed,
m(¢ @ idyat, 1) A(Ln) = 22421 Ei By =n-1I, =62

so condition (iii) holds. Moreover, conditions (i) and (ii) are trivially satisfied.
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2.8. CLASSIFICATION RESULTS. Now we proceed to establish Theorem 1.2, starting with
the results for the Frobenius algebras: k over k, C over R, and the nilpotent algebra
k[x]/(z™) over k.

2.9. PROPOSITION. The only extended structures of the Frobenius algebra k where Ay :
k = k®k are ¢-trivial, with 6 = +1y,. Moreover, these extended Frobenius algebra
structures are non-isomorphic.

PROOF. Suppose ¢ and 6 give an extended structure of k. Since ¢ : k — k is a morphism
of algebras, the only possible choice is ¢ = idyx, which satisfies conditions (i) and (ii)
trivially. Condition (iii) implies that § = +1i. Lastly, the structures are non-isomorphic
by Lemma 2.3. n

2.10. PROPOSITION. Take the Frobenius algebra C over R with A(l) = 1Q 1 —i®1.
Then,

(a) ¢ =idc and 6 = +v/2, and

(b) ¢(z) =% for all z€ C, and § = 0,
are all of the extended structures of C, and these extended Frobenius algebras are non-
1somorphic.

PrOOF. By Lemma 2.2, an extended structure of C should be ¢-trivial or f-trivial. If
¢ = ide, then 02 = m(¢p®ide)A(1) = m(1®1—i®i) = 2, and so § = ++/2. On the other
hand, if = 0, then 0 = m(¢®idc)A(1) = 1 —¢(i)i. Hence, ¢(i) = —i and it follows that
¢ must be complex conjugation. Now condition (iii) holds, and it is a quick check that
conditions (i) and (ii) are satisfied for these choices. Lastly, it follows from Lemma 2.3
that these structures are all non-isomorphic. [

2.11. PROPOSITION. Consider the algebra k[x]/(x"), for n = 2, with Frobenius structure
determined by A(1) = Y f ' @ "1, Then, the following statements hold.

(a) Forn even, k[x]/(z") is not extendable.

(b) Forn odd, all extended structures of k|x]/(z") are ¢-trivial, with
0=+ + Z;:@ 02
2
for some enTH, o0, ek

PROOF. Suppose that ¢ and 6 give an extended structure of k[z]/(z"). Then, a routine
calculation with ¢ being multiplicative and ¢* = id (from condition (i)) implies that
¢(x) = £x. So, in the rest of the proof, we look at the cases ¢ = id and ¢(x) = —z, and
conclude the latter is never possible, while the former is only possible when n is odd.



ON EXTENDED FROBENIUS STRUCTURES 1225

Suppose first that ¢ = id. Then, conditions (i) and (ii) are satisfied trivially. Let
0o, ...,0,_1 € k such that 6 = :.:01 0;x'. Then, condition (iii) implies that

nz" ! = 22:01 91‘%% + Ziy&j 0,0,z (2)

From the coefficient of 1, it follows that 8y = 0. We can argue by induction that 6; = 0
forall 0 <7 < ”T’l — 1if nis odd, and for all 0 < i < § — 1 if n is even. It follows
that if n is even, then the coefficient of z"~! in (2) leads to the contradiction: n =
221151 0;0,_1_; = 0. Thus, ¢ = id is not possible when n is even. On the other hand,
if n is odd, then the coefficient of "' in (2) yields n = (9%)2 + 225_1 0:0,_1_i,

which implies that 6.1 = +y/n- 1. So, ¢ = id and 6 = +/nz"z —1—22:% 6;27 precisely
satisfy conditions (i), (ii), and (iii) yielding an extended structure on the Frobenius algebra
k[x]/(z™) when n is odd.

It remains to look at the case ¢(r) = —z. It follows from ¢ being a morphism of

coalgebras that this is not possible when n is even, since we get the following contradiction:

Yt @ = A(g(1) = (#@B)A(L) = — Xi) 2t @i,

When n is odd, the equalities ¢(f) = 6 and ¢(zf) = z6 from condition (ii) yield the
equations

Sy it = Y (— 1) and SiE Ottt = S (= 1)t

respectively. Hence 6; = 0 for 1 < i < n — 2, and we have that § = ,_,2""!. But then
this would imply 0 = 6 = m(¢ ® id)A(1) = 2" '. Hence, ¢(z) = —x is also not possible
when n is odd. [

For a group G, consider the Frobenius algebra kG as in Example 2.4. We now provide
classification results for the extended structures of kG when G = Csy, C3, Cy, and Cy x (.

2.12. PROPOSITION. Let g be a generator of Cy. The extended structures of kCy are:
(a) ¢ =idyc, and 0 € {£/2ec,, +v/2g}, and

(b) ¢(9) = —g and 0 = 0.

Moreover, (kCy,idyc,,v29) = (kCy,idye,, —v/2g) as extended Frobenius algebras, and
all other structures are non-isomorphic. That is, there are four isomorphism classes of
extended Frobenius structures on kCs.

PROOF. Suppose that ¢ and 6 define an extended structure on kC5, where
o(g) = ¢oec, + 919 and 0 = Opec, + O1g for ¢g, 1,600,601 € k. By the counitality of
¢, we have that ¢o = £(6(g)) = e(g) = 0, and ¢ = (¢7g°) = (d(¢*)) = e(¢*) = 1.
So, ¢1 = +1. Both choices are involutions and it is a quick check that they satisfy
condition (i). We look now at the conditions (ii) and (iii).
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When ¢ = id, we have that 62 + 67 = 2ec, and 200; = 0, and so either
0 = +4/2e¢, or = +4/2g. Both of these satisfy conditions (i) and (iii). When ¢(g) = —g,
condition (iii) yields 62 +6% = 0 and 26,0; = 0. Hence, § = 0, and condition (ii) is satisfied
in this case.

Lastly, it follows from Lemma 2.3 that an isomorphism can only exist between (kCs,
idycy,, v29) and (kCy,idye,, —v/2g), which are in fact isomorphic via the morphism of
extended Frobenius algebras f : kCy — k(5 defined by g — —g. ]

2.13. PROPOSITION. Let g be a generator of Cs. The extended structures of kCs are:
(a) ¢ = idyc, and 0 € {£+/3ec,, i\%(ec3 — 2ws3g — 2w3g?)},

(b) é(g) = wsg® and 0 = £ = (ec, + wsg + wig?),
where w3 € k is some 3-rd root of unity. These structures are all non-isomorphic.

PROOF. Suppose ¢ and 6 define an extended structure of kC3, where

?(g9) = doecs + P19 + d2g?, 0 = Oyec, + 019 + 0297,

for ¢;,0; € k. By condition (i), we get that ¢ = id or ¢(g) = wsg®>. We now examine the
conditions: m (¢ ® idyc,)A(ec,) = 6%, and ¢(ha) = fa for a € kCs.

When ¢ = id, we get §* = 3ec,. Hence, 6y # 0, and if 6; = 0 or 6, = 0, these
imply 0 = +v/3ec,. Else, if 61,0, # 0, it follows that 6 = +7-(ec, — 2wag — 2wig?)
for some 3-rd root of unity ws. Condition (ii) is trivially satisfied for these cases. When
#(g) = wsg?, then condition (iii) implies that 6% = ec, + w3g + wig?. We also require
0 = ¢(0) = bpec, + O1wsg? + Oawig, and thus fy = wsby. Therefore, we get that 6 =
i\%(ec3 + w3g + w3g?). One can check that these choices satisfy condition (ii); see
Example 2.5.

Lastly, any morphism f of extended Frobenius algebras between these possible struc-
tures is counital, so f(g) = cg or f(g) = cg* for some c € k such that ¢ = 1. From this
and Lemma 2.3, we conclude there are no such morphisms between the different extended
structures. =

2.14. PROPOSITION. Let g be a generator of Cy. The extended structures of kCy are:
(a) ¢ = id]k04 and 6 € {i26047 i2927 i(l - Z)(g + 7;93)7 i(l + Z)(g - igg)}7'
(b) ¢(g) = —g and 6 = 0;

(€) 6lg) = wig® and 0 & {+ 5% (ec, — ¢?), +i%55 (g — ")},

for any 4-th root of unity wy € k. These form eight isomorphism classes of extended
structures.
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PROOF. Suppose that ¢ and 6 define an extended structure on kCy, where for ¢;,0; € k,
we have ¢(g) = Poec, + P19+ P29+ P3g° and 0 = Oyec, +01g+029 +03g°. By condition (i),
we get that ¢o = 0 with ¢(g) = ¢1g or ¢(g) = ¢39°; else, Py # 0 with ¢? + ¢2 = 0. But a
routine computation using ¢*(¢g) = ¢ and condition (iii) shows that the ¢, # 0 case is not
possible. So, either ¢(g) = ¢19 or ¢(g) = ¢3g>. Since ¢*(g) = g, we obtain ¢(g) = +g or
&(g) = wyg® for some wy € k.

Suppose that ¢ = idgc,. Then, condition (ii) is trivially satisfied. Condition (iii)
implies that 4ec, = 02, and we get the choices for § in part (a). When ¢(g) = —g,
condition (i) implies that 6; = 63 = 0. So, by condition (iii), we obtain that 63 +
200029 + 05 = 0, and it follows that 6 = 0. This yields the choice in part (b). Lastly, if
#(g) = wyg?, then from condition (ii), we know that 6; = w3fs. Also from condition (iii),
we get that 02 = (1 + w?)ec, + (ws + wi)g?. Solving for §2 in kC,, we get the two choices
for 0 in part (c). The former coincides with the choice of structure given in Example 2.5.
For the latter, it is easy to check that condition (ii) still holds.

We prove now that there are exactly eight isomorphism classes of extended structures.
It follows from Lemma 2.3 that three such classes are given by

{(k047idk04’ 2604)}’ {(k04,idkc4, _2604)}7 {(k047¢(g) = _970)}'

Next, there can be no isomorphisms f : (kCy,idgc,,0) — (kCy, ¢(g) = waig?,8'), as this
would imply f(g) = f(wsg®). Also, the algebra isomorphisms f, f’ : kCy — kC, defined
by f(g) = —g and f'(g) = ig imply that

{(k047 idkcu i(l - Z)(g + ig3))7 {(k047 idkc4, i(l + 2)(9 - igg))}u {(kC4, idkC4a i292)}

are isomorphism classes of extended structures. The remaining isomorphism classes are
then

((KCy, d(g) = wig®s £ (e, — g2}, {(KCy, 6(g) = wag®, £i (g — %))}

by a routine calculation. n

Given the results in Proposition 2.12, 2.13, 2.14, we propose the following result.

2.15. CONJECTURE. Let g be a generator of C,,. The following are the only possibilities
for the Frobenius automorphism ¢ for an extended structure on kC,,:

(a) ¢(g9) = g or ¢(g9) = wng ' when n is even,
() ¢(g) = g or ¢(g) = wpg™" when n is odd,

where w, € k is any n-th root of unity.

The remainder of Theorem 1.2 is established in the next two results.
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2.16. PROPOSITION. The extended structures of k(Cy x Cy) are:
= idi(cyxcy) and 0 € {£2e, £2¢g;, £(e+ go) + (9; — 9;), t(e—g0) + (9 +9;)};

(a) ¢

(b) ¢(9:) = —gi, ¢(95) = —9;, #(9e) = ge, and § =0,
) ¢
)

a

(c) ¢(9:) = g5, #(95) = gi, D(ge) = g, and 0 € {£(e + go), £(gi + g;)};
(d) (i) = —g;, #(95) = —gi, d(9e) = 9o, and 0 € {£(e —ge), £(9: —9j)};
where Cy x Cy = {e, g1, g2, g3} and {i, 7,0} = {1,2,3}.

PRrROOF. It follows from ¢ being counital that ¢(g;) = a; 101 + @i 292 + ai3gs for a;, € k,
for all 1 <4,p < 3. Since ¢ is multiplicative, we then get that

= (,b(g?) = (ﬁ(gl)Q = (ail + CliQ + (1,?73)6 + QCLiJCLi’Qgg + 2(1@1&@392 + 2@1}2@17391.

Hence, ¢(g;) = +g; for some 1 < j < 3. But ¢* = idgc,xcy), and thus the remaining
possibilities for ¢ are the ones l1sted in the statement. It remains to find suitable 8 for
each possible ¢. Let 0q, 601, 65,05 € k such that 0 = Oye + 6192 + 0292 + O393.

We compute 6% = ¢(e)e + Z?:l #(g:)g;- When ¢ = idy(c,xc,), one can check that we
get the choices of # in part (a) by condition (iii). When ¢(g;) = —gi, ¢(g;) = —g; and
é(ge) = go for {i, 7,0} = {1,2,3}, condition (iii) implies 62 = 0, so # = 0; this implies part
(b). When ¢(g;) = g, ¢(g;) = ¢; and ¢(gs) = g, for {3, j, ¢} = {1,2,3}, conditions (ii) and
(iii) yield the choices of 6 in part (c). The case ¢(g;) = —g;, ¢(g;) = —¢:; and ¢(gr) = ge
for {i, 7,0} = {1,2,3} is analogous. n

2.17. PROPOSITION. Consider the Taft algebra To(—1) := k{g,2)/(¢* — 1, 2%, gz + xg) as
defined in Example 2.6. All extensions of To(—1) are ¢-trivial, with 0 € kx @ kgz.

PROOF. First, note that A(1l) = —g®gr +2®1+1®x + gr ®g. So, by (1), we
get that A(g) = - 1Qgr+9gr ®1+g9gR®zr +1r® g, Alr) = gr®gr + x ® x, and
A(gr) = r® gr + gr ® x. Hence, (1) = e(g) = e(gr) = 0 and e(x) = 1. Now suppose
that ¢ : To(—1) — To(—1) and 0 € To(—1) define an extended structure on T5(—1). Let
a;, b; € k such that ¢(g) = a1 + asg + azz + aggx and ¢(x) = by + bag + bz + bygx. Since
¢ is an algebra morphism, we have that

= ¢(9)* = a] + a3 + 2a1a29 + 2a1a37 + 2010497,
0 = ¢(x)? = b + b3 + 2b1byg + 2b1bsx 4 2b1byger.

It follows that ¢(g) = g+aszx+asgx and ¢(x) = b3z +bsgr. On the other hand, since ¢ is
counital, we get 0 = e(¢(g)) = az and 1 = (¢p(x)) = bz. So, ¢(g) = £g+asgx and ¢(x) =
x + bygzx. Also, ¢ is an involution, hence g = ¢(+g + aggr) = (g + asg9z) £ ay(gx + byx).
It follows that ¢ = idgp,(_1y. Lastly, 6% = m(¢®idp,_1))A(1) = 0, and thus § € ke @kgz.
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2.18. CONJECTURE. Consider the Taft algebra,

Tn(W) = k<g,1’>/(gn - 17$n79x - cmg)

from Example 2.6. Then, all extensions of T,(w) are ¢-trivial, with 6 € @?;01 kg'x.

3. Extended Frobenius algebras in a monoidal category

In this section, we first discuss monoidal categories and algebraic structures in monoidal
categories in Section 3.1. There, we generalize Definition 1.1 to the monoidal setting,
following [TT06, Section 2.2]; see Definition 3.2. Finally, we put monoidal structures on
the category of extended Frobenius algebras in Section 3.5.

3.1. BACKGROUND MATERIAL. For details on algebras in monoidal categories, see, for
example, [Koc04, Chapter 3|, [TV17, Parts I and II] or [Wal24, Chapters 3 and 4]. The
first reference also includes an introduction to Frobenius algebras in monoidal categories.
Extended Frobenius algebras in monoidal categories can be found in [TT06, Section 2.2],

[Cze24], and [Oca24].

3.1.1. MONOIDAL CATEGORIES. A monoidal category consists of a category C equipped
with a bifunctor ® : C x C — C, a natural isomorphism

a:={axyz: (XQY)®Z > X® (Y ®Z)}xyzec,
an object 1 € C, and natural isomorphisms
C={x 1®X > X}xec, r={rx : X®1 > X}xe,

such that the pentagon and triangle axioms hold.
Unless stated otherwise, by MacLane’s strictness theorem, we will assume that all
monoidal categories are strict in the sense that

XQY®Z:=(XQY)Z=X®(Y®Z), X=19X=X®1,

for all X,Y, Z € C; that is, axyz, {x, rx are identity maps.
A monoidal category C is symmetric if it is equipped with

ci={cxy XY 5 Y ®X}xyec:

a natural isomorphism with cy x o cxy = idxgy for X,Y € C, such that the hexagon
axioms hold. The component cxy of ¢, the ¢* = id property, the naturality of ¢ at a
morphism f € C, and unit coherence of ¢ are all depicted in Figure 1.
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A
A Y
~
I

Figure 1: Some axioms for a symmetric monoidal category.

3.1.2. ALGEBRAIC STRUCTURES IN MONOIDAL CATEGORIES. Take a monoidal category
C:=(,®,1).

An algebra in C is an object A € C, equipped with morphisms m : A® A — A and
u: 1 — Ain C, subject to associativity and unitality axioms:

m(m®ida) = m(idg ® m), m(u®idy) =idy = m(ids ® u).

These structures form a category, Alg(C), where a morphism (A, ma,us) — (B, mp,up)
is a morphism f : A — B in C such that fma = mp(f® f) and fus = up.

A coalgebra in C is an object A € C, equipped with morphisms A : A - A® A and
€: A — 1 1in C, subject to coassociativity and counitality axioms:

(A@ldA)A = (1dA ®A)A, (€®1dA)A = 1dA = €(ldA ®’LL)A

These structures form a category, Coalg(C), where (A, A4,e4) — (B,Ap,cp) is a mor-
phism f: A— BinC such that Ap f = (f® f)As and ep f = 4.
Our main algebraic structures of interest in this article are given as follows.

3.2. DEFINITION. Consider the following entities in a monoidal category C := (C,®, 1).

(a) A Frobenius algebra in C is a tuple (A,m,u, A, €), where (A, m,u) is an algebra in
C, and (A, A ¢) is a coalgebra in C, subject to the Frobenius law:

(m ®ida)(ids ® A) = Am = (ids @ m)(A ®id,y).

A morphism of Frobenius algebras in C is a morphism of the underlying algebras
and coalgebras in C. The above objects and morphisms form a category, FrobAlg(C).

(b) An extended Frobenius algebra in C is a tuple (A, m,u,A,e,,0), where we have
that (A,m,u, A, €) is a Frobenius algebra in C, and ¢ : A — A and 0§ : 1 — A are
morphisms in C such that

(i) ¢ is a morphism of Frobenius algebras in C, with ¢* = id;
(11) om0 ®ids) = m(0 ®ida);
(111) m(p ®ida)Au=m(0®0).
A morphism f : (A,¢4,04) — (B, ¢p,0p) of extended Frobenius algebras in C is

a morphism f : A — B of Frobenius algebras in C, such that fos = ¢ f and
f0a=0g. The above objects and morphisms form a category, ExtFrobAlg(C).
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(¢) The morphisms ¢ and 0 in part (b) are the extended structure of the underlying
Frobenius algebra. When ¢ and 0 exist, we say that the underlying Frobenius algebra
15 extendable.

(d) An extended structure (¢,0) on a Frobenius algebra A is said to be ¢-trivial if ¢ is
the identity morphism, and is O-trivial if 6 is the zero morphism (when these exist

inC).

The structure morphisms for an extended Frobenius algebra in C are depicted in
Figure 2, and the axioms that they satisfy are depicted in Figure 3. Here, we read
diagrams from top down.

T A L

m U A

Figure 2: Structure morphisms for an extended Frobenius algebra in C.

OV VLY A A LA Y

(ED) (E2) (E4) (E5)

YT AA LYY o

(E6) (E7) (E8) (E9) (E10) (B11 E12)

Figure 3: Axioms for an extended Frobenius algebra in C.

One useful lemma is the following, adapted from [TT06, Lemma 2.8] for the monoidal
setting.

3.3. LEMMA. If (A,m,u,Ae,$,0) is an extended Frobenius algebra in C, then
m(¢p @ida)A = m(m(d ®0) ®id,).
ProoOF. This is proved in Figure 4 with references to Figures 2 and 3. [

3.4. PROPOSITION. A morphism of extended Frobenius algebras in C must be an isomor-
phism.
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8 (E2) % (E5) %J (E1) QJ (E12) é\éj

Figure 4: Proof of Lemma 3.3.

PRrROOF. This follows from the well-known fact that a morphism of Frobenius algebras in
C must be an isomorphism. We repeat the proof here for the reader’s convenience. Take
a morphism of (extended) Frobenius algebras f : A — B in C, that is, f is a morphism
of the underlying algebras and coalgebras in C. In graphical calculus, we will denote
the (extended) Frobenius structure morphisms on A by those given in Figure 2, and the
(extended) Frobenius structure morphisms on B will be denoted according to Figure 5.
We then define a morphism g : B — A in Figure 6, and show that gf = ids and fg = idg
using graphical calculus in Figure 7.

B
mp up Ap €B B 0B A
Figure 5: Extended Frobenius structure on B. Figure 6: Defining g.
A
N (f muls.) (/ counital) (E3) (B2)
B B B N (E4)
A
B
B (f comult) (f unital) (5) (B2)
a (E4)
B

Figure 7: Proof that gf = ids and fg = idp.
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3.5. STRUCTURE RESULTS. Recall the category ExtFrobAlg(C) defined in Definition 3.2.
We put monoidal structures on this category, using two distinct monoidal products, in
the following results.

3.6. PROPOSITION. Let (C,®, 1, ¢) be a symmetric monoidal category. Then, the category
ExtFrobAlg(C) is monoidal with ® := @° and 1 := 1°.

PROOF. We first note that 1¢ = (1€, ¢y,id;, £7",idy,idy,id;) is an extended Frobenius
algebra in C.

Next, we show that the monoidal product of two extended Frobenius algebras is ex-
tended Frobenius. Namely, we verify that given extended Frobenius algebras

(A7 ma,u4, AAa €A, ¢Aa HA) and (Ba mp,upB, AB7 €B, ¢B7 93)7

then . o
(A®B7m7a7Auga¢70)
is an extended Frobenius algebra, where
m:=(ma@mpg)(ida ® cpa ®idp), A= (ids ®cap®idp) (Al ® Ap)

U= us @upg, €:=ec,®ep, ¢:=0¢AQ dp, 0:=0,Q05.

Figure 8 shows what these morphisms look like in graphical calculus, using the symbols
from Figure 2 for A and the symbols from Figure 5 for B, as in Proposition 3.4. Recall
also the axioms for a symmetric monoidal category from Figure 1.

11 1 1 AQB

1

lr:: éF Hiql )

A®B B A®B A®@B A

A B AQB B
AQB

A®B A®B

A

A 1 1 1
1
1

A B A®B A B

Figure 8: Extended Frobenius structure morphisms for A ® B.

We then have that (AQ B, m, @i, A, €) € FrobAlg(C) by [Koc04, Section 2.4]. To see that
this Frobenius algebra is extended via ¢ and 6, we verify the three required conditions in
Definition 3.2(b).

(i) It is easy to see that ¢ is an involution, since both ¢4 and ¢p are involutions.
Moreover, since both ¢4, ¢ are Frobenius morphisms, so is their monoidal product

in C.
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(i) Figure 9 gives that ¢m(f ® idags) = m(0 ® idags)-

(iii) Finally, Figure 10 gives that /(¢ ® idags)At = m(0 ® 6).

Thus, we have that (A® B, o, 9~) € ExtFrobAlg(C), as desired.

Lastly, we note that by taking 1¢ as the unit and ®° as the monoidal product in
ExtFrobAlg(C), with extended structures behaving as described above, we obtain that the
required pentagon and triangle axioms in (ExtFrobAlg(C),®C, 1¢) are all inherited from
the same axioms in (C,®F, 1¢). From this, we can conclude that (ExtFrobAlg(C),®¢, 1¢)
is a monoidal category. ]

Q Q
1 1
(s2) l \ (34) D l \
((E11) for A and B)
Q 0
1 1
s | \ (54) w : \

Figure 9: Proof that A ® B satisfies Definition 3.2(b)(ii).

Now we turn our attention to extended Frobenius algebras in additive monoidal cate-
gories. See [Wal24, Section 3.1.3] for background material on such categories.

3.7. PROPOSITION. Let (C,®,1) be an additive monoidal category. Then, the category
ExtFrobAlg(C) is monoidal with ® being the biproduct O, and 1 being the zero object 0.

PRrROOF. We first note that 0 is an extended Frobenius algebra in C, with structure mor-
phisms m, u, A, £, and 6 all being zero morphisms, and ¢ = idg. We next note that similar
to the previous proposition, the pentagon and triangle axioms in (ExtFrobAlg(C), 0, 0) will
be inherited from these same axioms on the strict monoidal category (C, O,0). Hence, to
finish the proof, it suffices to show that the biproduct of two extended Frobenius algebras
is again extended Frobenius.
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|

((E12) for A and B) ||

Rkl
MJ

Figure 10: Proof that A ® B satisfies Definition 3.2(b)(iii).

- —~=0
\i

To do S0, let (A mA,uA,AA,eA,ngA,QA) and (B mByuB7AB7€B7¢B7QB) be two ex-
tended Frobenius algebras in C. We will show that (A0B,m, i, A, £, ¢,0) is an extended
Frobenius algebra, where m, @, A, £, ¢, and 6 are defined by the following universal
property diagrams.

(ADB)® (AoB) (ADB)@(ADB
MAOTAQA ‘El‘m mpoTBRB LA®AOAA HIA LB®BOAB
ADB ADB

/ 71'3 LA
B A
1 1 AOB
| 1 /T! 1 1
*‘Va g €4 7 °B paomy ¢ ¢pomp
ADB AoB AOB
/ 4 b A m
A B A B
1
I
04 \Lﬂ!é 0B
AOB

It is well known that with the above constructions, (AoB,m, @, A, €) is a Frobenius
algebra. See [Koc04, Exercises 2.2.7 and 2.2.8] for the case where C = Vec. Thus, we only
need to verify that ¢ and 6 extend this Frobenius algebra. The three required properties
from Definition 3.2(b) can be verified by respectively considering each of the universal
property diagrams below.
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/A

oB AOB
13!

A AOB B A AOB
R R m(fa ®ida) mB(9B ®idg)
#2 =idAl / \ lqu:idB I l / \ l

A B Pa(ma(0a®ida)) ¢B(mB(9B ®idp))
A B A
1
m(pa® idflxl)(AA (ua)) \LE” mp(ép ®id‘{3)(AB(“'B))
ma(0a®04) AoB mp(05®0p)

A m
A B

Using umqueness of the completing map in each of the dlagrams it follows that (i)

(Q;)Q = 1dA|:|37 (ii) m (9®1dA|:|B) = ¢( (6®1dAE|B))7 and (iii) (¢®1dADB)(A( ) =
m(0 ®6). This completes the proof that (AOB,¢,0) is an extended Frobenius algebras
in C, which in turn gives that (ExtFrobAlg(C), 0,0) is a monoidal category. =

4. Ties to separable algebras and Hopf algebras

In this section, we study extended Frobenius algebras in (symmetric) monoidal categories
C, in the context of separable algebras and Hopf algebras in C; see Sections 4.1 and 4.5,
respectively. We also introduce the notion of an extended Hopf algebra in C, and make
connections to extended Frobenius algebras in C, in Section 4.12.

4.1. TIE TO SEPARABLE ALGEBRAS. Take C := (C,®, 1) to be a monoidal category, and
consider the terminology below. See [B18, Chapter 6] and references within for the case

when C = Vec.
4.2. DEFINITION.

(a) We say that an algebra A := (A, m,u) in C is separable if there exists a morphism
t: A— A® A such that mt = idy, and

(m®ids)(ida®t) = tm = (Ida@m)(t®ida).
(b) A Frobenius algebra A := (A, m,u, A, ¢) is separable Frobenius if mA =id,.
These structures form full subcategories as indicated below:
SepAlg(C) < Alg(C), SepFrobAlg(C) < FrobAlg(C).

4.3. PROPOSITION. If A is a separable Frobenius algebra in C, then A is extendable.

PROOF. Suppose that A := (A, m,u, A, ¢) is a separable Frobenius algebra, and take
¢ = idy and 0 := w. Then, conditions (i) and (ii) of Definition 3.2(b) clearly hold.
Condition (iii) of Definition 3.2(b) holds by the computation below:

m(¢p®ida)Au = mAu = v = muu) = m(@®H),

where the third equality follows from a unitality axiom of A. n
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4.4. EXAMPLE. The monoidal unit 1 € C is a separable Frobenius algebra, with m and
A identified as idy, and with © = ¢ = idy. The Frobenius structure is then extended with

4.5. TiE TO HOPF ALGEBRAS. Take C := (C,®, 1, |) to be a symmetric monoidal cate-

gory.

See [Rad12, Chapter 10] and references within for the case when C = Vec for the

material below.

4.6. DEFINITION. Consider the following constructions in C := (C,®, 1, ¢).

(a)

(b)

(¢)

(d)

A Hopf algebra in C is a tuple (H,m,u,A,¢e,S), where (H,m,u) in an algebra in C
and (H, A, €) is a coalgebra in C, subject to the bialgebra laws,

A, £ €Alg(C) (& m,ue Coalg(C)),
and where S : H — H (antipode) is a morphism in C satisfying the antipode axiom,
m(S®idy)A = ug = m(idg ® S)A.

If the antipode S is invertible with inverse S' : H — H in C, then we call the tuple
(H,m,u,A,¢g,5,S™") a Hopf algebra with invertible antipode.

A left integral for a Hopf algebra (H,m,u, A, &,S) is a morphism A : 1 — H which
satisfies m(idy @ A) = Ae. A right cointegral for the Hopf algebra (H,m,u,A, ¢, S)
is a morphism A : H — 1 satisfying (A @ idg)A = uX. If A and X\ further satisfy
AN =1idy, then A and A are said to be normalized. A Hopf algebra equipped with a
normalized (co)integral pair is called an integral Hopf algebra.

A morphism of integral Hopf algebras f : H — K is a morphism, which is both an
algebra and coalgebra morphism, and which satisfies fAy = Ax and A f = A\g.

We organize the above into a category, IntHopfAlg(C), whose objects are integral
Hopf algebras and whose morphisms are morphisms of integral Hopf algebras as
defined above.

See Figures A.12-A.15 in Appendix A for a graphical representation of this definition.

4.7. REMARK. If a Hopf algebra is equipped with a normalized integral and cointegral,
then the antipode is invertible; see, e.g., [CD20, Lemma 3.5].

Now we show that an integral Hopf algebra in C admits the structure of a Frobenius
algebra in C. A similar argument can also be found in [FS10, Appendix A.2].

4.8. PROPOSITION. We have that

U : IntHopfAlg(C) — FrobAlg(C)
(H,m,u, A, e, 8, S, AN — (H,m,u, A= (m®S)(idg @ AA), :=))

1s a well-defined functor, which acts as the identity on morphisms.

PRrROOF. This is established in Appendix A via graphical calculus arguments. ]
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4.9. EXAMPLE. Let G be any finite group. The group algebra kG is a finite-dimensional
Hopf algebra with A(g) = g®g, e(g) = 1, and S(g) = g~ !, for all g € G. This Hopf algebra
admits a normalized (co)integral pair given by A := Y}, . h and A(g) := dc4lx. Applying
U to this integral Hopf algebra, we obtain the Frobenius structure on kG described in
Example 2.4 and (1), where A(g) := >, o9h ® h! and (g) := A(g) = dc4lk, for all
geG.

4.10. PrROPOSITION. If H € IntHopfAlg(C) is equipped with 6 : 1 — H € C such that
m(0®0) = ue A, then the Frobenius algebra W(H) from Proposition 4.8 is extendable. In
particular, when C = Vec, the Frobenius algebra V(H) overk is extendable with ¢ = idy(m)

and 0 = £+/e(A(1k)) u.

PROOF. Suppose that the morphism 6 : 1 — H as in the statement exists. Then, taking
¢ = idy(m), and using this 0, we extend the Frobenius structure. To verify the axioms
of Definition 3.2(b), notice that conditions (i) and (ii) hold trivially. Condition (iii) is
verified in Figure 11; using notation and axioms from Appendix A. The last statement
on the case when C = Vec is clear. [

é (dif) @Flgf\lfs% (Hf) é(HQ) £ (hyl)) %}

Figure 11: Proof of Definition 3.2(b)(iii) for Proposition 4.10.

4.11. EXAMPLE. Let G be a finite group, and recall that the group algebra kG has a Hopf
algebra structure, which induces a Frobenius algebra structure, as described in Example
4.9. In this case, we have that

us(A) = wleShegh) = u(Seg L) = 1G] u(l) = |G]-ec.

The above proposition then tells us that the choice ¢ = idgg and 6 = +4/|G| - eq extends
the induced Frobenius algebra structure on kG. Note that this is the same extended
Frobenius structure as introduced in Example 2.4.

4.12. EXTENDED HOPF ALGEBRAS. Continue to let C be a symmetric monoidal category.
Here, we introduce extended Hopf algebras in C.

4.13. DEFINITION. An integral Hopf algebra (H,m,u, A, e, S, S, A, \) is called extended
if it 1is equipped with two morphisms ¢ : H — H and 6 : 1 — H in C satisfying the following
arioms:

(i) ¢ is a morphism of integral Hopf algebras such that ¢* = idp;
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(1) ¢m(0 ®idy) = m(0 ®idp);
(117) m(p ®S)AN =m(0®0).
A morphism of extended Hopf algebras f : (H, $,0) — (H',¢',0') is a morphism of integral
Hopf algebras in C which also satisfies f¢ = ¢'f and fO0 =0'.

We use the above to define a category ExtHopfAlg(C). Also, consider the forgetful
functor,

U : ExtHopfAlg(C) — IntHopfAlg(C)
(H7 m7 u’ é? §7 S? 8_1’ A7 A’ ¢7 9) = (H7 m7 u7 é? §’ S’ S_17 A7 >\)'

We have the following result.

4.14. PROPOSITION. Take H € ExtHopfAlg(C). Then, the Frobenius algebra WU (H) in C
from Proposition 4.8 is extendable via the morphisms ¢ and 6.

ProOF. We will verify that ¢ and 6 extend the Frobenius algebra WU (H) by checking
the axioms of Definition 3.2(b). Since

¢ : (H7 m7u7é7§7 S? Sil?*/\“? )\) - (H7m7 u?é?é? S? 5717/\7 A)

is a morphism of integral Hopf algebras, the functoriality of ¥ and U gives that ¢ :
(H,m,u,A,e) = (H,m,u, A, ¢) is a Frobenius algebra morphism. Moreover, we have that

> = idy by Definition 4.13(i). So, condition (i) of Definition 3.2(b) holds. Condition (ii)
of Definition 3.2(b) also holds by Definition 4.13(ii) since the multiplication morphism is
the same for both the Hopf and Frobenius structures on H. Towards condition (iii) of
Definition 3.2(b), we compute:

m(¢®idg)Au = m(e® S)(Midy)(u@A)A = m(0®0),

where the first equality is the definition of A and a level exchange, and the second equality
is by the unitality of m and u and Definition 4.13(iii). "

The consequence below is straight-forward.

4.15. COROLLARY. There is a functor ¥ : ExtHopfAlg(C) — ExtFrobAlg(C) which sends
an extended Hopf algebra (H,m,u, A, g,S,S™ 1 A, X\, ¢,0) to the extended Frobenius algebra
(H,m,u, A, e, ¢,0), with A and € defined in Proposition 4.8, and which acts as the identity
on morphisms.

4.16. REMARK. While the above result tells us that every extended Hopf algebra gives
rise to an extended Frobenius algebra via the same ¢ and 6, the converse is not true.
In particular, given H € IntHopfAlg(C), we get that W(H) is in FrobAlg(C). If V(H)
is extendable via ¢y gy and Oy(x), it is not necessarily true that (H, pw(my, Ow(m)) is an
extended Hopf algebra in C.
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For instance, consider the Frobenius algebra structure on kCy, induced by the Hopf
structure, as described in Example 4.9. This Frobenius structure can be extended by
taking ¢(g) = —g (where g is a generator of Cy) and 6 = 0, as in Proposition 2.12(b).
However, this choice of ¢ and 6 does not extend the integral Hopf structure on kCs, since
¢ is not comultiplicative with respect to A.

5. Extended Frobenius monoidal functors

In this section, we introduce the construction of an extended Frobenius monoidal functor,
which preserves extended Frobenius algebras [Proposition 5.11]. Background material is
covered in Section 5.1, and the main construction is covered in Section 5.7. Examples are
presented in Section 5.16.

5.1. BACKGROUND ON MONOIDAL FUNCTORS. We can move between monoidal cate-

gories in several ways. Consider the terminology below, along with the references, [Bi&
Chapter 6], [DP08], [TV17, Sections 1.4 and 7.5], [Wal24, Section 3.2], for details about
the material in this part.

5.2. DEFINITION. Take a functor F : C — C' between monoidal categories (C,®, 1) and
C",&,1).

(a) We say that F is a monoidal functor if it is equipped with a natural transformation
F® .= {F)(?)Y F(X)QF(Y) - F(X®Y)}xvyee, and a morphism F© : 1" — F(1)
in C', that satisfy associativity and unitality constraints.

(b) A monoidal functor (F, F® F©)) is said to be strong if F® is a natural isomor-
phism and F©) is an isomorphism. In this case, denote F)((_ﬁ) = (F)(?)Y)*1 and
FEO = (FO)=1,

(c) We say that F' is a comonoidal functor if it is equipped with a natural transformation

Foy = {Fé)y F(X®Y) - F(X)® F(Y)}xyee, and a morphism Fyy : F(1) — 1’

in C', that satisfy coassociativity and counitality constraints.

(d) We say that F is a Frobenius monoidal functor if it is part of a tuple
(FJ F(2)7 F(O)a F(2)7 F(O))7

where (F, F®, FO) is a monoidal functor, and (F, Flay, Floy) is a comonoidal func-
tor, subject to the Frobenius conditions, for all X,Y,Z € C:

2 . . Y,Z XQY,Z 2
(F>(()Y ® 1dF(Z)) (1dF(X) ® F(z) ) - F(2)® © F)((,)Y®z ;

. 2 XY o - X,Y®Z 2
(ldF(X) & Fi(/%) (F(z) & 1dF(Z)) = Fy © F)(céY,Z'
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(e) A Frobenius monoidal functor (F, F® F©) Flay, Floy) is separable if for each X, Y €
C:
F)((2,)Y o F()z()’y = idF(X@Y)'
Moreover, consider the transformations of (co)monoidal functors below.

5.3. DEFINITION. Take monoidal categories C :== (C,®, 1) and C' := (C', &', 1").

(a) A monoidal natural transformation from a monoidal functor (F, F® F©).C — ('
to a monoidal functor (G,G? G©)) :C — C' is a natural transformation ¢ : F = G
such that

dxay 0 Fy = Gy o (ox & ¢y) for all X,Y €C, $10FO =GO,

(b) A comonoidal natural transformation from a comonoidal functor (F,Fy, Fp) :
C — C' to a comonoidal functor (G, G2y, G () : C — C' is a natural transformation

¢ : F = G such that

(0x & ¢v) o Fiy)' = Gy o dxgy for all X,Y eC, Foy) =Gy 0 1.

(c) A Frobenius monoidal natural transformation is a natural transformation
o:F=G
between Frobenius monoidal functors
(F,F®,FO Fo), Fq),  (G,G?,GV,Gw),G)

from C to C' that is monoidal for the underlying monoidal functor structure and
comonoidal for the underlying comonoidal functor structure.

Next, we see in the result below that the various types of functors in Definition 5.2
preserve the corresponding algebraic structures introduced in Section 3.1.2 and Defini-
tion 4.2.

5.4. PROPOSITION. [Wal24, Proposition 4.3] [DP0S, Corollary 5] [B1S, Lemma 6.10]
Take monoidal categories C and C'.

(a) A monoidal functor (F,F® FO) . C — C" yields Alg(F) : Alg(C) — Alg(C"), a
functor where Alg(F)(A,ma,ua) is defined as

(F(A), mpeay == F(ma) FEL. upay = Fus) FO).

(b) A comonoidal functor (F, Fiay, Fo)) : C — C' yields a functor Coalg(F') : Coalg(C) —
Coalg(C’), where Coalg(F)(A, Aa,ca) is defined as

(F(A), Apwy = Fy" F(A), epay = Fo)Flea)).
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(¢) Moreover, a Frobenius monoidal functor (F,F® FO Fy Fg):C — C' yields a
functor FrobAlg(F’) : FrobAlg(C) — FrobAlg(C’) by using the formulas from parts (a)
and (b).

(d) A separable Frobenius monoidal functor (F), F(2),F(0),F(2),F(O)) : C — C' yields a
functor SepFrobAlg(C) — SepFrobAlg(C’) by using the formulas from parts (a) and
(b).

One nice feature of the functors here is that they are closed under composition.

5.5. PROPOSITION. [Wal2{, Exercise 3.4] [DPO0S, Proposition 4] [B18, Exercises 3.10
and 6.4] Take monoidal categories C, C', and C".

(a) Let (F,FA FO):C —C" and (G,G?,GO) :C" — C" be monoidal functors. Then,
the composition GF : C — C" is monoidal, with

(GP)Qy = GFL) 0GPy pyy VX, Y €C,  (GF)O := G(F®) 0 GO,

(b) Let (F,Fay, Flo)) : C = C' and (G,G(2),Gy) : C' — C" be comonoidal functors.
Then, the composition GF : C — C" is comonoidal, with

(GF)y = Gg()X)’F(Y) oG(FyY) VXY eC, (GF) ) := Gy o G(Fy).

(c) Let (F,F® FO Fy . Fg) : C > C" and (G,G?,GO, G, G) : C' — C" be
Frobenius monoidal functors. Then, the composition GF : C — C" is Frobenius
monoidal by using the formulas from parts (a) and (b).

(d) The composition of two separable Frobenius monoidal functors is also separable
Frobenius monoidal by using the formulas from parts (a) and (b).

5.6. REMARK. It is now straightforward to build the 2-category, MON (resp., COMON,
FrROBMON, SEPFROBMON), via the data below.

(a) 0-cells are monoidal categories.

(b) 1-cells are (resp., co-, Frobenius, separable Frobenius) monoidal functors.

(c) 2-cells are (resp., co-, Frobenius, Frobenius) monoidal natural transformations.
)

(d) The identity 1-cell/2-cell is the identity (resp., co-, Frobenius, Frobenius) monoidal
functor /natural transformation.

(e) Horizontal composition of 1-cells is given in Proposition 5.5.

(f) Vertical /horizontal composition of 2-cells is given by the standard vertical/ horizon-
tal composition of monoidal and comonoidal natural transformations.

See [Wal24, Section 4.10.3] and references within, and also see [JY21, Exercise 2.7.11].
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5.7. MAIN CONSTRUCTION AND RESULTS. Here, we extend the results in Propositions
5.4 and 5.5 to the category ExtFrobAlg(C). In particular, we will define a type of functor

that preserves extended Frobenius algebras, and then show that this type of functor is
closed under composition.

5.8. DEFINITION. A Frobenius monoidal functor (F), F(Q),F(O),F(Q),F(O)) from (C,®, 1)
to (C',&,1") is called an extended Frobenius monoidal functor (or is extendable) if there

exist a natural transformation F : F = F and a morphism F : 1/ — F(1) € C' such that
the conditions below hold.

(a) F is a Frobenius monoidal natural transformation.

(b) F& o (F @ idpg)) o Fyl o FO = F) o (FQ F).

(¢) The following are true for each X,Y € C:
(i) Fx o Fx = idp(x);
(i) Figx o Fi’x o (F & idpex) = Fix o (F @ idrx):
(iii) FEy o (Fx & idru)) o Fy" = Figyy © (Fxgy @ idpg)) o FuP"
Part (b) is represented by the following commutative diagram.

1,1
F0) Fa)

i F(1) F(1)® F(1)
|B®idpa,
e F()® F(1)
e 172
F(1) @ F(1) — F(1)

Parts (c)(ii,iii) are represented by the left and right diagrams below, respectively.

Ve F(X) T p e ) FXeY) P F(XeY) @ FQ)
ﬁ®'idF<x>l Foy” lﬁxw@'idml)
F(1)® F(X) ), F(X)® F(Y) FIX®Y)® F(1)
Fﬁ(i . ﬁx@'idF(Y)l @ lF)((ZéY,l

FOA®X) — 7  , pA®X) FIX)® F(Y) — > F(X®Y)

Extended Frobenius monoidal functors are plentiful. Specifically, we have the following
result; compare to Proposition 4.3.

5.9. PROPOSITION. Separable Frobenius monoidal functors admit the structure of ex-
tended Frobenius monoidal functors.

PROOF. Let (F, F®), F(O),F(g), Flo)) be a separable Frobenius monoidal functor. Then,

take vﬁ’ = Idp and F' = FO. It is then straightforward to verify that these choices of a
and F' extend the Frobenius monoidal structure on F'. [
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5.10. EXAMPLE. Strong monoidal functors are separable with Fy) := F’ (=2) and Flo) ==
F(9 5o they are also extended Frobenius monoidal functors.

The next result is the desired extension of Proposition 5.4. See Appendix B.1 for the
proof (in the ArXiv preprint version of this article); namely, it involves lengthy commu-
tative diagram arguments to verify that the formulas in the statement below yield an
extended Frobenius algebra.

5.11. PROPOSITION. An extended Frobenius monoidal functor
(F,F® FO Fo Fo, F,F):C—C'

induces a functor ExtFrobAlg(C) — ExtFrobAlg(C’). For A € ExtFrobAlg(C), we get mp(a),
upcay, Areay, €pay as in Proposition 5.4(a,b), with ¢pay = F(pa)Fa and Opay =
F(0a) F.

Since separable Frobenius monoidal functors are extended by Propositions 5.9, we
obtain the following corollary of Proposition 5.11.

5.12. COROLLARY. If (F, F® FO) Fo. Fo):C— C'is a separable Frobenius monoidal
functor, then it induces a functor ExtFrobAlg(C) — ExtFrobAlg(C’).

Now that we have defined extended Frobenius monoidal functors, the natural next
thing to do is to arrange them into a 2-category. To do this, we need the following result,
which extends Proposition 5.5 to extended Frobenius monoidal functors. The proof of
this theorem can be found in Appendix B.2 (in the ArXiv preprint version of this article).

5.13. THEOREM. The composition of two extended Frobenius monoidal functors is again
an extended Frobenius monoidal functor.

To prove this, let (GF)®, (GF)©, (GF)@), (GF)() be as in Proposition 5.5(a,b).
Proposition 5.5(c) then implies that GF is a Frobenius monoidal functor. We also define
GF :GF = GF by GFx := G(Fx) o Gpx) for all X € C, and define GF := G(F) oG :
1" - GF(1).

5.14. REMARK. The collection of monoidal categories, extended Frobenius monoidal
functors, and Frobenius natural transformations compatible with the extended Frobenius
monoidal structures forms a 2-category, EXTFROBMON. Compare to Remark 5.6.

5.15. REMARK. One can also obtain Proposition 5.11 as a consequence of Theorem 5.13.
Take the monoidal category 1 consisting of a single object 1 and morphism id;. Then,
a Frobenius monoidal functor (E, E®, B Ey Eq) : T — C is extendable if and only
if £(1) € ExtFrobAlg(C). So, when A € ExtFrobAlg(C), the functor A% : T — C with
A#(1) := A is extended Frobenius monoidal. Now if (F, F®, FO Fq Fg, F, f) :C —
C' is extended Frobenius monoidal, Theorem 5.13 implies that the functor FA# : T — C'
is also extended Frobenius monoidal. Hence, F(A) is an extended Frobenius algebra in
C' as in the proof of Proposition 5.11. Compare to [DP08, Corollary 5].
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5.16. EXAMPLES. Following up with Propositions 3.6 and 3.7, consider the examples of
extended Frobenius monoidal functors below.

5.17. ExXAMPLE. Let (C,®, 1,¢) be a symmetric monoidal category, with an extended
Frobenius algebra B € ExtFrobAlg(C). Then, the functor — ® B : C — C is extended
Frobenius with

(—® B)S??Y = (ldxgy ®mp)(idx ®cpy ®idp), (—® B)é’)y = (ldx ® cy,p ®idp)(idxgy ® Ap),

(—®B)® :=up, (~®B)g i=en, (—®B)y:=idx®¢p, (-®DB):=10p,
for any X,Y € C. We note further that when B is not a separable Frobenius algebra, the
Frobenius functor defined above is not separable.

5.18. EXAMPLE. Let (C,®, 1) be an additive monoidal category, with an extended Frobe-
nius algebra B € ExtFrobAlg(C). Then, the functor —O0B : C — C is extended Frobenius
with

(—~8B)$y = TxgyO(ms o Tees), (—DB)é’)Y = 1xgy O(tses © AB),

(—oB)® :=idy0up, (—0OB)q) :=idi0ep, (—0OB)y :i=7x0(¢pomp), (—0OB):=id;i0bg,
for any X,Y € C. Again, when B is not a separable Frobenius algebra, the Frobenius
functor defined above is not separable.

A. Graphical proof that integral Hopf implies Frobenius

In this section, we give a graphical proof of Proposition 4.8, showing that an integral Hopf
algebra in a symmetric monoidal category C is a Frobenius algebra in C. Recall axioms
(S1) - (S5) from Figure 1 in Section 3.1 above.

A.1. DIAGRAMS FOR INTEGRAL HOPF ALGEBRAS. Recall from Definition 4.6 that a
Hopf algebra with invertible antipode in C is an object H € C equipped with morphisms
m:- H®H > H,u:1—>H A:H—>HQH,e: H—>1,5: H — H with inverse
S—1: H — H; this is depicted in Figure A.12. These morphisms must satisfy the axioms
in Figure A.13. We also have that Hopf algebras with invertible antipode in C satisfy the
identities in Figure A.14. Moreover, an integral and a cointegral of a Hopf algebra H with
invertible antipode in C are given by morphisms A : 1 — H and A : H — 1, respectively,
satisfying the axioms depicted in Figure A.15. Now consider the following preliminary
result.

A.2. LEMMA. We have the following identities.
(b) ASA =id;y.

PROOF. Part (a) is proved in Figure A.16, and part (b) is proved in Figure A.17. Refer-
ences to Figures 1, A.13, A.14, and A.15 are made throughout. [
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YOlA

m U A £

Figure A.12: Structure morphisms for a Hopf algebra in C.

VY A A TA
-1 Y AL
SRR 8 1%

Figure A.13: Axioms for a Hopf algebra with invertible antipode in C.

P el AR e

Figure A.14: Identities for a Hopf algebra in C.

TV AL

A A (13)

Figure A.15: Normalized (co)integral for a Hopf algebra in C.

A.3. PROOF OF PROPOSITION 4.8. We aim to show that

U : IntHopfAlg(C) — FrobAlg(C)
(H,m,u, A, e, 8, S AN — (H,m,u, A= (m®S)(idg ®AA), e:= )
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is a well-defined functor, which acts as the identity on morphisms.

For the assignment of objects under the functor ¥, the coproduct A and counit € are
depicted in Figure A.18. The counitality axioms are then established in Figure A.19; the
Frobenius laws are established in Figure A.20; and the coassociativity axiom is established
in Figure A.21. References to Figures A.13-A.17 are made throughout. Next, for the
assignment of morphisms under ¥, take a morphism of integral Hopf algebras

f : (vaHquaéH7§H7S]i—}17AH7>\H) - (K7mKaquéKagKasli;lyAK7)\K)~
We will verify that W(f) := f is a morphism of Frobenius algebras from
(H,mH,UH,AH,EH) - (KamK7uKaAK7€K)~

We have multiplicativity and unitality for free, since the Hopf multiplications and units
on H and K are the same as the Frobenius multiplications and units on H and K.
Next, we get Frobenius counitality immediately from the fact that f is compatible with
the cointegrals of H and K; namely, the Frobenius counits of H and K are given by
eg = Ay and €x = Ag. Finally, we have that Frobenius comultiplicativity holds via the
commutative diagram below.

H K
w‘AH idKV
HoH —'® koK
A J{idH®éH iidK®AK Ax

/H@H@H m KKK
m S m N
H®SH rof K®SK

H®H KK

Here, the left and right regions commute by definition of Ay and Ag. The top region
commutes because f is compatible with the integrals of H and K. The bottom region
commutes because f is an algebra map and is compatible with the antipodes of H and
K. Finally, the middle region commutes because f is a coalgebra map between the Hopf
algebras H and K.
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