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ON EXTENDED FROBENIUS STRUCTURES

A. CZENKY, J. KESTEN, A. QUINONEZ, AND C. WALTON

Abstract. A classical result in quantum topology is that oriented 2-dimensional topo-
logical quantum field theories (2-TQFTs) are fully classified by commutative Frobenius
algebras. In 2006, Turaev and Turner introduced additional structure on Frobenius al-
gebras, forming what are called extended Frobenius algebras, to classify 2-TQFTs in
the unoriented case. This work provides a systematic study of extended Frobenius al-
gebras in various settings: over a field, in a monoidal category, and in the framework of
monoidal functors. Numerous examples, classification results, and general constructions
of extended Frobenius algebras are established.

1. Introduction

The goal of this work is to study extended Frobenius algebras in various settings. Before
providing further context, note that linear structures here are over an algebraically closed
field k of characteristic zero, unless stated otherwise. Categories C are assumed to be
locally small, and will have further structure as specified below. We will also read graphical
diagrams from top to bottom.

We are motivated by the vast program on producing topological quantum field theories
(TQFTs), which are categorical constructions that yield topological invariants. Loosely
speaking, a TQFT is a (higher) functor from a (higher) category of topological data to
a (higher) target category with extra structure. In the 2-dimensional case, 2-TQFTs are
symmetric monoidal functors from a symmetric monoidal category of 1-manifolds and
2-cobordisms to a choice of a symmetric monoidal category C. Often, C is taken to be the
symmetric monoidal category Vec of k-vector spaces. A classical result is that a 2-TQFT
with values in C is classified by where it sends the circle, which in the oriented setting, is
a commutative Frobenius algebra in C; see, e.g., [Koc04]. Turaev and Turner expanded
this correspondence in the unoriented setting, by tacking on extra structure to Frobenius
algebras to form what are called extended Frobenius algebras [TT06, Section 2].
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Turaev-Turner’s 2-TQFT Result p�q: Isoclasses of unoriented 2-dimensional TQFTs
in Vec are in bijection with isomorphism classes of commutative extended Frobenius al-
gebras over k.

Since then, extended Frobenius algebras have appeared in many works, such as in an
adaptation of p�q to compute virtual link homologies [Tub14], for an analogue of p�q for
homotopy quantum field theories [Tag12], in a modification of p�q to examine linearized
TQFTs [Cze24], in a categorical expansion of p�q [Oca24], and in a study of topological
invariants of ribbon graphs [CL24].

We expect that extended Frobenius algebras will continue to play a crucial role in the
TQFT program. Thus, we focus on the algebraic side of the program and study extended
Frobenius algebras in detail– producing numerous examples, classification results, and
general constructions.

We begin by taking C � Vec, hence working over the field k. Consider the terminology
below.

1.1. Definition.

(a) A Frobenius algebra over k is a tuple pA,m, u,∆, εq, where pA,m, uq is an associa-
tive unital k-algebra, and pA,∆, εq is a coassociative counital k-coalgebra, satisfying
the Frobenius law: pa b 1Aq∆pbq � ∆pabq � ∆paqp1A b bq, for all a, b P A. A mor-
phism of Frobenius algebras over k is a morphism of the underlying k-algebras and
of k-coalgebras.

(b) [TT06, Definition 2.5] A Frobenius algebra pA,m, u,∆, εq is an extended Frobenius
algebra over k if it is equipped with a morphism ϕ : A Ñ A and an element θ P A
such that:

(i) ϕ : AÑ A is an involution of Frobenius algebras,

(ii) θ P A satisfies ϕpθaq � θa, for all a P A,

(iii) mpϕb idAq∆p1Aq � θ2.

A morphism f : pA, ϕA, θAq Ñ pB, ϕB, θBq of extended Frobenius algebras over k
is a morphism f : A Ñ B of k-Frobenius algebras such that f ϕA � ϕB f and
fpθAq � θB.

(c) We refer to pϕ, θq in part (b) as the extended structure of the underlying Frobenius
algebra A, and say that A is extendable when ϕ and θ exist. We also call an extended
structure pϕ, θq on A ϕ-trivial when ϕ � idA, and call it θ-trivial when θ � 0.

Note that we do not assume that algebras are commutative in our work. Our first main
result is the classification of extended structures for well-known examples of Frobenius
algebras over k.
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1.2. Theorem. [Propositions 2.9–2.11, 2.12–2.14, 2.16–2.17] Take n ¥ 2, and ωn P k an
n-th root of unity. The extended structures for the Frobenius algebras below are classified,
recapped as follows.

(a) k : all extensions are ϕ-trivial.

(b) C over R: all extensions are ϕ-trivial or θ-trivial.

(c) krxs{pxnq: all extensions are ϕ trivial when n is odd, and is not extendable when n
is even.

(d) kC2: all extensions are ϕ-trivial or θ-trivial.

(e) kC3: all extensions are ϕ-trivial or ϕ maps a generator g of C3 to ω3g
2.

(f) kC4: all extensions are ϕ-trivial, or θ-trivial, or ϕ maps a generator g of C4 to ω4g
3.

(g) kpC2 � C2q: here, ϕ maps g to ω2g
1, where g, g1 are generators of C2 � C2.

(h) T2p�1q :� kxg, xy{pg2 � 1, x2, gx� xgq : all extensions are ϕ-trivial.

Next, we move to the monoidal setting. See Section 3.1 for background material
on monoidal categories C :� pC,b,1q and on algebraic structures within C, especially
(extended) Frobenius algebras in C. This specializes to the setting above by working in
pVec,bk, kq. Let ExtFrobAlgpCq denote the category of extended Frobenius algebras in C
[Definition 3.2]. We first establish monoidal structures on ExtFrobAlgpCq. Namely, if C is
also symmetric, then ExtFrobAlgpCq is monoidal withb � bC and 1 � 1

C [Proposition 3.6].
Moreover, if C is additive monoidal, then ExtFrobAlgpCq is monoidal with b being the
biproduct of C and 1 being the zero object of C [Proposition 3.7].

Now we focus on separability in a monoidal category C. A Frobenius algebra in
C is separable if its comultiplication map is a right inverse of its multiplication map
[Definition 4.2]. Separability (or specialness) is a widely used condition in quantum theory
(see, e.g., [M0̈3, RFFS07, HV19]). In particular, it is used to construct state sum 2-TQFTs
[NR15]. This brings us to the result below.

1.3. Proposition. [Proposition 4.3] A separable Frobenius algebra in a monoidal cate-
gory is always extendable.

Next, we turn our attention to Hopf algebras, which also play a role in quantum theory
and TQFTs (see, e.g., [KL01, BBG21, CCC22]). It is well-known that finite-dimensional
Hopf algebras over k (or more generally, Hopf algebras over k with a certain integral)
admit a Frobenius structure. A lesser known result is that in a symmetric monoidal
category C, integral Hopf algebras in C [Definition 4.6] are Frobenius [Proposition 4.8]. A
graphical proof of this result is in Appendix A, which may be of independent interest to
the reader. Building on this, we introduce extended Hopf algebras in symmetric monoidal
categories [Definition 4.13], and obtain the result below.
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1.4. Proposition. [Proposition 4.14] If an integral Hopf algebra in a symmetric monoidal
category is extendable, then so is its corresponding Frobenius structure (via Proposi-
tion 4.8).

Finally, we examine functors that preserve extended Frobenius algebras in monoidal
categories. To start, take monoidal categories C and C1, and note that a Frobenius
monoidal functor C Ñ C 1 [Definition 5.2] sends Frobenius algebras in C to those in C 1.
It is also known that the separability condition is preserved when such a functor is sep-
arable [Proposition 5.4], and that such functors can be used to form higher categorical
structures [Remark 5.6]. See also [DP08] and [B1̈8, Chapter 6] for more details. Our
last set of results extends the theory of Frobenius monoidal functors by introducing the
notion of an extended Frobenius monoidal functor [Definition 5.8]. We establish that this
construction satisfies many desirable conditions as discussed below.

1.5. Theorem. [Propositions 5.9, 5.11, Theorem 5.13, Remark 5.14] The following state-
ments hold.

(a) A separable Frobenius monoidal functor is extended Frobenius monoidal.

(b) An extended Frobenius monoidal functor preserves extended Frobenius algebras.

(c) The composition of two extended Frobenius monoidal functors is extended Frobenius
monoidal.

(d) The collections of monoidal categories and extended Frobenius monoidal functors
between them forms a (2-)category (with 2-cells being certain natural transforma-
tions).

Parts (b,c) require intricate arguments (deferred to an appendix only appearing in
the ArXiv preprint of this work). Various separable Frobenius monoidal functors appear
in the literature; see, e.g., [Szl05, MS10, Mor12, BT15, HLRC23, FHL23, Yad24]. So,
parts (a,b) above imply that each of these constructions produce extended Frobenius
algebras in monoidal categories. There are also extended Frobenius monoidal functors
that are not necessarily separable [Examples 5.17, 5.18].

Organization of the article. In Section 2, we study extended Frobenius algebras over
a field, proving Theorem 1.2. In Section 3, we focus on extended Frobenius algebras in a
monoidal category C, and introduce graphical calculus diagrams for such structures. We
also establish monoidal structures on the category of extended Frobenius algebras in C
in Section 3. In Section 4, we make connections to separable algebras in monoidal cate-
gories, and verify Proposition 1.3. We also strengthen ties to Hopf algebras in monoidal
categories in Section 4, obtaining Proposition 1.4. The result that integral Hopf algebras
are Frobenius is verified in Appendix A via graphical calculus arguments. In Section 5,
we introduce extended Frobenius monoidal functors, and establish Theorem 1.5. Portions
of the proof of Theorem 1.5 involve lengthy commutative diagram calculations; these are
included in Appendix B, appearing only in the ArXiv preprint version of this work.
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2. Extended Frobenius algebras over a field

In this section, we study extended Frobenius algebras over a field k as introduced in
Definition 1.1. We provide many examples of, and preliminary results for, such structures
in Section 2.1. Then, in Section 2.8, we establish Theorem 1.2 on the classification of
extended structures for several Frobenius algebras over k.

The roman numerals (i), (ii), (iii) here will refer to the conditions in Definition 1.1(b).

2.1. Preliminary results and examples. We begin with some useful preliminary
results on extended Frobenius algebras A over k. First, the Frobenius law from Defini-
tion 1.1(a) implies that

∆paq � ap1Aq1 b p1Aq2, for ∆p1Aq :� p1Aq1 b p1Aq2, (1)

for a P A. So, ∆p1Aq determines the Frobenius structure of A.

2.2. Lemma. If A is a Frobenius algebra that is a domain, then an extended structure of
A (if it exists) must be either ϕ-trivial or θ-trivial.

Proof. Suppose that an extended structure pA, ϕ, θq exists. Then, θϕpaq � ϕpθqϕpaq
� ϕpθaq � θa, for all a P A by condition (i). Hence, θpϕpaq� aq � 0 for all a P A, and the
result follows from A being a domain.

2.3. Lemma. Let A be a Frobenius algebra over k, and let pA, ϕ, θq and pA, ϕ1, θ1q be two
extended structures of A. If θ P k1A and θ � θ1, then an extended Frobenius algebra
morphism from pA, ϕ, θq to pA, ϕ1, θ1q does not exist.
Proof. Suppose by way of contrapositive that θ � λ1A for some λ P k and there is a
morphism f : pA, ϕ, θq Ñ pA, ϕ1, θ1q of extended Frobenius algebras. Since f is unital and
preserves the extended structure, θ � λ1A � λfp1Aq � fpλ1Aq � fpθq � θ1, as desired.

We will see in Proposition 2.12 that Lemma 2.3 fails when θ R k1A. We now include
some examples of extended structures for well-known Frobenius algebras.

2.4. Example. Let G be a finite group. Its group algebra kG has a Frobenius algebra
structure determined by ∆peGq �

°
hPG hb h�1. Then,

ϕ � idkG, θ � �
a
|G| � eG

yields extended structures of kG. Now, conditions (i) and (ii) are trivially satisfied.
Condition (iii) holds as mpϕb idkGq∆peGq � m p°hPG hb h�1q � |G| � eG � θ2 .
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2.5. Example. Let Cn denote the cyclic group of order n ¥ 2, and let g denote a
generator of Cn. Consider the Frobenius structure on kCn as defined in Example 2.4.
Then

ϕpgq � ωng
�1, θ � � 1?

n

°n�1
j�0 ω

j
ng

�2j

is an extended structure of kCn for any n-th root of unity ωn P k. It is a quick check
that condition (i) holds. Towards condition (ii), let a :� °n�1

i�0 aig
i be an element in kCn.

Then,

ϕpaθq � � 1?
n

°n�1
i,j�0 aiω

j
nϕpgqi�2j � � 1?

n

°n�1
i,j�0 aiω

i�j
n g�i�2j

� � 1?
n

°n�1
i,k�0 aiω

k
ng

i�2k � aθ.

For condition (iii), we compute:

mpϕb idkGq∆peCnq � mpϕb idkCnq
�°n�1

j�0 g
j b g�j

	
� °n�1

j�0 ω
j
ng

�2j

� 1
n

°n�1
i�0

°n�1
k�0 ω

k
ng

�2k � 1
n

°n�1
i,j�0 ω

i�j
n g�2pi�jq

� 1
n

�°n�1
j�0 ω

j
ng

�2j
	2

� θ2.

2.6. Example. Let ω :� ωn be a primitive n-th root of unity, for n ¥ 2. Consider the
Taft algebra,

Tnpωq :� kxg, xy{pgn � 1, xn, gx� ωxgq,
with Frobenius structure determined by

∆p1Tnpωqq �
°n�1

j�0

��ωjgj�1 b g�pj�1qx� gjxb g�j
�
.

Then, this Frobenius structure on Tnpωq can be extended via

ϕ � idTnpωq, θ PÀn�1
j�0,k�1 kgjxk.

To show this, we compute: mpϕb idTnpωqq∆p1q � 0 � θ2, so condition (iii) holds. Condi-
tions (i) and (ii) are trivially satisfied.

2.7. Example. Let Matnpkq be the algebra of n�n matrices over k, with basis tEi,juni,j�1

of elementary matrices. Consider the Frobenius structure determined by ∆pEi,jq �°n
ℓ�1Ei,ℓ b Eℓ,j, for all 1 ¤ i, j ¤ n. Then,

ϕ � idMatnpkq, θ � �?n � In
give extended structures of Matnpkq. Indeed,

mpϕb idMatnpkqq∆pInq �
°n

i,ℓ�1 Ei,ℓEℓ,i � n � In � θ2,

so condition (iii) holds. Moreover, conditions (i) and (ii) are trivially satisfied.
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2.8. Classification results. Now we proceed to establish Theorem 1.2, starting with
the results for the Frobenius algebras: k over k, C over R, and the nilpotent algebra
krxs{pxnq over k.
2.9. Proposition. The only extended structures of the Frobenius algebra k where ∆k :
k �Ñ k b k are ϕ-trivial, with θ � �1k. Moreover, these extended Frobenius algebra
structures are non-isomorphic.

Proof. Suppose ϕ and θ give an extended structure of k. Since ϕ : kÑ k is a morphism
of algebras, the only possible choice is ϕ � idk, which satisfies conditions (i) and (ii)
trivially. Condition (iii) implies that θ � �1k. Lastly, the structures are non-isomorphic
by Lemma 2.3.

2.10. Proposition. Take the Frobenius algebra C over R with ∆p1q � 1 b 1 � i b i.
Then,

(a) ϕ � idC and θ � �?2, and

(b) ϕpzq � z for all z P C, and θ � 0,

are all of the extended structures of C, and these extended Frobenius algebras are non-
isomorphic.

Proof. By Lemma 2.2, an extended structure of C should be ϕ-trivial or θ-trivial. If
ϕ � idC, then θ2 � mpϕb idCq∆p1q � mp1b1� ib iq � 2, and so θ � �?2. On the other
hand, if θ � 0, then 0 � mpϕb idCq∆p1q � 1�ϕpiqi. Hence, ϕpiq � �i and it follows that
ϕ must be complex conjugation. Now condition (iii) holds, and it is a quick check that
conditions (i) and (ii) are satisfied for these choices. Lastly, it follows from Lemma 2.3
that these structures are all non-isomorphic.

2.11. Proposition. Consider the algebra krxs{pxnq, for n ¥ 2, with Frobenius structure
determined by ∆p1q � °n�1

i�0 xi b xn�i�1. Then, the following statements hold.

(a) For n even, krxs{pxnq is not extendable.
(b) For n odd, all extended structures of krxs{pxnq are ϕ-trivial, with

θ � �?nx
n�1
2 �°n�1

j�n�1
2

θjx
j

for some θn�1
2
, . . . , θn�1 P k.

Proof. Suppose that ϕ and θ give an extended structure of krxs{pxnq. Then, a routine
calculation with ϕ being multiplicative and ϕ2 � id (from condition (i)) implies that
ϕpxq � �x. So, in the rest of the proof, we look at the cases ϕ � id and ϕpxq � �x, and
conclude the latter is never possible, while the former is only possible when n is odd.
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Suppose first that ϕ � id. Then, conditions (i) and (ii) are satisfied trivially. Let
θ0, . . . , θn�1 P k such that θ � °n�1

i�0 θix
i. Then, condition (iii) implies that

nxn�1 � °n�1
i�0 θ2i x

2i �°i�j θiθix
i�j. (2)

From the coefficient of 1, it follows that θ0 � 0. We can argue by induction that θi � 0
for all 0 ¤ i ¤ n�1

2
� 1 if n is odd, and for all 0 ¤ i ¤ n

2
� 1 if n is even. It follows

that if n is even, then the coefficient of xn�1 in (2) leads to the contradiction: n �
2
°n

2
�1

i�0 θiθn�1�i � 0. Thus, ϕ � id is not possible when n is even. On the other hand,

if n is odd, then the coefficient of xn�1 in (2) yields n � pθn�1
2
q2 � 2

°n�1
2
�1

i�0 θiθn�1�i,

which implies that θn�1
2
� �?n �1k. So, ϕ � id and θ � �?nx

n�1
2 �°n�1

j�n�1
2

θjx
j precisely

satisfy conditions (i), (ii), and (iii) yielding an extended structure on the Frobenius algebra
krxs{pxnq when n is odd.

It remains to look at the case ϕpxq � �x. It follows from ϕ being a morphism of
coalgebras that this is not possible when n is even, since we get the following contradiction:

°n�1
i�0 xi b xn�i�1 � ∆pϕp1qq � pϕb ϕq∆p1q � �°n�1

i�0 xi b xn�i�1.

When n is odd, the equalities ϕpθq � θ and ϕpxθq � xθ from condition (ii) yield the
equations

°n�1
i�0 θix

i � °n�1
i�0 p�1qiθixi and

°n�2
i�0 θix

i�1 � °n�2
i�0 p�1qi�1θix

i�1,

respectively. Hence θi � 0 for 1 ¤ i ¤ n � 2, and we have that θ � θn�1x
n�1. But then

this would imply 0 � θ2 � mpϕb idq∆p1q � xn�1. Hence, ϕpxq � �x is also not possible
when n is odd.

For a group G, consider the Frobenius algebra kG as in Example 2.4. We now provide
classification results for the extended structures of kG when G � C2, C3, C4, and C2�C2.

2.12. Proposition. Let g be a generator of C2. The extended structures of kC2 are:

(a) ϕ � idkC2 and θ P t�?2eC2 , �
?
2gu, and

(b) ϕpgq � �g and θ � 0.

Moreover, pkC2, idkC2 ,
?
2gq � pkC2, idkC2 ,�

?
2gq as extended Frobenius algebras, and

all other structures are non-isomorphic. That is, there are four isomorphism classes of
extended Frobenius structures on kC2.

Proof. Suppose that ϕ and θ define an extended structure on kC2, where
ϕpgq � ϕ0eC2 � ϕ1g and θ � θ0eC2 � θ1g for ϕ0, ϕ1, θ0, θ1 P k. By the counitality of
ϕ, we have that ϕ0 � εpϕpgqq � εpgq � 0, and ϕ2

1 � εpϕ2
1g

2q � εpϕpg2qq � εpg2q � 1.
So, ϕ1 � �1. Both choices are involutions and it is a quick check that they satisfy
condition (i). We look now at the conditions (ii) and (iii).
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When ϕ � id, we have that θ20 � θ21 � 2eC2 and 2θ0θ1 � 0, and so either
θ � �?2eC2 or θ � �?2g. Both of these satisfy conditions (ii) and (iii). When ϕpgq � �g,
condition (iii) yields θ20�θ21 � 0 and 2θ0θ1 � 0. Hence, θ � 0, and condition (ii) is satisfied
in this case.

Lastly, it follows from Lemma 2.3 that an isomorphism can only exist between pkC2,
idkC2 ,

?
2gq and pkC2, idkC2 ,�

?
2gq, which are in fact isomorphic via the morphism of

extended Frobenius algebras f : kC2 Ñ kC2 defined by g ÞÑ �g.
2.13. Proposition. Let g be a generator of C3. The extended structures of kC3 are:

(a) ϕ � idkC3 and θ P t�?3eC3 , � 1?
3
peC3 � 2ω3g � 2ω2

3g
2qu,

(b) ϕpgq � ω3g
2 and θ � � 1?

3
peC3 � ω3g � ω2

3g
2q,

where ω3 P k is some 3-rd root of unity. These structures are all non-isomorphic.

Proof. Suppose ϕ and θ define an extended structure of kC3, where

ϕpgq � ϕ0eC3 � ϕ1g � ϕ2g
2, θ � θ0eC3 � θ1g � θ2g

2,

for ϕi, θi P k. By condition (i), we get that ϕ � id or ϕpgq � ω3g
2. We now examine the

conditions: mpϕb idkC3q∆peC3q � θ2, and ϕpθaq � θa for a P kC3.
When ϕ � id, we get θ2 � 3eC3 . Hence, θ0 � 0, and if θ1 � 0 or θ2 � 0, these

imply θ � �?3eC3 . Else, if θ1, θ2 � 0, it follows that θ � � 1?
3
peC3 � 2ω3g � 2ω2

3g
2q

for some 3-rd root of unity ω3. Condition (ii) is trivially satisfied for these cases. When
ϕpgq � ω3g

2, then condition (iii) implies that θ2 � eC3 � ω3g � ω2
3g

2. We also require
θ � ϕpθq � θ0eC3 � θ1ω3g

2 � θ2ω
2
3g, and thus θ2 � ω3θ1. Therefore, we get that θ �

� 1?
3
peC3 � ω3g � ω2

3g
2q. One can check that these choices satisfy condition (ii); see

Example 2.5.
Lastly, any morphism f of extended Frobenius algebras between these possible struc-

tures is counital, so fpgq � cg or fpgq � cg2 for some c P k such that c3 � 1. From this
and Lemma 2.3, we conclude there are no such morphisms between the different extended
structures.

2.14. Proposition. Let g be a generator of C4. The extended structures of kC4 are:

(a) ϕ � idkC4 and θ P t�2eC4 , �2g2, �p1� iqpg � ig3q, �p1� iqpg � ig3qu;
(b) ϕpgq � �g and θ � 0;

(c) ϕpgq � ω4g
3 and θ P

!
�1�ω2

4

2
peC4 � g2q, �i1�ω2

4

2
pg � g3q

)
,

for any 4-th root of unity ω4 P k. These form eight isomorphism classes of extended
structures.
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Proof. Suppose that ϕ and θ define an extended structure on kC4, where for ϕi, θi P k,
we have ϕpgq � ϕ0eC3�ϕ1g�ϕ2g

2�ϕ3g
3 and θ � θ0eC3�θ1g�θ2g

2�θ3g
3. By condition (i),

we get that ϕ2 � 0 with ϕpgq � ϕ1g or ϕpgq � ϕ3g
3; else, ϕ2 � 0 with ϕ2

1 � ϕ2
3 � 0. But a

routine computation using ϕ2pgq � g and condition (iii) shows that the ϕ2 � 0 case is not
possible. So, either ϕpgq � ϕ1g or ϕpgq � ϕ3g

3. Since ϕ2pgq � g, we obtain ϕpgq � �g or
ϕpgq � ω4g

3 for some ω4 P k.
Suppose that ϕ � idkC4 . Then, condition (ii) is trivially satisfied. Condition (iii)

implies that 4eC4 � θ2, and we get the choices for θ in part (a). When ϕpgq � �g,
condition (ii) implies that θ1 � θ3 � 0. So, by condition (iii), we obtain that θ20 �
2θ0θ2g

2 � θ22 � 0, and it follows that θ � 0. This yields the choice in part (b). Lastly, if
ϕpgq � ω4g

3, then from condition (ii), we know that θ1 � ω3
4θ3. Also from condition (iii),

we get that θ2 � p1� ω2
4qeC4 � pω4 � ω3

4qg2. Solving for θ2 in kC4, we get the two choices
for θ in part (c). The former coincides with the choice of structure given in Example 2.5.
For the latter, it is easy to check that condition (ii) still holds.

We prove now that there are exactly eight isomorphism classes of extended structures.
It follows from Lemma 2.3 that three such classes are given by

tpkC4, idkC4 , 2eC4qu, tpkC4, idkC4 ,�2eC4qu, tpkC4, ϕpgq � �g, 0qu.

Next, there can be no isomorphisms f : pkC4, idkC4 , θq Ñ pkC4, ϕpgq � ω4g
3, θ1q, as this

would imply fpgq � fpω4g
3q. Also, the algebra isomorphisms f, f 1 : kC4 Ñ kC4 defined

by fpgq � �g and f 1pgq � ig imply that

tpkC4, idkC4 ,�p1� iqpg � ig3qq, tpkC4, idkC4 ,�p1� iqpg � ig3qqu, tpkC4, idkC4 ,�2g2qu

are isomorphism classes of extended structures. The remaining isomorphism classes are
then

tpkC4, ϕpgq � ω4g
3, �1�ω2

4

2
peC4 � g2qqu, tpkC4, ϕpgq � ω4g

3, �i1�ω2
4

2
pg � g3qqu

by a routine calculation.

Given the results in Proposition 2.12, 2.13, 2.14, we propose the following result.

2.15. Conjecture. Let g be a generator of Cn. The following are the only possibilities
for the Frobenius automorphism ϕ for an extended structure on kCn:

(a) ϕpgq � �g or ϕpgq � ωng
�1 when n is even,

(b) ϕpgq � g or ϕpgq � ωng
�1 when n is odd,

where ωn P k is any n-th root of unity.

The remainder of Theorem 1.2 is established in the next two results.
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2.16. Proposition. The extended structures of kpC2 � C2q are:
(a) ϕ � idkpC2�C2q and θ P t�2e, �2gi, �pe� gℓq � pgi � gjq, �pe� gℓq � pgi � gjqu;
(b) ϕpgiq � �gi, ϕpgjq � �gj, ϕpgℓq � gℓ, and θ � 0;

(c) ϕpgiq � gj, ϕpgjq � gi, ϕpgℓq � gℓ, and θ P t�pe� gℓq, �pgi � gjqu;
(d) ϕpgiq � �gj, ϕpgjq � �gi, ϕpgℓq � gℓ, and θ P t�pe� gℓq, �pgi � gjqu;

where C2 � C2 � te, g1, g2, g3u and ti, j, ℓu � t1, 2, 3u.
Proof. It follows from ϕ being counital that ϕpgiq � ai,1g1 � ai,2g2 � ai,3g3 for ai,p P k,
for all 1 ¤ i, p ¤ 3. Since ϕ is multiplicative, we then get that

e � ϕpg2i q � ϕpgiq2 � pa2i,1 � a2i,2 � a2i,3qe� 2ai,1ai,2g3 � 2ai,1ai,3g2 � 2ai,2ai,3g1.

Hence, ϕpgiq � �gj for some 1 ¤ j ¤ 3. But ϕ2 � idkpC2�C2q, and thus the remaining
possibilities for ϕ are the ones listed in the statement. It remains to find suitable θ for
each possible ϕ. Let θ0, θ1, θ2, θ3 P k such that θ � θ0e� θ1g2 � θ2g2 � θ3g3.

We compute θ2 � ϕpeqe �°3
i�1 ϕpgiqgi. When ϕ � idkpC2�C2q, one can check that we

get the choices of θ in part (a) by condition (iii). When ϕpgiq � �gi, ϕpgjq � �gj and
ϕpgℓq � gℓ for ti, j, ℓu � t1, 2, 3u, condition (iii) implies θ2 � 0, so θ � 0; this implies part
(b). When ϕpgiq � gj, ϕpgjq � gi and ϕpgℓq � gℓ for ti, j, ℓu � t1, 2, 3u, conditions (ii) and
(iii) yield the choices of θ in part (c). The case ϕpgiq � �gj, ϕpgjq � �gi and ϕpgℓq � gℓ
for ti, j, ℓu � t1, 2, 3u is analogous.
2.17. Proposition. Consider the Taft algebra T2p�1q :� kxg, xy{pg2� 1, x2, gx�xgq as
defined in Example 2.6. All extensions of T2p�1q are ϕ-trivial, with θ P kx` kgx.

Proof. First, note that ∆p1q � �g b gx � x b 1 � 1 b x � gx b g. So, by (1), we
get that ∆pgq � �1 b gx � gx b 1 � g b x � x b g, ∆pxq � gx b gx � x b x, and
∆pgxq � x b gx � gx b x. Hence, εp1q � εpgq � εpgxq � 0 and εpxq � 1. Now suppose
that ϕ : T2p�1q Ñ T2p�1q and θ P T2p�1q define an extended structure on T2p�1q. Let
ai, bi P k such that ϕpgq � a1 � a2g � a3x� a4gx and ϕpxq � b1 � b2g � b3x� b4gx. Since
ϕ is an algebra morphism, we have that

1 � ϕpgq2 � a21 � a22 � 2a1a2g � 2a1a3x� 2a1a4gx,

0 � ϕpxq2 � b21 � b22 � 2b1b2g � 2b1b3x� 2b1b4gx.

It follows that ϕpgq � �g�a3x�a4gx and ϕpxq � b3x�b4gx. On the other hand, since ϕ is
counital, we get 0 � εpϕpgqq � a3 and 1 � εpϕpxqq � b3. So, ϕpgq � �g�a4gx and ϕpxq �
x� b4gx. Also, ϕ is an involution, hence g � ϕp�g� a4gxq � �pg� a4gxq � a4pgx� b4xq.
It follows that ϕ � idT2p�1q. Lastly, θ2 � mpϕb idT2p�1qq∆p1q � 0, and thus θ P kx`kgx.
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2.18. Conjecture. Consider the Taft algebra,

Tnpωq :� kxg, xy{pgn � 1, xn, gx� ωxgq

from Example 2.6. Then, all extensions of Tnpωq are ϕ-trivial, with θ PÀn�1
i�0 kgix.

3. Extended Frobenius algebras in a monoidal category

In this section, we first discuss monoidal categories and algebraic structures in monoidal
categories in Section 3.1. There, we generalize Definition 1.1 to the monoidal setting,
following [TT06, Section 2.2]; see Definition 3.2. Finally, we put monoidal structures on
the category of extended Frobenius algebras in Section 3.5.

3.1. Background material. For details on algebras in monoidal categories, see, for
example, [Koc04, Chapter 3], [TV17, Parts I and II] or [Wal24, Chapters 3 and 4]. The
first reference also includes an introduction to Frobenius algebras in monoidal categories.
Extended Frobenius algebras in monoidal categories can be found in [TT06, Section 2.2],
[Cze24], and [Oca24].

3.1.1. Monoidal categories. A monoidal category consists of a category C equipped
with a bifunctor b : C � C Ñ C, a natural isomorphism

a :� taX,Y,Z : pX b Y q b Z �Ñ X b pY b ZquX,Y,ZPC,

an object 1 P C, and natural isomorphisms

ℓ :� tℓX : 1bX �Ñ XuXPC, r :� trX : X b 1 �Ñ XuXPC,

such that the pentagon and triangle axioms hold.
Unless stated otherwise, by MacLane’s strictness theorem, we will assume that all

monoidal categories are strict in the sense that

X b Y b Z :� pX b Y q b Z � X b pY b Zq, X :� 1bX � X b 1,

for all X, Y, Z P C; that is, aX,Y,Z , ℓX , rX are identity maps.
A monoidal category C is symmetric if it is equipped with

c :� tcX,Y : X b Y
�Ñ Y bXuX,Y PC,

a natural isomorphism with cY,X � cX,Y � idXbY for X, Y P C, such that the hexagon
axioms hold. The component cX,Y of c, the c2 � id property, the naturality of c at a
morphism f P C, and unit coherence of c are all depicted in Figure 1.
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= = =

cX,Y (S1) (S2) (S3) (S4) (S5)

f

f

f

f

= =

Figure 1: Some axioms for a symmetric monoidal category.

3.1.2. Algebraic structures in monoidal categories. Take a monoidal category
C :� pC,b,1q.

An algebra in C is an object A P C, equipped with morphisms m : A b A Ñ A and
u : 1Ñ A in C, subject to associativity and unitality axioms:

mpmb idAq � mpidA bmq, mpub idAq � idA � mpidA b uq.
These structures form a category, AlgpCq, where a morphism pA,mA, uAq Ñ pB,mB, uBq
is a morphism f : AÑ B in C such that f mA � mBpf b fq and f uA � uB.

A coalgebra in C is an object A P C, equipped with morphisms ∆ : A Ñ A b A and
ε : AÑ 1 in C, subject to coassociativity and counitality axioms:

p∆b idAq∆ � pidA b∆q∆, pεb idAq∆ � idA � εpidA b uq∆.

These structures form a category, CoalgpCq, where pA,∆A, εAq Ñ pB,∆B, εBq is a mor-
phism f : AÑ B in C such that ∆B f � pf b fq∆A and εB f � εA.

Our main algebraic structures of interest in this article are given as follows.

3.2. Definition. Consider the following entities in a monoidal category C :� pC,b,1q.
(a) A Frobenius algebra in C is a tuple pA,m, u,∆, εq, where pA,m, uq is an algebra in

C, and pA,∆, εq is a coalgebra in C, subject to the Frobenius law:

pmb idAqpidA b∆q � ∆m � pidA bmqp∆b idAq.
A morphism of Frobenius algebras in C is a morphism of the underlying algebras
and coalgebras in C. The above objects and morphisms form a category, FrobAlgpCq.

(b) An extended Frobenius algebra in C is a tuple pA,m, u,∆, ε, ϕ, θq, where we have
that pA,m, u,∆, εq is a Frobenius algebra in C, and ϕ : A Ñ A and θ : 1 Ñ A are
morphisms in C such that

(i) ϕ is a morphism of Frobenius algebras in C, with ϕ2 � idA;

(ii) ϕmpθ b idAq � mpθ b idAq;
(iii) mpϕb idAq∆u � mpθ b θq.

A morphism f : pA, ϕA, θAq Ñ pB, ϕB, θBq of extended Frobenius algebras in C is
a morphism f : A Ñ B of Frobenius algebras in C, such that f ϕA � ϕB f and
f θA � θB. The above objects and morphisms form a category, ExtFrobAlgpCq.
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(c) The morphisms ϕ and θ in part (b) are the extended structure of the underlying
Frobenius algebra. When ϕ and θ exist, we say that the underlying Frobenius algebra
is extendable.

(d) An extended structure pϕ, θq on a Frobenius algebra A is said to be ϕ-trivial if ϕ is
the identity morphism, and is θ-trivial if θ is the zero morphism (when these exist
in C).

The structure morphisms for an extended Frobenius algebra in C are depicted in
Figure 2, and the axioms that they satisfy are depicted in Figure 3. Here, we read
diagrams from top down.

m u ∆ ε ϕ θ

Figure 2: Structure morphisms for an extended Frobenius algebra in C.

= = = = ==

(E1) (E2) (E3) (E4) (E5)

=

(E6) (E7) (E8) (E9) (E10) (E11) (E12)

= =

=

= =

= =

=

Figure 3: Axioms for an extended Frobenius algebra in C.

One useful lemma is the following, adapted from [TT06, Lemma 2.8] for the monoidal
setting.

3.3. Lemma. If pA,m, u,∆, ε, ϕ, θq is an extended Frobenius algebra in C, then

mpϕb idAq∆ � m
�
mpθ b θq b idA

�
.

Proof. This is proved in Figure 4 with references to Figures 2 and 3.

3.4. Proposition. A morphism of extended Frobenius algebras in C must be an isomor-
phism.
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(E2) (E5) (E1) (E12)
== = =

Figure 4: Proof of Lemma 3.3.

Proof. This follows from the well-known fact that a morphism of Frobenius algebras in
C must be an isomorphism. We repeat the proof here for the reader’s convenience. Take
a morphism of (extended) Frobenius algebras f : A Ñ B in C, that is, f is a morphism
of the underlying algebras and coalgebras in C. In graphical calculus, we will denote
the (extended) Frobenius structure morphisms on A by those given in Figure 2, and the
(extended) Frobenius structure morphisms on B will be denoted according to Figure 5.
We then define a morphism g : B Ñ A in Figure 6, and show that gf � idA and fg � idB

using graphical calculus in Figure 7.

mB uB ∆B ϕBεB θB

Figure 5: Extended Frobenius structure on B.

g := f

B

A

Figure 6: Defining g.

g

f

f

:=

f

=
f

= = =

g

f

f

:=

f

= = = =

f

A

A

A

A

B

B

B

B

(f mult.) (E5) (E2)

(E4)

(E2)

(E4)

(E5)(f unital)

(f counital)

(f comult.)

Figure 7: Proof that gf � idA and fg � idB.
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3.5. Structure results. Recall the category ExtFrobAlgpCq defined in Definition 3.2.
We put monoidal structures on this category, using two distinct monoidal products, in
the following results.

3.6. Proposition. Let pC,b,1, cq be a symmetric monoidal category. Then, the category
ExtFrobAlgpCq is monoidal with b :� bC and 1 :� 1

C.

Proof. We first note that 1C � p1C, ℓ1, id1, ℓ
�1
1
, id1, id1, id1q is an extended Frobenius

algebra in C.
Next, we show that the monoidal product of two extended Frobenius algebras is ex-

tended Frobenius. Namely, we verify that given extended Frobenius algebras

pA,mA, uA,∆A, εA, ϕA, θAq and pB,mB, uB,∆B, εB, ϕB, θBq,

then
pAbB, m̃, ũ, ∆̃, ε̃, ϕ̃, θ̃q

is an extended Frobenius algebra, where

m̃ :� pmA bmBqpidA b cB,A b idBq, ∆̃ :� pidA b cA,B b idBqp∆A b∆Bq
ũ :� uA b uB, ε̃ :� εA b εB, ϕ̃ :� ϕA b ϕB, θ̃ :� θA b θB.

Figure 8 shows what these morphisms look like in graphical calculus, using the symbols
from Figure 2 for A and the symbols from Figure 5 for B, as in Proposition 3.4. Recall
also the axioms for a symmetric monoidal category from Figure 1.

A b B A b B

A b B

m̃

A A BB

A B

ũ

1

A b B

1 1

A B A b B

A b B

A b B A A BB

A B

A b B

1

ε̃

1 1

A B

θ̃

1

A b B

1 1

A BA b B A B

A b B A B

ϕ̃

:� :� :�

:�:�:�

∆̃

Figure 8: Extended Frobenius structure morphisms for AbB.

We then have that pAbB, m̃, ũ, ∆̃, ε̃q P FrobAlgpCq by [Koc04, Section 2.4]. To see that
this Frobenius algebra is extended via ϕ̃ and θ̃, we verify the three required conditions in
Definition 3.2(b).

(i) It is easy to see that ϕ̃ is an involution, since both ϕA and ϕB are involutions.
Moreover, since both ϕA, ϕB are Frobenius morphisms, so is their monoidal product
in C.
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(ii) Figure 9 gives that ϕ̃ m̃pθ̃ b idAbBq � m̃pθ̃ b idAbBq.
(iii) Finally, Figure 10 gives that m̃pϕ̃b idAbBq∆̃ũ � m̃pθ̃ b θ̃q.

Thus, we have that pAbB, ϕ̃, θ̃q P ExtFrobAlgpCq, as desired.
Lastly, we note that by taking 1

C as the unit and bC as the monoidal product in
ExtFrobAlgpCq, with extended structures behaving as described above, we obtain that the
required pentagon and triangle axioms in pExtFrobAlgpCq,bC,1Cq are all inherited from
the same axioms in pC,bC,1Cq. From this, we can conclude that pExtFrobAlgpCq,bC,1Cq
is a monoidal category.

=
(def)

= =

=

=
(def)

= =

(S2) (S4)

((E11) for A and B)

(S4)(S2)

θ̃

m̃

ϕ̃

θ̃

m̃

Figure 9: Proof that AbB satisfies Definition 3.2(b)(ii).

Now we turn our attention to extended Frobenius algebras in additive monoidal cate-
gories. See [Wal24, Section 3.1.3] for background material on such categories.

3.7. Proposition. Let pC,b,1q be an additive monoidal category. Then, the category
ExtFrobAlgpCq is monoidal with b being the biproduct �, and 1 being the zero object 0.

Proof. We first note that 0 is an extended Frobenius algebra in C, with structure mor-
phisms m,u,∆, ε, and θ all being zero morphisms, and ϕ � id0. We next note that similar
to the previous proposition, the pentagon and triangle axioms in pExtFrobAlgpCq,�, 0q will
be inherited from these same axioms on the strict monoidal category pC,�, 0q. Hence, to
finish the proof, it suffices to show that the biproduct of two extended Frobenius algebras
is again extended Frobenius.
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=
(def)

= =

=
(def)

= =

=

(S2) (S1)

(S4)(S2)

(S3)

((E12) for A and B)

ũ

∆̃

ϕ̃

m̃

θ̃ θ̃

m̃

Figure 10: Proof that AbB satisfies Definition 3.2(b)(iii).

To do so, let pA,mA, uA,∆A, εA, ϕA, θAq and pB,mB, uB,∆B, εB, ϕB, θBq be two ex-
tended Frobenius algebras in C. We will show that pA�B, m̃, ũ, ∆̃, ε̃, ϕ̃, θ̃q is an extended
Frobenius algebra, where m̃, ũ, ∆̃, ε̃, ϕ̃, and θ̃ are defined by the following universal
property diagrams.

pA�Bq b pA�Bq

A�B

A B

mA �πAbA mB �πBbB
D! m̃

πA πB

pA�Bq b pA�Bq

A�B

A B

D! ∆̃ιAbA �∆A

ιA

ιBbB �∆B

ιB

1

A�B

A B

uA uB
D! ũ

πA πB

1

A�B

A B

D! ε̃εA

ιA

εB

ιB

A�B

A�B

A B

ϕA �πA ϕB �πB
D! ϕ̃

πA πB

1

A�B

A B

θA θBD! θ̃

πA πB

It is well known that with the above constructions, pA�B, m̃, ũ, ∆̃, ε̃q is a Frobenius
algebra. See [Koc04, Exercises 2.2.7 and 2.2.8] for the case where C � Vec. Thus, we only
need to verify that ϕ̃ and θ̃ extend this Frobenius algebra. The three required properties
from Definition 3.2(b) can be verified by respectively considering each of the universal
property diagrams below.
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A�B

A A�B B

A B

πA πB
D!

ϕ2
A � idA πA πB

ϕ2
B � idB

A�B

A A�B B

A B

πA πB
D!

mpθA b idAq

�

ϕApmApθA b idAqq
πA πB

mBpθB b idBq

�

ϕBpmBpθB b idBqq

1

A�B

A B

mpϕA b idAqp∆ApuAqq

�

mApθA b θAq

mBpϕB b idBqp∆BpuBqq

�

mBpθB b θBq

D!

πA πB

Using uniqueness of the completing map in each of the diagrams, it follows that (i)
pϕ̃q2 � idA�B, (ii) m̃pθ̃ b idA�Bq � ϕ̃pm̃pθ̃ b idA�Bqq, and (iii) m̃pϕ̃ b idA�Bqp∆̃pũqq �
m̃pθ̃ b θ̃q. This completes the proof that pA�B, ϕ̃, θ̃q is an extended Frobenius algebras
in C, which in turn gives that pExtFrobAlgpCq,�, 0q is a monoidal category.

4. Ties to separable algebras and Hopf algebras

In this section, we study extended Frobenius algebras in (symmetric) monoidal categories
C, in the context of separable algebras and Hopf algebras in C; see Sections 4.1 and 4.5,
respectively. We also introduce the notion of an extended Hopf algebra in C, and make
connections to extended Frobenius algebras in C, in Section 4.12.

4.1. Tie to separable algebras. Take C :� pC,b,1q to be a monoidal category, and
consider the terminology below. See [B1̈8, Chapter 6] and references within for the case
when C � Vec.

4.2. Definition.

(a) We say that an algebra A :� pA,m, uq in C is separable if there exists a morphism
t : AÑ Ab A such that mt � idA, and

pmb idAqpidA b tq � tm � pidA bmqptb idAq.

(b) A Frobenius algebra A :� pA,m, u,∆, εq is separable Frobenius if m∆ � idA.

These structures form full subcategories as indicated below:

SepAlgpCq � AlgpCq, SepFrobAlgpCq � FrobAlgpCq.
4.3. Proposition. If A is a separable Frobenius algebra in C, then A is extendable.

Proof. Suppose that A :� pA,m, u,∆, εq is a separable Frobenius algebra, and take
ϕ :� idA and θ :� u. Then, conditions (i) and (ii) of Definition 3.2(b) clearly hold.
Condition (iii) of Definition 3.2(b) holds by the computation below:

mpϕb idAq∆u � m∆u � u � mpub uq � mpθ b θq,
where the third equality follows from a unitality axiom of A.
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4.4. Example. The monoidal unit 1 P C is a separable Frobenius algebra, with m and
∆ identified as id1, and with u � ε � id1. The Frobenius structure is then extended with
ϕ � θ � id1.

4.5. Tie to Hopf algebras. Take C :� pC,b,1, ⌋q to be a symmetric monoidal cate-
gory. See [Rad12, Chapter 10] and references within for the case when C � Vec for the
material below.

4.6. Definition. Consider the following constructions in C :� pC,b,1, cq.
(a) A Hopf algebra in C is a tuple pH,m, u,∆, ε, Sq, where pH,m, uq in an algebra in C

and pH,∆, εq is a coalgebra in C, subject to the bialgebra laws,

∆, ε P AlgpCq pô m,u P CoalgpCqq,
and where S : H Ñ H (antipode) is a morphism in C satisfying the antipode axiom,

mpS b idHq∆ � uε � mpidH b Sq∆.

If the antipode S is invertible with inverse S�1 : H Ñ H in C, then we call the tuple
pH,m, u,∆, ε, S, S�1q a Hopf algebra with invertible antipode.

(b) A left integral for a Hopf algebra pH,m, u,∆, ε, Sq is a morphism Λ : 1Ñ H which
satisfies mpidH bΛq � Λε. A right cointegral for the Hopf algebra pH,m, u,∆, ε, Sq
is a morphism λ : H Ñ 1 satisfying pλ b idHq∆ � uλ. If Λ and λ further satisfy
λΛ � id1, then Λ and λ are said to be normalized. A Hopf algebra equipped with a
normalized (co)integral pair is called an integral Hopf algebra.

(c) A morphism of integral Hopf algebras f : H Ñ K is a morphism, which is both an
algebra and coalgebra morphism, and which satisfies fΛH � ΛK and λKf � λH .

(d) We organize the above into a category, IntHopfAlgpCq, whose objects are integral
Hopf algebras and whose morphisms are morphisms of integral Hopf algebras as
defined above.

See Figures A.12-A.15 in Appendix A for a graphical representation of this definition.

4.7. Remark. If a Hopf algebra is equipped with a normalized integral and cointegral,
then the antipode is invertible; see, e.g., [CD20, Lemma 3.5].

Now we show that an integral Hopf algebra in C admits the structure of a Frobenius
algebra in C. A similar argument can also be found in [FS10, Appendix A.2].

4.8. Proposition. We have that

Ψ : IntHopfAlgpCq Ñ FrobAlgpCq
pH, m, u,∆, ε, S, S�1, Λ, λq ÞÑ pH, m, u, ∆ :� pmb SqpidH b∆Λq, ε :� λq

is a well-defined functor, which acts as the identity on morphisms.

Proof. This is established in Appendix A via graphical calculus arguments.



1238 A. CZENKY, J. KESTEN, A. QUINONEZ, AND C. WALTON

4.9. Example. Let G be any finite group. The group algebra kG is a finite-dimensional
Hopf algebra with ∆pgq � gbg, εpgq � 1, and Spgq � g�1, for all g P G. This Hopf algebra
admits a normalized (co)integral pair given by Λ :� °hPG h and λpgq :� δe,g1k. Applying
Ψ to this integral Hopf algebra, we obtain the Frobenius structure on kG described in
Example 2.4 and (1), where ∆pgq :� °

hPG gh b h�1 and εpgq :� λpgq � δe,g1k, for all
g P G.

4.10. Proposition. If H P IntHopfAlgpCq is equipped with θ : 1 Ñ H P C such that
mpθb θq � u εΛ, then the Frobenius algebra ΨpHq from Proposition 4.8 is extendable. In
particular, when C � Vec, the Frobenius algebra ΨpHq over k is extendable with ϕ � idΨpHq
and θ � �aεpΛp1kqqu.
Proof. Suppose that the morphism θ : 1Ñ H as in the statement exists. Then, taking
ϕ � idΨpHq, and using this θ, we extend the Frobenius structure. To verify the axioms
of Definition 3.2(b), notice that conditions (i) and (ii) hold trivially. Condition (iii) is
verified in Figure 11; using notation and axioms from Appendix A. The last statement
on the case when C � Vec is clear.

:= = = = =
(def) Fig.A.18 (H2) (H9) (hyp)

Figure 11: Proof of Definition 3.2(b)(iii) for Proposition 4.10.

4.11. Example. Let G be a finite group, and recall that the group algebra kG has a Hopf
algebra structure, which induces a Frobenius algebra structure, as described in Example
4.9. In this case, we have that

uεpΛq � upεp°hPG hq � up°hPG 1kq � |G| � up1kq � |G| � eG.

The above proposition then tells us that the choice ϕ � idkG and θ � �a|G| � eG extends
the induced Frobenius algebra structure on kG. Note that this is the same extended
Frobenius structure as introduced in Example 2.4.

4.12. Extended Hopf algebras. Continue to let C be a symmetric monoidal category.
Here, we introduce extended Hopf algebras in C.

4.13. Definition.An integral Hopf algebra pH,m, u,∆, ε, S, S�1,Λ, λq is called extended
if it is equipped with two morphisms ϕ : H Ñ H and θ : 1Ñ H in C satisfying the following
axioms:

(i) ϕ is a morphism of integral Hopf algebras such that ϕ2 � idH ;
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(ii) ϕmpθ b idHq � mpθ b idHq;
(iii) mpϕb Sq∆Λ � mpθ b θq.
A morphism of extended Hopf algebras f : pH,ϕ, θq Ñ pH 1, ϕ1, θ1q is a morphism of integral
Hopf algebras in C which also satisfies fϕ � ϕ1f and fθ � θ1.

We use the above to define a category ExtHopfAlgpCq. Also, consider the forgetful
functor,

U : ExtHopfAlgpCq Ñ IntHopfAlgpCq
pH, m, u,∆, ε, S, S�1, Λ, λ, ϕ, θq ÞÑ pH, m, u,∆, ε, S, S�1, Λ, λq.

We have the following result.

4.14. Proposition. Take H P ExtHopfAlgpCq. Then, the Frobenius algebra ΨUpHq in C
from Proposition 4.8 is extendable via the morphisms ϕ and θ.

Proof. We will verify that ϕ and θ extend the Frobenius algebra ΨUpHq by checking
the axioms of Definition 3.2(b). Since

ϕ : pH,m, u,∆, ε, S, S�1,Λ, λq Ñ pH,m, u,∆, ε, S, S�1,Λ, λq

is a morphism of integral Hopf algebras, the functoriality of Ψ and U gives that ϕ :
pH,m, u,∆, εq Ñ pH,m, u,∆, εq is a Frobenius algebra morphism. Moreover, we have that
ϕ2 � idH by Definition 4.13(i). So, condition (i) of Definition 3.2(b) holds. Condition (ii)
of Definition 3.2(b) also holds by Definition 4.13(ii) since the multiplication morphism is
the same for both the Hopf and Frobenius structures on H. Towards condition (iii) of
Definition 3.2(b), we compute:

mpϕb idHq∆u � mpϕb Sqpmb idHqpub∆qΛ � mpθ b θq,

where the first equality is the definition of ∆ and a level exchange, and the second equality
is by the unitality of m and u and Definition 4.13(iii).

The consequence below is straight-forward.

4.15. Corollary. There is a functor Ψ : ExtHopfAlgpCq Ñ ExtFrobAlgpCq which sends
an extended Hopf algebra pH,m, u,∆, ε, S, S�1,Λ, λ, ϕ, θq to the extended Frobenius algebra
pH,m, u,∆, ε, ϕ, θq, with ∆ and ε defined in Proposition 4.8, and which acts as the identity
on morphisms.

4.16. Remark. While the above result tells us that every extended Hopf algebra gives
rise to an extended Frobenius algebra via the same ϕ and θ, the converse is not true.
In particular, given H P IntHopfAlgpCq, we get that ΨpHq is in FrobAlgpCq. If ΨpHq
is extendable via ϕΨpHq and θΨpHq, it is not necessarily true that pH,ϕΨpHq, θΨpHqq is an
extended Hopf algebra in C.
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For instance, consider the Frobenius algebra structure on kC2, induced by the Hopf
structure, as described in Example 4.9. This Frobenius structure can be extended by
taking ϕpgq � �g (where g is a generator of C2) and θ � 0, as in Proposition 2.12(b).
However, this choice of ϕ and θ does not extend the integral Hopf structure on kC2, since
ϕ is not comultiplicative with respect to ∆.

5. Extended Frobenius monoidal functors

In this section, we introduce the construction of an extended Frobenius monoidal functor,
which preserves extended Frobenius algebras [Proposition 5.11]. Background material is
covered in Section 5.1, and the main construction is covered in Section 5.7. Examples are
presented in Section 5.16.

5.1. Background on monoidal functors. We can move between monoidal cate-
gories in several ways. Consider the terminology below, along with the references, [B1̈8,
Chapter 6], [DP08], [TV17, Sections 1.4 and 7.5], [Wal24, Section 3.2], for details about
the material in this part.

5.2. Definition. Take a functor F : C Ñ C 1 between monoidal categories pC,b,1q and
pC 1,b1,11q.
(a) We say that F is a monoidal functor if it is equipped with a natural transformation

F p2q :� tF p2q
X,Y : F pXqb1F pY q Ñ F pXbY quX,Y PC, and a morphism F p0q : 11 Ñ F p1q

in C 1, that satisfy associativity and unitality constraints.

(b) A monoidal functor pF, F p2q, F p0qq is said to be strong if F p2q is a natural isomor-

phism and F p0q is an isomorphism. In this case, denote F
p�2q
X,Y :� pF p2q

X,Y q�1 and

F p�0q :� pF p0qq�1.

(c) We say that F is a comonoidal functor if it is equipped with a natural transformation
Fp2q :� tFX,Y

p2q : F pXbY q Ñ F pXqb1F pY quX,Y PC, and a morphism Fp0q : F p1q Ñ 1
1

in C 1, that satisfy coassociativity and counitality constraints.

(d) We say that F is a Frobenius monoidal functor if it is part of a tuple

pF, F p2q, F p0q, Fp2q, Fp0qq,

where pF, F p2q, F p0qq is a monoidal functor, and pF, Fp2q, Fp0qq is a comonoidal func-
tor, subject to the Frobenius conditions, for all X, Y, Z P C:

�
F
p2q
X,Y b1 idF pZq

��
idF pXq b1 F Y,Z

p2q
� � FXbY,Z

p2q � F p2q
X,YbZ ,

�
idF pXq b1 F p2q

Y,Z

��
FX,Y
p2q b1 idF pZq

� � FX,YbZ
p2q � F p2q

XbY,Z .
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(e) A Frobenius monoidal functor pF, F p2q, F p0q, Fp2q, Fp0qq is separable if for each X, Y P
C:

F
p2q
X,Y � FX,Y

p2q � idF pXbY q.

Moreover, consider the transformations of (co)monoidal functors below.

5.3. Definition. Take monoidal categories C :� pC,b,1q and C 1 :� pC 1,b1,11q.
(a) A monoidal natural transformation from a monoidal functor pF, F p2q, F p0qq : C Ñ C 1

to a monoidal functor pG,Gp2q, Gp0qq : C Ñ C 1 is a natural transformation ϕ : F ñ G
such that

ϕXbY � F p2q
X,Y � G

p2q
X,Y � pϕX b1 ϕY q for all X, Y P C, ϕ1 � F p0q � Gp0q.

(b) A comonoidal natural transformation from a comonoidal functor pF, Fp2q, Fp0qq :
C Ñ C 1 to a comonoidal functor pG,Gp2q, Gp0qq : C Ñ C 1 is a natural transformation
ϕ : F ñ G such that

pϕX b1 ϕY q � FX,Y
p2q � GX,Y

p2q � ϕXbY for all X, Y P C, Fp0q � Gp0q � ϕ1.

(c) A Frobenius monoidal natural transformation is a natural transformation

ϕ : F ñ G

between Frobenius monoidal functors

pF, F p2q, F p0q, Fp2q, Fp0qq, pG,Gp2q, Gp0q, Gp2q, Gp0qq
from C to C 1 that is monoidal for the underlying monoidal functor structure and
comonoidal for the underlying comonoidal functor structure.

Next, we see in the result below that the various types of functors in Definition 5.2
preserve the corresponding algebraic structures introduced in Section 3.1.2 and Defini-
tion 4.2.

5.4. Proposition. [Wal24, Proposition 4.3] [DP08, Corollary 5] [B1̈8, Lemma 6.10]
Take monoidal categories C and C 1.

(a) A monoidal functor pF, F p2q, F p0qq : C Ñ C 1 yields AlgpF q : AlgpCq Ñ AlgpC1q, a
functor where AlgpF qpA,mA, uAq is defined as

�
F pAq, mF pAq :� F pmAqF p2q

A,A, uF pAq :� F puAqF p0q�.
(b) A comonoidal functor pF, Fp2q, Fp0qq : C Ñ C 1 yields a functor CoalgpF q : CoalgpCq Ñ

CoalgpC1q, where CoalgpF qpA,∆A, εAq is defined as�
F pAq, ∆F pAq :� FA,A

p2q F p∆Aq, εF pAq :� Fp0q F pεAq
�
.
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(c) Moreover, a Frobenius monoidal functor pF, F p2q, F p0q, Fp2q, Fp0qq : C Ñ C 1 yields a
functor FrobAlgpF q : FrobAlgpCq Ñ FrobAlgpC 1q by using the formulas from parts (a)
and (b).

(d) A separable Frobenius monoidal functor pF, F p2q, F p0q, Fp2q, Fp0qq : C Ñ C 1 yields a
functor SepFrobAlgpCq Ñ SepFrobAlgpC1q by using the formulas from parts (a) and
(b).

One nice feature of the functors here is that they are closed under composition.

5.5. Proposition. [Wal24, Exercise 3.4] [DP08, Proposition 4] [B1̈8, Exercises 3.10
and 6.4] Take monoidal categories C, C 1, and C2.

(a) Let pF, F p2q, F p0qq : C Ñ C 1 and pG,Gp2q, Gp0qq : C1 Ñ C2 be monoidal functors. Then,
the composition GF : C Ñ C2 is monoidal, with

pGF qp2qX,Y :� GpF p2q
X,Y q �Gp2q

F pXq,F pY q @X, Y P C, pGF qp0q :� GpF p0qq �Gp0q.

(b) Let pF, Fp2q, Fp0qq : C Ñ C 1 and pG,Gp2q, Gp0qq : C 1 Ñ C2 be comonoidal functors.
Then, the composition GF : C Ñ C2 is comonoidal, with

pGF qX,Y
p2q :� G

F pXq,F pY q
p2q �GpFX,Y

p2q q @X,Y P C, pGF qp0q :� Gp0q �GpFp0qq.

(c) Let pF, F p2q, F p0q, Fp2q, Fp0qq : C Ñ C 1 and pG,Gp2q, Gp0q, Gp2q, Gp0qq : C 1 Ñ C2 be
Frobenius monoidal functors. Then, the composition GF : C Ñ C2 is Frobenius
monoidal by using the formulas from parts (a) and (b).

(d) The composition of two separable Frobenius monoidal functors is also separable
Frobenius monoidal by using the formulas from parts (a) and (b).

5.6. Remark. It is now straightforward to build the 2-category, Mon (resp., Comon,
FrobMon, SepFrobMon), via the data below.

(a) 0-cells are monoidal categories.

(b) 1-cells are (resp., co-, Frobenius, separable Frobenius) monoidal functors.

(c) 2-cells are (resp., co-, Frobenius, Frobenius) monoidal natural transformations.

(d) The identity 1-cell/2-cell is the identity (resp., co-, Frobenius, Frobenius) monoidal
functor/natural transformation.

(e) Horizontal composition of 1-cells is given in Proposition 5.5.

(f) Vertical/horizontal composition of 2-cells is given by the standard vertical/ horizon-
tal composition of monoidal and comonoidal natural transformations.

See [Wal24, Section 4.10.3] and references within, and also see [JY21, Exercise 2.7.11].
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5.7. Main construction and results. Here, we extend the results in Propositions
5.4 and 5.5 to the category ExtFrobAlgpCq. In particular, we will define a type of functor
that preserves extended Frobenius algebras, and then show that this type of functor is
closed under composition.

5.8. Definition. A Frobenius monoidal functor pF, F p2q, F p0q, Fp2q, Fp0qq from pC,b,1q
to pC 1,b1,11q is called an extended Frobenius monoidal functor (or is extendable) if there

exist a natural transformation pF : F ñ F and a morphism qF : 11 Ñ F p1q P C 1 such that
the conditions below hold.

(a) pF is a Frobenius monoidal natural transformation.

(b) F
p2q
1,1 � p pF1 b1 idF p1qq � F 1,1

p2q � F p0q � F
p2q
1,1 � p qF b1 qF q.

(c) The following are true for each X,Y P C:

(i) pFX � pFX � idF pXq;

(ii) pF1bX � F p2q
1,X � p qF b1 idF pXqq � F

p2q
1,X � p qF b1 idF pXqq;

(iii) F
p2q
X,Y � p pFX b1 idF pY qq � FX,Y

p2q � F
p2q
XbY,1 � p pFXbY b1 idF p1qq � FXbY,1

p2q .

Part (b) is represented by the following commutative diagram.

1
1 F p1q F p1q b1 F p1q

F p1q b1 F p1q

F p1q b1 F p1q F p1q

F p0q

qFb1 qF

F1,1
p2q

pF1b1idF p1q

F
p2q
1,1

F
p2q
1,1

Parts (c)(ii,iii) are represented by the left and right diagrams below, respectively.

1
1 b1 F pXq F p1q b1 F pXq

F p1q b1 F pXq

F p1bXq F p1bXq

qFb1idF pXq

qFb1idF pXq

F
p2q
1,X

F
p2q
1,X

pF1bX

F pX b Y q F pX b Y q b1 F p1q

F pXq b1 F pY q F pX b Y q b1 F p1q

F pXq b1 F pY q F pX b Y q

FXbY,1
p2q

FX,Y
p2q

pFXbY b1idF p1q

pFXb1idF pY q F
p2q
XbY,1

F
p2q
X,Y

Extended Frobenius monoidal functors are plentiful. Specifically, we have the following
result; compare to Proposition 4.3.

5.9. Proposition. Separable Frobenius monoidal functors admit the structure of ex-
tended Frobenius monoidal functors.

Proof. Let pF, F p2q, F p0q, Fp2q, Fp0qq be a separable Frobenius monoidal functor. Then,

take pF � IdF and qF � F p0q. It is then straightforward to verify that these choices of pF
and qF extend the Frobenius monoidal structure on F .
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5.10. Example. Strong monoidal functors are separable with Fp2q :� F p�2q and Fp0q :�
F p�0q, so they are also extended Frobenius monoidal functors.

The next result is the desired extension of Proposition 5.4. See Appendix B.1 for the
proof (in the ArXiv preprint version of this article); namely, it involves lengthy commu-
tative diagram arguments to verify that the formulas in the statement below yield an
extended Frobenius algebra.

5.11. Proposition. An extended Frobenius monoidal functor

pF, F p2q, F p0q, Fp2q, Fp0q, pF , qF q : C Ñ C1

induces a functor ExtFrobAlgpCq Ñ ExtFrobAlgpC 1q. For A P ExtFrobAlgpCq, we get mF pAq,
uF pAq, ∆F pAq, εF pAq as in Proposition 5.4(a,b), with ϕF pAq � F pϕAq pFA and θF pAq �
F pθAq qF .

Since separable Frobenius monoidal functors are extended by Propositions 5.9, we
obtain the following corollary of Proposition 5.11.

5.12. Corollary. If pF, F p2q, F p0q, Fp2q, Fp0qq : C Ñ C 1 is a separable Frobenius monoidal
functor, then it induces a functor ExtFrobAlgpCq Ñ ExtFrobAlgpC 1q.

Now that we have defined extended Frobenius monoidal functors, the natural next
thing to do is to arrange them into a 2-category. To do this, we need the following result,
which extends Proposition 5.5 to extended Frobenius monoidal functors. The proof of
this theorem can be found in Appendix B.2 (in the ArXiv preprint version of this article).

5.13. Theorem. The composition of two extended Frobenius monoidal functors is again
an extended Frobenius monoidal functor.

To prove this, let pGF qp2q, pGF qp0q, pGF qp2q, pGF qp0q be as in Proposition 5.5(a,b).
Proposition 5.5(c) then implies that GF is a Frobenius monoidal functor. We also defineyGF : GF ñ GF by yGFX :� Gp pFXq � pGF pXq for all X P C, and define }GF :� Gp qF q � qG :
1
2 Ñ GF p1q.

5.14. Remark. The collection of monoidal categories, extended Frobenius monoidal
functors, and Frobenius natural transformations compatible with the extended Frobenius
monoidal structures forms a 2-category, ExtFrobMon. Compare to Remark 5.6.

5.15. Remark. One can also obtain Proposition 5.11 as a consequence of Theorem 5.13.
Take the monoidal category 1 consisting of a single object 1 and morphism id1. Then,
a Frobenius monoidal functor pE,Ep2q, Ep0q, Ep2q, Ep0qq : 1 Ñ C is extendable if and only
if Ep1q P ExtFrobAlgpCq. So, when A P ExtFrobAlgpCq, the functor A# : 1 Ñ C with

A#p1q :� A is extended Frobenius monoidal. Now if pF, F p2q, F p0q, Fp2q, Fp0q, pF , qF q : C Ñ
C 1 is extended Frobenius monoidal, Theorem 5.13 implies that the functor FA# : 1Ñ C1
is also extended Frobenius monoidal. Hence, F pAq is an extended Frobenius algebra in
C 1 as in the proof of Proposition 5.11. Compare to [DP08, Corollary 5].
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5.16. Examples. Following up with Propositions 3.6 and 3.7, consider the examples of
extended Frobenius monoidal functors below.

5.17. Example. Let pC,b,1, cq be a symmetric monoidal category, with an extended
Frobenius algebra B P ExtFrobAlgpCq. Then, the functor � b B : C Ñ C is extended
Frobenius with

p� bBq
p2q
X,Y :� pidXbY bmBqpidX b cB,Y b idBq, p� bBqX,Y

p2q :� pidX b cY,B b idBqpidXbY b∆Bq,

p� bBqp0q :� uB , p� bBqp0q :� εB , {p� bBqX :� idX b ϕB , �p� bBq :� θB ,

for any X,Y P C. We note further that when B is not a separable Frobenius algebra, the
Frobenius functor defined above is not separable.

5.18. Example. Let pC,b,1q be an additive monoidal category, with an extended Frobe-
nius algebra B P ExtFrobAlgpCq. Then, the functor ��B : C Ñ C is extended Frobenius
with

p��Bq
p2q
X,Y :� πXbY�pmB � πBbBq, p��Bq

X,Y
p2q :� ιXbY�pιBbB �∆Bq,

p��Bq
p0q :� id1�uB , p��Bqp0q :� id1�εB , {p��BqX :� πX�pϕB � πBq, �p��Bq :� id1�θB ,

for any X, Y P C. Again, when B is not a separable Frobenius algebra, the Frobenius
functor defined above is not separable.

A. Graphical proof that integral Hopf implies Frobenius

In this section, we give a graphical proof of Proposition 4.8, showing that an integral Hopf
algebra in a symmetric monoidal category C is a Frobenius algebra in C. Recall axioms
(S1) - (S5) from Figure 1 in Section 3.1 above.

A.1. Diagrams for integral Hopf algebras. Recall from Definition 4.6 that a
Hopf algebra with invertible antipode in C is an object H P C equipped with morphisms
m : H b H Ñ H, u : 1 Ñ H, ∆ : H Ñ H b H, ε : H Ñ 1, S : H Ñ H with inverse
S�1 : H Ñ H; this is depicted in Figure A.12. These morphisms must satisfy the axioms
in Figure A.13. We also have that Hopf algebras with invertible antipode in C satisfy the
identities in Figure A.14. Moreover, an integral and a cointegral of a Hopf algebra H with
invertible antipode in C are given by morphisms Λ : 1Ñ H and λ : H Ñ 1, respectively,
satisfying the axioms depicted in Figure A.15. Now consider the following preliminary
result.

A.2. Lemma. We have the following identities.

(a) pmb SqpidH b∆Λq � pidH bmqpidH b S b idHqp∆mb idHqpidH b Λb idHq∆.

(b) λS Λ � id1.

Proof. Part (a) is proved in Figure A.16, and part (b) is proved in Figure A.17. Refer-
ences to Figures 1, A.13, A.14, and A.15 are made throughout.
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m u ∆ ε S S�1

Figure A.12: Structure morphisms for a Hopf algebra in C.

= = = = ==

(H1) (H2) (H3) (H4)

= = = =

(H5) (H6) (H7) (H8)

= =

= =

(H9) (H10)

Figure A.13: Axioms for a Hopf algebra with invertible antipode in C.

= = = =

(A1) (A2) (A3) (A4)

Figure A.14: Identities for a Hopf algebra in C.

= = =

Λ λ (I1) (I2) (I3)

Figure A.15: Normalized (co)integral for a Hopf algebra in C.

A.3. Proof of Proposition 4.8. We aim to show that

Ψ : IntHopfAlgpCq Ñ FrobAlgpCq
pH, m, u,∆, ε, S, S�1, Λ, λq ÞÑ pH, m, u,∆ :� pmb SqpidH b∆Λq, ε :� λq
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is a well-defined functor, which acts as the identity on morphisms.
For the assignment of objects under the functor Ψ, the coproduct ∆ and counit ε are

depicted in Figure A.18. The counitality axioms are then established in Figure A.19; the
Frobenius laws are established in Figure A.20; and the coassociativity axiom is established
in Figure A.21. References to Figures A.13–A.17 are made throughout. Next, for the
assignment of morphisms under Ψ, take a morphism of integral Hopf algebras

f : pH,mH , uH ,∆H , εH , S
�1
H ,ΛH , λHq Ñ pK,mK , uK ,∆K , εK , S

�1
K ,ΛK , λKq.

We will verify that Ψpfq :� f is a morphism of Frobenius algebras from

pH,mH , uH ,∆H , εHq Ñ pK,mK , uK ,∆K , εKq.

We have multiplicativity and unitality for free, since the Hopf multiplications and units
on H and K are the same as the Frobenius multiplications and units on H and K.
Next, we get Frobenius counitality immediately from the fact that f is compatible with
the cointegrals of H and K; namely, the Frobenius counits of H and K are given by
εH � λH and εK � λK . Finally, we have that Frobenius comultiplicativity holds via the
commutative diagram below.

H K

H bH K bK

H bH bH K bK bK

H bH K bK

f

∆H

idHbΛH

∆K

idKbΛK

idHb∆H

fbf

idKb∆K

fbfbf

mHbSH mKbSK
fbf

Here, the left and right regions commute by definition of ∆H and ∆K . The top region
commutes because f is compatible with the integrals of H and K. The bottom region
commutes because f is an algebra map and is compatible with the antipodes of H and
K. Finally, the middle region commutes because f is a coalgebra map between the Hopf
algebras H and K.
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