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THE MAGNITUDE OF CATEGORIES OF TEXTS ENRICHED BY
LANGUAGE MODELS

TAI-DANAE BRADLEY AND JUAN PABLO VIGNEAUX

Abstract. The purpose of this article is twofold. Firstly, we use the next-token prob-
abilities given by a language model to explicitly define a category of texts in natural
language enriched over the unit interval, in the sense of Bradley, Terilla, and Vlassopou-
los. We consider explicitly the terminating conditions for text generation and determine
when the enrichment itself can be interpreted as a probability over texts. Secondly, we
compute the Möbius function and the magnitude of an associated generalized metric
space of texts. The magnitude function of that space is a sum over texts (prompts) of
the t-logarithmic (Tsallis) entropies of the next-token probability distributions associ-
ated with each prompt, plus the cardinality of the model’s possible outputs. A suitable
evaluation of the magnitude function’s derivative recovers a sum of Shannon entropies,
which justifies seeing magnitude as a partition function. Following Leinster and Shul-
man, we also express the magnitude function of the generalized metric space as an Euler
characteristic of magnitude homology and provide an explicit description of the zeroeth
and first magnitude homology groups.

1. Introduction

In recent years, advances in large language models (LLMs) have brought renewed atten-
tion to mathematical structures underlying language. Building on the observation that
LLMs acquire a great deal of semantic information through the statistics of co-occurrences
of fragments of text, the first author together with Terilla and Vlassopoulos described a
category-theoretical framework for mathematical structure inherent in text corpora in
[Bradley et al., 2022]. This involves a category of strings from a finite alphabet of sym-
bols, with morphisms indicating substring containment; the strings correspond to texts
or fragments of texts in a language. Statistical information is incorporated through an
enrichment of this category over the unit interval by assigning a value π(y|x) ∈ [0, 1] to
each pair of strings x and y, which can intuitively be thought of as the probability that
y is an extension of a prompt x. By further embedding this enriched category of strings
into an enriched category of copresheaves valued in the unit interval, a setting which
contains rich mathematical structure, one can further explore semantic information via
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enriched analogues of categorical limits and colimits, which are akin to logical operations
on meaning representations of texts [Bradley et al., 2022]. More recently, Liu et al. have
provided experimental evidence supporting this semantic interpretation of the co-Yoneda
embedding of texts in the enriched category of copresheaves [Liu et al., 2024].

While an explicit construction of π(y|x) was not given in [Bradley et al., 2022], we
will show in this article that these values may in fact arise from next-token probabilities
generated by a language model. For context: in natural language processing, texts are
analyzed by splitting them into tokens—which might be characters, words, or word frag-
ments—and a language model (LM) is an algorithm (possibly learned) that, for any finite
sequence of tokens (i.e. a text fragment), assigns a probability to any given token being
its continuation [Jurafsky and Martin, 2025, Ch. 3]. These are sometimes referred as au-
toregressive or causal LMs, particularly when compared with masked LMs [Jurafsky and
Martin, 2025, Ch. 11]. The simplest causal LMs are n-gram models, which make their
prediction based on the last (n − 1)-tokens of the prompt. The relatively recent large
language models, which are deep learning models trained on vast amounts of data, have
extended the context used for prediction to thousands or even millions of tokens. Most of
today’s popular LLMs, such as those in the GPT and Llama families, are autoregressive.

Let us briefly review some basics and then state the main results of this work. To
start, it is standard for current language models to use special characters called the
beginning- and end-of-sentence tokens, which we will denote by ⊥ and †, respectively.
These tokens are usually not visible to the user but indicate to the model the boundary,
so to speak, of a text, which is essential during training and when generating output. (In
this way, a “sentence” may simply be thought of as a string of text built up token by
token.) Additionally, the models have a cutoff size, or maximum length limit, to prevent
unreasonably long outputs or infinite loops.

So in practice, for a tokenized user input a, the model is fed the prompt x = ⊥a and
generates a probability distribution px on its set of tokens. It then samples from that
distribution to select a token a1. If a1 is the end-of-sentence token †, the model outputs a
to the user. Otherwise, the string xa1 is fed back into the model, which again generates
a probability distribution pxa on its set of tokens. It samples from that distribution to
select a token a2, and the process repeats. If a2 = †, the model outputs aa1 to the user.
Otherwise, it continues in this fashion until it either selects † or reaches the cutoff size.
For convenience, if a string of tokens ends in †, then we will refer to it as a finished text.
Otherwise, it is unfinished. This brief background motivates the earlier claim that the
values from π indeed form the hom-objects of a category enriched over the unit interval.
Concretely, we will show the following main result:

Every LM defines an enriched category (see Proposition 2.16). Every autoregres-
sive language model defines a [0, 1]-category whose objects are strings of tokens that begin
with ⊥ and may or may not end with †, and whose hom-objects are given by π.

Our consideration of beginning/end-of-sentence tokens as well as cutoff values differ-
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entiates this result from the work in [Gaubert and Vlassopoulos, 2024], where a similar
enriched category-theoretical construction appears. This will also allow us to prove that
although the π(y|x) are not literally probabilities (for instance, we will see that π(x|x) = 1
for each object x), for each unfinished text x the function π(−|x) can be regarded as a
probability mass function on the set T (x) of terminating states of a prompt x, which is the
set of all strings having x as a prefix that either end with † or reach the cutoff size. Said
differently, T (x) is the set of all theoretically possible outputs of a model (including those
with negligible probability), given the prompt x. This is another contribution of this work:

Hom objects restrict to a probability mass function (see Proposition 2.9). Every
autoregressive language model determines a probability mass function π(−|x) on the set
of terminating states of an unfinished text x.

It was remarked in [Bradley et al., 2022] and [Gaubert and Vlassopoulos, 2024] that
one can alternatively enrich the category of strings over the extended non-negative reals
[0,∞] by defining the hom-object between strings x and y to be − lnπ(y|x). Lawvere
[1973] observed that one can see a ([0,∞],≥,+, 0)-enriched category as a generalized
metric space by interpreting the hom-objects as distances; the resulting distance function
may be non-symmetric and degenerate but still satisfies the triangle inequality. In this
article, we extend this geometric perspective by computing a fundamental invariant of
enriched categories—their magnitude. Magnitude generalizes the cardinality of a set and
the Euler characteristic of a topological space, and it can be regarded as the “size” of
an enriched category [Leinster, 2008, 2013]. The computation of magnitude of ordinary
metric spaces seen as [0,∞]-enriched categories reveals rich connections with traditional
invariants from integral geometry and geometric measure theory such as volume, capacity,
dimension, and intrinsic volumes [Leinster and Meckes, 2017].

In more detail, we study the generalized metric space M whose elements are strings
x, y, . . . and whose distances are given by d(x, y) = − ln π(y|x). We use the approach
introduced by Rota [1964], later extended by Leinster and Shulman [2021], to compute
the Möbius coefficients of M (see Proposition 3.6). Then we use these Möbius coefficients
to calculate the magnitude function Mag(tM), for t > 0.

Magnitude function associated with an LM (see Proposition 3.10). The magni-
tude function of the generalized metric space M associated with an autoregressive language
model is equal to

Mag(tM) = (t− 1)
∑

x∈ob(M)\T (⊥)

Ht(px) + #(T (⊥)), t > 0.

In the above expression,

1. #(T (⊥)) is the number of possible outputs of the model,
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2. px is the probability distribution over tokens generated by the model prompted by
x, and

3. Ht is the t-logarithmic entropy: Ht(p1, . . . , pm) = (1 −
∑m

i=1 p
t
i)/(t− 1).

The entropies (Ht)t∈(0,∞)\{1} were first introduced by Havrda and Charvát [1967] and
later popularized in physics by Tsallis [1988]. Each Ht is positive and strictly concave;
it vanishes when its argument concentrates all the probability on a single token (i.e. rep-
resents a Dirac measure) and it is maximal for the uniform distribution [Havrda and
Charvát, 1967]. It follows that, when t > 1, the function Mag(tM) is lower bounded
by #(T (⊥)), and this value is attained by a “deterministic” language model that has a
preferred continuation for each prompt, with no uncertainty (see Example 2.3). Similarly,
also when t > 1, the function Mag(tM) is upper bounded by

(t− 1)(n1−t − 1)

1 − t
· #(ob(M) \ T (⊥)) + #(T (⊥))

and this value is attained by a completely random language model whose next-token
probability distributions are always uniform over the set of all possible continuations.
This means that for every string x, the probability distribution px is uniform on the token
set; in this case the t-logarithmic entropy Ht(px) is equal to (n1−t − 1)/(1 − t), where n
is the size of the token set. In the limit t → ∞, these bounds take the simple form

#(T (⊥))︸ ︷︷ ︸
deterministic LM

≤ lim
t→∞

Mag(tM) ≤ #(ob(M))︸ ︷︷ ︸
maximally random LM

.

More generally, in the case t > 1 the magnitude is always proportional to the amount
of uncertainty in the model, as measured by the t-logarithmic entropy. In fact, if two
language models with associated spaces M1 and M2 assign the same next-token proba-
bilities (respectively, p

(1)
• and p

(2)
• ) to all prompts but one, called x′, in such a way that

Ht(p
(1)
x′ ) > Ht(p

(2)
x ), then Mag(tM1) > Mag(tM2).

The situation is less clear when t < 1. For instance, for a maximally random LM,
we have limt→0 Mag(tM) = (1 − n) · #(ob(M) \ T (⊥)) + #(T (⊥)), which is negative
(since n > 1, unless † is the only token besides ⊥). However, even for metric spaces, this
limit might take any value [Roff and Yoshinaga, 2025], thus resisting a straightforward
interpretation.

We shall see that the derivative of Mag(tM) at t = 1 is a sum of Shannon entropies:∑
x∈ob(M)\T (⊥)H(px). Analogous results hold for the subspace Mx of texts that extend a

given prompt x, see Remark 3.12.
Let us also remark that dependence of magnitude on the terminating states is remi-

niscent of similar results pertaining to posets or metric spaces that show a dependency
on the “boundary.” For instance, if a finite poset has top and bottom elements, then
its magnitude can be computed by evaluating its Möbius function (defined in Section 3)
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at those extremal elements [Rota, 1964], [Stanley, 2011, Proposition 3.8.5]. And in the
context of metric spaces, weighting vectors [Leinster, 2013]—such as (

∑
y µ(x, y))x when

the Möbius coefficients µ exist—effectively detect the boundary of certain subsets of Eu-
clidean space, an insight with recent applications in machine learning [Bunch et al., 2021;
Adamer et al., 2024]; see also [Willerton, 2009].

Finally, we will draw a connection to magnitude homology [Leinster and Shulman,
2021]. This is our final main result:

Magnitude homology associated with an LM (see Proposition 3.14). The mag-
nitude function can be expressed in terms of the ranks of the magnitude homology groups.
For any t > 0,

Mag(tM) =
∑
ℓ

e−tℓ
∑
k≥0

(−1)k rank(Hk,ℓ(M)),

where the first sum ranges over those ℓ that may appear as finite lengths of paths in M.

This result mirrors an analogous result by Leinster and Shulman [2021, Theorem 7.14],
although our proof follows directly from Proposition 3.6 and encounters significantly less
technical complications.

Structure of the article. Section 2 derives, from a given LM, an enriched category
of strings and an associated generalized metric space. Subsection 2.1 introduces the basic
definitions concerning tokens and texts, including the partial order of texts. Subsection 2.2
describes the process of text generation by an LM, defines the function π, and shows that
π(−|x) is a probability mass function over the set T (x) of terminating states. Subsection
2.10 reminds the reader of some basic definitions from enriched category theory, focusing
on categories enriched over commutative monoidal preorders, which are a particularly
simple case. Subsection 2.15 shows that π defines a [0, 1]-category L of texts in the sense
of [Bradley et al., 2022]. Subsection 2.17 introduces the corresponding generalized metric
space M using the isomorphism of categories − ln : [0, 1] → [0,∞].

Section 3 is dedicated to magnitude. Subsection 3.1 gives a short overview of cate-
gorical magnitude, and Subsection 3.2 treats the classical case of posets. Subsection 3.5
deals with the computation of the Möbius coefficients and magnitude of M. Subsection
3.13 covers the magnitude homology of M. Finally, Section 4 presents some final remarks
and perspectives.

2. Obtaining enriched categories from an LM

The goal of this section is to show that every LM defines a category enriched over the
unit interval that, in turn, gives rise to a generalized metric space. In leading up to these
results, we begin with a thin category whose objects are strings of symbols from a finite
alphabet that start with a beginning-of-sentence token and that may or may not end
with an end-of-sentence token. Morphisms are provided by substring containment. We
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then enrich this setting by constructing [0, 1]-hom objects obtained from the probabilities
generated by a given LM and also consider a [0,∞]-enriched analogue.

2.1. Tokens and texts. Let A be a finite alphabet (a set of tokens) and consider all
finite strings a, b, . . . from the free monoid A∗. In LMs, tokens can correspond to words,
pieces of words, or special characters, depending on the model, and hence longer texts
(e.g. sentences, paragraphs) are elements of A∗. Below, we call elements of A tokens and
elements of A∗ strings or texts. Write a ≤ b whenever a is a prefix of b, that is, whenever
b = aa′ for some a′ ∈ A∗. This defines a partial order since ≤ is reflexive (as A∗ contains
the empty string ϵ), transitive, and antisymmetric. We denote by |a| the length of a string
a ∈ A∗.

Besides the elements of A, we introduce two special tokens ⊥ and † which represent,
respectively, the so-called “beginning-of-sentence” and “end-of-sentence” tokens. Unlike
the elements in A, the tokens ⊥ and † do not appear in arbitrary positions; their role is
clarified below. Although some systems conflate both symbols, it is useful to keep the
distinction here.

We regard a partially ordered set (P,≤) as a thin category with object set P and such
that x → y if and only if x ≤ y. Given N ∈ N, we define L := L≤N as the full subcategory
of ((A∪{⊥, †})∗,≤) made of strings that start with ⊥ and are followed by at most N − 1
symbols, all of them in A with the exception of the last one, which might equal †; in other
terms,

ob(L) = {⊥a : a ∈ A∗ and |a| ≤ N − 1} ⊔ {⊥a† : a ∈ A∗ and |a| < N − 1}.

More explicitly, given objects x, y of L, there is a morphism x → y whenever x ≤ y as
elements of (A ∪ {⊥, †})∗, that is, if x is a prefix of y. We refer to an object of the form
⊥a as an unfinished text and to an object of the form ⊥a† as a finished text. For any
non-identity morphism x → y, the prefix x is necessarily an unfinished text, whereas y
can be finished or unfinished. Observe that L has an initial object,1 which is ⊥, and also
that it has a natural “grading” given by the length |x| of strings x. We remark that
|⊥| = 1.

It will be convenient to write the set ob(L) as a disjoint union
⊔N−1

j=0 L(j), where L(j)

consists of strings of length 1 + j. (Remark that L is a free category on a graph, so j
measures the graph-theoretic distance of the objects in L(j) to ⊥.) Aside from identities,
the arrows of L only go from elements of L(i) to elements of L(j) for j > i. Similarly,
given a string x in L, there is a full subcategory Lx of L whose objects are y ∈ L such
that x → y; in this case, we have ob(Lx) =

⊔N−|x|
j=0 L

(j)
x , where L

(j)
x consists only of those

strings of length |x|+ j, namely, those strings that extend x on the right by j tokens. So,

L
(0)
x = {x} and L

(1)
x = {xa1 : a1 ∈ A ∪ {†}} and L

(2)
x = {xa1a2 : a1 ∈ A, a2 ∈ A ∪ {†}} and

1By this point, the reader may have wondered why † is used as the end-of-sentence symbol instead
of ⊤, given our use of ⊥ for the beginning-of-sentence symbol. To start, the category L does not have a
terminal object, so we wish to avoid using notation that suggests otherwise. Further, one might think of
the end-of-sentence token as the state which “kills” the generation of a string, hence a dagger.
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so on. Remark that L
(j)
⊥ = L(j) for any j ≥ 0, and if x is a finished text, then Lx has a

single object, namely x.
We will refer to L as a poset or as a category interchangeably. Either way, it keeps

track of which strings are right extensions of other strings in a language. To incorporate
statistical information, we turn to enriched category theory in the following sections.

2.2. LMs and induced probabilities on texts. We characterize the behavior of an
autoregressive language model (e.g. GPT, Llama) as follows. For any tokenized user input
a ∈ A∗, the model is fed the prompt x = ⊥a and generates a probability distribution
px := p(−|x) : A ∪ {†} → [0, 1]. After generating px, the model then samples a token
a1 according to px. If a1 = †, then the process terminates and the model outputs a.
Otherwise, the token a1 is appended to a. These steps are then repeated. The model
generates a probability distribution p⊥aa1 on A ∪ {†}, samples a token a2 according to
it, and either terminates execution if a2 = † (outputting aa1) or appends a2 to aa1 to
generate p⊥aa1a2 , and so on.

We assume that the process stops when † is sampled or when the extended prompt
y = xa1 · · · aN−|x| reaches a maximum length N ; we call N the cutoff. We can think of
N − 1 as the context size of the language model, i.e. the maximum length of a string
x that can be used to generate a distribution px. Below are some common examples of
autoregressive language models.

2.3. Example. We say that a language model is deterministic if, for any possible prompt
x, there is a = a(x) ∈ A ∪ {†} such that px(a) = 1 (and therefore px(a′) = 0 for any
a′ ∈ (A∪{†})\{a}). Although this example is quite artificial, it will appear as an extreme
case for our magnitude calculations.

2.4. Example. If p⊥a1···an(−) only depends on an for any n ≥ 1, then the LM corresponds
to a Markov chain. In the terminology of Markov chains (see e.g. [Grimmett and Stirzaker,
2020, Ch. 6]), Ã = A ∪ {†} is the set of states and † is an absorbing state. The numbers
Pn(an, an+1) := p⊥a1···an(an+1) form a matrix Pn : Ã × Ã → [0, 1], which has positive
entries and is stochastic, meaning that each row sums to 1, i.e.

∑
a′∈Ã Pn(a, a′) = 1. By

convention we are assuming here that Pn(†, †) = 1 and Pn(†, a) = 0 for any a ∈ A, which
makes † an absorbing state.

Later in Section 4, we will briefly remark on a notion called categorical diversity in
connection with homogeneous and irreducible Markov chains. If for all n > 2 it holds
that Pn = P1, then the chain is said to be homogeneous. A Markov chain is irreducible
if there is a nontrivial probability of going from any state a ∈ A to any state a′ ∈ A in
a finite number of steps. A chain with an absorbing state is never irreducible. However,
if Pn(a, †) = 0 for every n ≥ 1 and a ∈ A, then Pn|A×A is also stochastic and (Pn)n≥1

defines a Markov chain with state space A. When this resulting chain is homogeneous and
irreducible, it necessarily has a stationary distribution (because A is finite, see [Grimmett
and Stirzaker, 2020, Sec. 6.6]), which is a probability vector q : A → [0, 1] such that∑

a′∈A q(a)P (a, a′) = q(a′). In this setting, we will see in Section 4 that if additionally
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p⊥(a) = q(a), then we can recover the Kolmogorov–Sinai entropy of the Markov chain
from the categorical diversity.

2.5. Example. An n-gram model is a Markov chain “with memory” of order n − 1, in
the sense that p⊥a1···ai(−) only depends on the last n − 1 tokens of ⊥a1 · · · ai (or all of
them if i < n− 2). For details see [Jurafsky and Martin, 2025, Ch. 3].

2.6. Example. A large language model is a deep neural network that implements a
function p(θ) : A∗ → ∆(A), a 7→ p

(θ)
⊥a(−). Here ∆(A) denotes the set of probability mass

functions on A, and θ the network’s parameters (connection weights between neurons) and
hyper-parameters. In the case of autoregressive LLMs, the deep neural network usually
implements a version of the decoder-only transformer architecture [Vaswani et al., 2017;
Radford et al., 2019]. The network is trained on a self-supervised manner: the goal is
to predict as well as possible the last token an from (a1, ..., an−1), given any tokenized
fragment of text (a1, ..., an) in a corpus C ⊂ A∗. For details see [Jurafsky and Martin,
2025, Ch. 10].

In general, it will be useful to consider the set of all possible outputs of an LM cor-
responding to a given input. In this vein, we define the set of terminating states for a
prompt x = ⊥a as follows.

2.7. Definition. The set of terminating states of an unfinished text x in L is defined to
be

T (x) = {y ∈ ob(Lx) : y is an unfinished text of length N or

y is a finished text such that |y| ≤ N}.

In the first case, y = xa′ for some a′ ∈ A∗ such that |a′| = N − |x|; for such a
terminating state the model outputs aa′ to the user according to some probability dis-
tribution. In the second case, y = xa′′† for some a′′ ∈ A∗ such that |a′′| ≤ N − |x| − 1;
for such a terminating state the model outputs aa′′ according to some probability distri-
bution. Either way, there is a bijective correspondence between the terminating states
and the theoretically possible outputs of the model, including those with small, or even
zero, probabilities.2 The phrase “theoretically possible” is used to emphasize that the set
T (x) depends only on the category of strings L and is independent of a choice of language
model.

Now, it is tempting to define the probability of the model’s output b given the user
input a as the product of the intermediate probabilities of the tokens involved in its
production. For example, when N > 5, the probability of generating the output b =
a1a2a3a4a5 ∈ A∗ given the user’s input a = a1a2 would be

p(a3|⊥a)p(a4|⊥aa3)p(a5|⊥aa3a4)p(†|⊥aa3a4a5).

2Notice that this description is only valid for prompts whose length is strictly less than N : to extend
a prompt x of length greater than N − 1, one needs to produce first a subrogate prompt f(x) such that
|f(x)| ≤ N − 1 and feed it to the language model to generate pf(x) and sample a token.
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However, it is not obvious that this rule indeed defines a probability mass function over
some set. We prove this below. But first, let us define these products in general.

2.8. Definition. For any objects x and y of L, define

π(y|x) :=



1 if x = y

0 if x ̸→ y

k∏
i=1

p(at+i|y<t+i) if x → y

. (1)

In the third case, we assume that x = ⊥a1 · · · at and y = xat+1 · · · at+k for some k ≥ 1,
(ai)

t+k−1
i=1 ⊂ A, and at+k ∈ A ∪ {†}. The symbol y<t+i denotes the string ⊥a1 · · · at+i−1,

and y<t+1 = x.

For a given string x in L, the function π(−|x) is not a probability mass function on its
whole support. (To begin with, π(x|x) = 1.) Nonetheless, it becomes a probability mass
function when restricted to T (x).

2.9. Proposition. Every autoregressive language model determines a probability mass
function π(−|x) on the set T (x) of terminating states of an unfinished text x.

Proof. If m = 0, then T (x) = {x} and by definition π(x|x) = 1. If m = 1, then
T (x) = {xa | a ∈ A ∪ {†}} and∑

y∈T (x)

π(y|x) =
∑

a∈A∪{†}

px(a) = 1,

since px is assumed to be a probability mass function on A ∪ {†}. For general m ≥ 1,

∑
y∈T (x)

π(y|x) =
m−1∑
i=0

∑
a′∈Ai

π(xa′ † |x) +
∑
a∈Am

π(xa|x) (2)

=
m−1∑
i=0

∑
a′∈Ai

π(xa′ † |x) +
∑

a=a′a′′

a′∈Am−1, a′′∈A

p(a′′|xa′)π(xa′|x) (3)

=
m−2∑
i=0

∑
a′∈Ai

π(xa′ † |x) +
∑

a′∈Am−1

π(xa′|x)
∑

a′′∈A∪{†}

p(a′′|xa′) (4)

=
m−2∑
i=0

∑
a′∈Ai

π(xa′ † |x) +
∑

a′∈Am−1

π(xa′|x) (5)

The two sums in (2) follow from the definition of T (x) and π, where the first sum accounts
for finished texts (i.e. those ending in †), and the second sum accounts for unfinished
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texts of length N . We obtain (3) by identifying a ∈ Am with (a′, a′′) ∈ Am−1 × A.
Then (4) follows by rewriting the term corresponding to i = m − 1 in the leftmost sum
as π(xa′|x)p(†|xa′), where a′ ∈ Am−1, and then moving it to the rightmost sum. The
expression in (5) equals one in virtue of the induction hypothesis.

2.10. Preliminaries on enriched category theory. We shall now use π to derive
an enriched category of strings L from L. For the convenience of the reader, we give here
the definition of a category enriched over a commutative monoidal preorder [Fong and
Spivak, 2019, Chapter 2], which is the only case we will need. See also [Kelly, 1982].

2.11. Definition. A commutative monoidal preorder (V ,≤,⊗, 1) is a preordered set
(V ,≤) and a commutative monoid (V ,⊗, 1) satisfying x ⊗ y ≤ x′ ⊗ y′ whenever x ≤ x′

and y ≤ y′.

2.12. Example. The unit interval ([0, 1],≤, ·, 1) is a commutative monoidal preorder
with the usual ordering ≤. Multiplication of real numbers is the monoidal product, which
we will denote by juxtaposition, ab := a · b for a, b ∈ [0, 1], and the monoidal unit is 1.

2.13. Example. The extended non-negative reals ([0,∞],≥,+, 0) form a commutative
monoidal preorder where the preorder is the opposite of the usual ordering on the reals.
The monoidal product is addition with a + ∞ := ∞ and ∞ + a := ∞ for all a ∈ [0,∞],
and the monoidal unit is 0.

2.14. Definition. Let (V ,≤,⊗, 1) be a commutative monoidal preorder. A (small)
category enriched over V , or simply a V-category, C consists of a set ob(C) of objects and,
for every pair of objects x and y, an object C(x, y) of V called a V-hom object satisfying
the following: for all objects x, y, z ∈ ob(C),

1 ≤ C(x, x)

C(y, z) ⊗ C(x, y) ≤ C(x, z)

Sections 2.15 and 2.17 below give examples of categories enriched over both [0, 1] and
[0,∞] defined from the probabilities generated by a language model. As we will see in
the setup introduced in Subsections 2.1 and 2.2, objects of both categories will consist of
strings of characters from some finite token set.

2.15. Every LM defines a [0, 1]-category. For convenience, let us recall the setup
established in Subsections 2.1 and 2.2. As described there, A denotes a finite alphabet,
such as the token set of a given LM, and L denotes the finite category whose objects are
strings from A that begin with ⊥ and are followed by at most N − 1 symbols, where the
last symbol may or may not be †. Here N denotes the model’s cutoff size. Moreover,
there is a morphism x → y if x is a prefix of y. Further recall that for each pair of strings
x, y in L, Definition 2.8 specifies the value π(y|x) ∈ [0, 1] which, if y is an extension of x,
is equal to the product of the successive probabilities given by the model when generating
y from x one token at a time. Otherwise, if x is not contained in y, then π(y|x) = 0, and
if x = y then π(x|x) = 1.
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This allows us to now define a category L enriched over the unit interval. The objects
of L coincide with the objects of L, and for a pair of objects x and y we define their
[0, 1]-hom object to be L(x, y) := π(y|x).

Let us verify that L satisfies both the identity and compositionality requirements for
a category enriched over [0, 1] listed in Definition 2.14. Suppose first that x, y, z are three
strings satisfying x → y → z. If x ̸= y and y ̸= z, then x and y are necessarily unfinished
texts, and we may write

x = ⊥a1 · · · at
y = ⊥a1 · · · at · · · at+k

z = ⊥a1 · · · at · · · at+k · · · at+k+k′ .

for some (ai)
t+k+k′−1
i=1 ⊂ A and at+k+k′ ∈ A ∪ {†}. It then follows from (1) that

π(y|x)π(z|y) =
k∏

i=1

p(at+i|y<t+i)
k′∏
j=1

p(at+k+j|z<t+k+j) (6)

=
k+k′∏
i=1

p(at+i|z<t+i)

= π(z|x).

If instead x = y, then π(y|x) = 1 and obviously π(z|y) = π(z|x). The case z = y is
treated similarly. More generally, if x, y and z are arbitrary objects of L, one has that
π(y|x)π(z|y) ≤ π(z|x) as it may be the case that π(y|x), π(z|x) ̸= 0 but π(z|y) = 0,3

or that π(z|y), π(z|x) ̸= 0 but π(y|x) = 0.4 In summary, we come to the following
proposition.

2.16. Proposition. Every autoregressive language model defines a [0, 1]-category whose
objects are those of L and whose hom-objects are given by π.

A more general version of this [0, 1]-category was originally defined in [Bradley et al.,
2022, Definition 4], where L(x, y) was taken to be nonzero whenever x was an arbitrary
substring of y (not strictly a prefix). However, the values π(y|x) were not constructed
explicitly from an LM, whereas Definition 2.8 above yields a [0, 1]-category of expressions
in a language where the values π(y|x) are described concretely from the probabilities
generated by an LM. A similar definition can be found in [Gaubert and Vlassopoulos,
2024], although neither their description nor the one in [Bradley et al., 2022] considers the
special characters ⊥ and † or a model’s cutoff value. The incorporation of these aspects
led us to the novel Proposition 2.9, which justifies referring to π as a probability.

Notice we only consider extensions of expressions on the right, having in mind the most
standard, autoregressive LLMs, although one could also consider bidirectional extensions.

3For example, consider when x = ⊥green and y = ⊥green lantern and z = ⊥green salad.
4For example, consider when x = ⊥movie tic and y = ⊥movie and z = ⊥movie ticket.
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That said, the tree-like structure implied by the restriction to right extensions plays a key
role in the computation of magnitude presented below.

Finally, let us also remark that, after defining the [0, 1]-category L of strings, the
authors of [Bradley et al., 2022] further consider enriched copresheaves on L, which were
shown to contain semantic information. Our present goal, however, is to turn our attention
away from L to a more geometric version of it.

2.17. Every LM defines a [0,∞]-category. As discussed in [Bradley et al., 2022,
Section 5], the function − ln : [0, 1] → [0,∞] is an isomorphism of categories, which pro-
vides a passage from probabilities to a more geometric setting. That is, instead of con-
sidering an enrichment from probabilities involved in generating a string y from a prefix
x, one could instead think of the “distance” traveled from x to y by defining

d(x, y) := − lnπ(y|x).

It is straightforward to check the triangle inequality is satisfied d(x, y) + d(y, z) ≥ d(x, z)
and further that d(x, x) = 0 for all strings x, y, z. (This follows from Equation (6) and the
fact that π(x|x) = 1 for all x.) From this perspective, a text that is highly likely to extend
a prompt x is close to x, and a text that is not an extension of x is infinitely far way. In
this way, we obtain a category M enriched over [0,∞], also known as a generalized metric
space in the sense of Lawvere [1973], by defining the [0,∞]-hom object between a pair of
strings x, y to be the distance M(x, y) := d(x, y). And now that we have a generalized
metric space, we may inquire after its magnitude.

3. Magnitude

The theory behind the magnitude of (generalized) metric spaces is well known [Leinster,
2013] and is a special case of the magnitude of enriched categories [Leinster and Shulman,
2021; Leinster and Meckes, 2017]. Importantly, the theory requires working with a finite
enriched category, which is an additional reason to consider the category L≤N with finite
cutoff N . In this section, then, we provide a few preliminaries before computing the
magnitude of the generalized metric space M. We begin by reviewing the definition of
magnitude in the context of enriched categories and in the classical context of posets.

3.1. Definition. Magnitude is a numerical invariant of a category enriched over a
monoidal category (V ,⊗, 1) [Leinster, 2013; Leinster and Shulman, 2021; Leinster and
Meckes, 2017]. Briefly, one starts with a semi-ring R and a multiplicative function
∥−∥ : ob(V) → R called size that is invariant under isomorphisms. So, ∥v∥ = ∥w∥
whenever v ∼= w in V , and ∥1∥ = 1 and ∥v ⊗ w∥ = ∥v∥∥w∥ for all v, w ∈ ob(V).
Then, given a V-category C with finitely many objects, one introduces the zeta function
ζC : ob(C)×ob(C) → R, defined by ζC(x, y) := ∥C(x, y)∥. The function ζC can be regarded
as a square matrix with index set ob(C) [Leinster, 2013]; when it is invertible, C is said
to have Möbius inversion and its Möbius function is µC := ζ−1

C (the entries of this matrix
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are called Möbius coefficients). When C has Möbius inversion, the magnitude Mag(C) of
C can be defined as

Mag(C) =
∑

(x,y)∈ob(C)×ob(C)

ζ−1
C (x, y). (7)

For V = [0,∞], every size function is of the form ∥x∥t = e−tx for some t ∈ R∪{∞}. It
is customary to choose ∥−∥1 and then consider the magnitude function f(t) := Mag(tC),
defined for t ∈ (0,∞) [Leinster, 2013, Section 2.2]. The symbol tC denotes the generalized
metric space with the same objects as C but whose distances (that is, whose [0,∞]-hom
objects) are scaled by t.

3.2. Magnitude of posets. The magnitude of an enriched category stems from a
classical story from posets, which we now briefly review from [Stanley, 2011].

Given a poset P , define a closed interval to be [s, t] = {u ∈ P : s ≤ u ≤ t} whenever
s ≤ t in P . If every interval of P is finite, then P is said to be a locally finite poset.

Let k be a field, P a locally finite poset, and int(P ) the set of all closed intervals of P .
The incidence algebra I(P, k) of P over k is the k-algebra of all functions f : int(P ) → k

with the usual structure of a vector space over k, where multiplication is given by the
convolution product,

(f ∗ g)(s, u) :=
∑
s≤t≤u

f(s, t)g(t, u),

where we write f(s, t) for f([s, t]). (Remark that the sum has finitely many terms.) The
incidence algebra of P is an associative algebra with identity δ : int(P ) → k given by

δ(s, u) =

{
1 if s = u

0 if s ̸= u

since f ∗ δ = δ ∗ f = f for all functions f ∈ I(P, k). The zeta function ζP is another
notable function in the incidence algebra, defined to be constant at 1 on every interval,

ζP (s, u) = 1, for all s ≤ u in P.

Observe that this coincides with the zeta function defined in the enriched categorical
setting, since every poset P (and in particular the poset L of strings) may be viewed as a
category enriched over truth values 2 := {true, false}. Its objects are the elements of
P , and given s, u ∈ P , if s ≤ u, then their corresponding hom object P (s, u) is true, and
if s ̸≤ u then it is false. The identity and compositionality requirements in Definition
2.14 arise from the reflexivity and transitivity of the partial order and by considering the
size function ∥−∥ : ob(2) → Z given by ∥true∥ = 1 and ∥false∥ = 0 and then setting
ζP (s, u) = ∥P (s, u)∥.

For every locally finite poset P , the function ζP is an invertible element of the incidence
algebra I(P, k) [Stanley, 2011, Prop. 3.6.2]. Equivalently, the zeta function is invertible
when regarded as a square matrix with index set P , cf. [Leinster, 2013]; we have taken
this matricial perspective in our presentation of the more general categorical definition in
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Subsection 3.1. The inverse of ζP is called the Möbius function of P , denoted µP , and it
can be computed recursively:

µP (s, u) =


1 if s = u

−
∑
s≤t<u

µP (s, t) if s < u

0 otherwise.

3.3. Example. The Möbius function µL on the poset L of strings is rather simple. This is
due to the tree-like structure of the full subcategory Lx of L introduced in Subsection 2.1,
whose objects are all strings y having a given string x as a prefix. Indeed, for any string
x ∈ ob(L) and tokens a1, a2, . . . ∈ A ∪ {†}, we have

µL(x, x) = 1

µL(x, xa1) = −µL(x, x) = −1

µL(x, xa1a2) = −µL(x, x) − µL(x, xa1) = −1 + 1 = 0

µL(x, xa1a2a3) = −µL(x, x) − µL(x, xa1) − µL(x, xa1a2) = −1 + 1 + 0 = 0.

Similarly, µL(x, xa1a2 · · · aj) = 0 for j > 1. (As one of the reviewers pointed out, these
identities hold for any free category, so in particular for L, which is a free category on a
tree rooted in ⊥.)

This Möbius function may then be used to compute the magnitude of the finite cate-
gory L of strings from a set A of tokens.

3.4. Example. Since the category L has an initial object, we know its magnitude is 1,
cf. [Leinster, 2008, Example 2.3], but it is also instructive to prove this via an explicit
computation of the Möbius function. Although we recommend the reader performs this
computation by herself, we also include it here for the sake of completeness. To that end,
let #A be the cardinality of the token set A and let # ob(L) be the number of strings in
the finite poset L considered as a category. The magnitude of L is given by

Mag(L) =
∑

x,y∈ob(L)

ζ−1
L (x, y)

=
∑

x,y∈ob(L)

µL(x, y)

=
∑

x∈ob(L)

µL(x, x) +
∑

x=⊥a∈ob(L)

a∈
⋃N−2

i=0 Ai

∑
a1∈A∪{†}

µL(x, xa1)

= # ob(L) − #

{
x ∈ ob(L) : x = ⊥a with a ∈

N−2⋃
i=0

Ai

}
(#A + 1).
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Unwinding the last line, recall that L denotes L≤N =
⊔N−1

i=0 L(i). We have L(0) = {⊥}
and, for each i ≤ 1, L(i) is comprised of strings of the form ⊥a with a ∈ Ai or ⊥a′† with
a′ ∈ Ai−1. It follows that #L(i) = #Ai + #Ai−1 and so

# ob(L) = 1 +
N−1∑
i=1

#L(i)

= 1 +
N−1∑
i=1

#Ai + #Ai−1 = #AN−1 + 2(#AN−2) + · · · + 2(#A) + 2.

Furthermore,

#

{
x ∈ ob(L) : x = ⊥a with a ∈

N−2⋃
i=0

Ai

}
(#A + 1) =

(
N−2∑
i=0

#Ai

)
(#A + 1)

= #AN−1 + 2(#AN−2) + · · · + 2(#A) + 1.

Therefore, Mag(L) = 1.

3.5. Main results. We are now ready to compute the magnitude of the generalized
metric space associated with an LM. As before, let M be the [0,∞]-category of strings
introduced in Subsection 2.17, whose objects are ob(M) = ob(L≤N) and where the [0,∞]-
hom objects are given by M(x, y) = d(x, y) = − ln π(y|x). Define the zeta matrix
ζM : ob(M) × ob(M) → R to be

ζM(x, y) := e−d(x,y) = π(y|x),

and more generally for any real number t > 0 define

(ζM)t(x, y) := e−td(x,y) = π(y|x)t.

It is understood that d(x, y) = ∞ whenever π(y|x) = 0; for instance, the distance from
a finished text x to any other string y is infinite. For simplicity, we will write ζt instead
of (ζM)t. As we will see in the proposition and corollaries below, ζ−1

t exists and its
components can be computed explicitly.

3.6. Proposition. For any t > 0, the matrix ζt is invertible. Moreover, for any x, y in
ob(M),

ζ−1
t (x, y) =

∑
k≥0

∑
nondeg. paths

x=y0→y1→···→yk=y in L

(−1)k
k∏

i=1

π(yi|yi−1)
t. (8)

(A non-degenerate path x = y0 → y1 → · · · → yk = y consists of a sequence of composable
non-identity morphisms.)
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Proof. Following Rota [1964] (see also [Leinster and Shulman, 2021]), we introduce the
formal expansion

ζ−1
t =

∑
k≥0

(−1)k(ζt − δ)k, (9)

where δ is the identity matrix: δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise.
The matrix ζ − δ is the adjacency matrix of a directed graph D with vertices ob(M)

(equivalently, ob(L)) and edges E = {(z, z′) | z → z′ in L, z ̸= z′} (we are excluding edges
coming from identity morphisms, whose weights vanish). The power (ζt− δ)k counts non-
degenerate paths of length k in D. Since L is a finite poset, one readily verifies that E
is finite and that the graph has no cycles. Hence the sum in (9) has a finite number of
terms.5

The expression (8) arises from evaluating (9) on (x, y). In fact,

(ζt − δ)(x, y) = π(x, y)t1(x,y)∈E,

where 1• denotes the indicator function, and more generally

(ζt − δ)k(x, y) =
∑

(y0,y1,...,yk−1,yk)
y0=x, yk=y

(yi−1,yi)∈E for i=1,...,k

k∏
i=1

π(yi|yi−1)
t.

3.7. Remark. We envision extensions of this theory where the category L would not
be a poset. This would be the case, for instance, if we consider the general relation of
being a substring, instead of being just a prefix, cf. [Gaubert and Vlassopoulos, 2024].
Similarly, it might be possible to build an analogous category for syntactic trees, where
morphisms would arise from the syntactic Merge operation and rearrangements of the
subtrees of a tree followed by Merge. (Merge is the fundamental syntactic operation in
Chomsky’s minimalist program; it has been formalized as an operation on a Hopf algebra
of syntactic forests in [Marcolli et al., 2025].) In these situations, where the categories
present nontrivial cycles, we would need different techniques to compute ζ−1

t , such as
those introduced in [Vigneaux, 2024] by the second author. Our Proposition 3.6 can also
be derived from this more general formalism.

The following corollary shows that the Möbius coefficients obtained from ζ−1
t have

a simplified expression in terms of π from Definition 2.8 and the Möbius function ζ−1
L ,

whose zeta function ζL was described in Section 3.2.

3.8. Corollary. For any strings x, y in ob(M),

ζ−1
t (x, y) = π(y|x)t ζ−1

L (x, y).

5For general categories, one has to establish convergence of the series under certain conditions, see
[Leinster and Shulman, 2021].
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Proof. For any k ≥ 0 and any nondegenerate path x = y0 → y1 → · · · → yk = y in L,
Equation (6) implies

k∏
i=1

π(yi|yi−1)
t = π(y1|y0)tπ(y2|y1)tπ(y3|y2)t · · · π(yk|yk−1)

t

= π(y2|y0)tπ(y3|y2)t · · · π(yk|yk−1)
t

=
...

= π(yk|y0)t.

Hence the Möbius coefficients ζ−1
t (x, y) can be written as

π(y|x)t
∑
k≥0

(−1)k#{nondegenerate paths of length k from x to y in L}

which is equal to π(y|x)tζ−1
L (x, y) by Philip Hall’s theorem [Hall, 1936], cf. [Stanley, 2011,

Proposition 3.8.5], [Leinster, 2008, Corollary 1.5].

Now recall that ζ−1
L (x, y) = µL(x, y), and so ζ−1

t can be simplified even further by
Example 3.3.

3.9. Corollary. For any strings x, y in ob(L),

ζ−1
t (x, y) =


−π(y|x)t if y ∈ L

(1)
x

1 if y = x

0 otherwise.

Finally, then, we may use these results to write down the magnitude function of the
generalized metric space M. By Equation (7) it is the function f : (0,∞) → R given by
f(t) = Mag(tM), where6

Mag(tM) :=
∑

x,y∈ob(M)

ζ−1
t (x, y).

Now recall that for any real number t, the t-logarithmic entropy of a probability distribu-
tion p = (p1, . . . , pn) is equal to

Ht(p) =
1

t− 1

(
1 −

n∑
i=1

pti

)
.

The following proposition expresses the magnitude function of M in terms of the loga-
rithmic entropies of the probability distributions (px : A ∪ {†} → [0, 1])x∈ob(L) generated
by a language model and the cardinality of the terminal states T (⊥) of the beginning-
of-sentence symbol, which is the set of all theoretically possible terminating states of the
model.

6By Corollary 3.8, it follows that Mag(tM) =
∑

x,y∈ob(M) π(y|x)tζ
−1
L (x, y), which is a weighted version

of the magnitude of the poset L in Example 3.4.
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3.10. Proposition. The magnitude function of the generalized metric space M associ-
ated with an autoregressive language model is equal to

Mag(tM) = (t− 1)
∑

x∈ob(M)\T (⊥)

Ht(px) + #(T (⊥)), t > 0.

Proof. By Corollary 3.9,

Mag(tM) =
∑

x,y∈ob(M)

ζ−1
t (x, y)

=
∑

x∈ob(M)

ζ−1
t (x, x) −

∑
x∈ob(M)\T (⊥)

∑
y∈L(1)x

π(y|x)t (10)

=
∑

x∈ob(M)\T (⊥)

1 −
∑

a∈A∪{†}

px(a)t

+ #(T (⊥)). (11)

Observe that the first sum in Equation (10) is over all objects in M, including those
strings x that are not the prefix of any other string y ̸= x, such as all finished texts. The
double sum in Equation (10) accounts for unfinished strings and their extensions by a
single token, which is why the indexing set is ob(M) \ T (⊥). Equation (11) follows from
the decomposition ob(M) = T (⊥) ⊔ (ob(M) \ T (⊥)) and the fact that ζ−1

t (x, x) = 1 for
all x ∈ ob(M).

When t = 1, Equation (11) is simply #(T (⊥)), since px is a probability mass function
on A∪{†}. When t ̸= 1, we can multiply the sum by (t− 1)/(t− 1) and rearrange factors
to conclude.

As discussed in the Introduction, one might view Mag(tM) as measuring something
of the effective size of a language model’s linguistic space, in the sense that for t ≥ 1,
magnitude achieves its smallest possible value if the model is deterministic (that is, it only
produces a single preferred text), and it achieves its largest possible value if the model is
completely random (at every stage the next-token probability distribution has maximal
entropy).

3.11. Remark. It is easy to show (e.g. via L’Hôpital’s rule) that if p : S → [0, 1] is a
probability mass function on a finite set S,

lim
t→1

Ht(p) = lim
t→1

1

t− 1

(
1 −

∑
s∈S

p(s)t

)
= −

∑
s∈S

p(s) ln p(s) =: H(p).

The quantity H(p) is the Shannon entropy of p (in nats). This entails that Shannon en-
tropy emerges when computing the derivative of the magnitude function f(t) = Mag(tM)
at t = 1:

f ′(1) =
∑

x∈ob(M)\T (⊥)

H(px). (12)
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Alternatively, we can deduce from Equation (10) that

f(t) = #(ob(M)) −
∑

x∈ob(M)\T (⊥)

Zx(t),

where
Zx(t) =

∑
a∈A∪{†}

px(a)t =
∑

a∈A∪{†}

e−t(− ln px(a))

is the partition function of a system with microstates A∪{†} and internal energy Ex(a) =
− ln px(a) = d(x, xa) at inverse temperature t > 0. One can verify (see, for instance, [Baez,
2011]) that

H(px) = − d

dt
Zx(t)

∣∣∣∣
t=1

,

from which Equation (12) also follows.
Since internal energy does not have to be normalized, we could also write f(t) =

#(ob(M))− Z̃(t), where Z̃ is the partition function of a system with microstates (x, a) ∈
S := (ob(M) \ T (⊥)) × (A ∪ {†}) and internal energy E(x, a) = d(x, a) = − ln px(a).
The set S parameterizes indecomposable non-identity arrows in L. For each t > 0,
there is a corresponding probability mass function (Gibbs state) ρ on S, given by ρ(s) =
e−tE(s)/Z̃(t). Then

Eρ(E) =
∑
s∈S

E(s)
e−tE(s)

Z̃(t)
= − d

dt
ln Z̃(t) =

f ′(t)

Z̃(t)
,

which gives yet another interpretation of the derivative of the magnitude function.

3.12. Remark. If desired, one can also make sense of the magnitude function of an
enriched category associated with a particular string. That is, suppose x ∈ ob(M) and let
Mx denote the [0,∞]-category whose objects are strings y containing x as a prefix. Define
the hom-object between any y, z ∈ ob(Mx) to be Mx(y, z) := M(y, z) = − ln π(z|y).
Compositionality and the identity requirement hold since they hold in M. So Mx is
indeed a [0,∞]-category and its magnitude function is given by

ζMx = ζM
∣∣
ob(Mx)×ob(Mx)

and because of Proposition 3.6, its inverse is equal to

ζ−1
Mx

= ζ−1
M
∣∣
ob(Mx)×ob(Mx)

,
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which implies

Mag(tMx) =
∑

y,z∈ob(Mx)

ζ−1
Mx

(y, z)

=
∑

y∈ob(Mx)

ζ−1
Mx

(y, y) −
∑

y∈ob(Mx)\T (x)

∑
y∈L(1)y

π(z|y)t

= (t− 1)
∑

y∈ob(Mx)\T (x)

Ht(py) + #(T (x)).

3.13. Magnitude homology. The magnitude homology of metric spaces and enriched
categories has been studied extensively by Leinster and Shulman [2021]. The main the-
orem of their work, namely [Leinster and Shulman, 2021, Theorem 7.14], expresses the
magnitude function of a metric space (M,d) as a weighted sum of Euler characteristics
of certain chain complexes. More precisely, for each ℓ ∈ [0,∞), there is a chain complex
comprised of free abelian groups (MCk,ℓ(M))k∈N such that MCk,ℓ(M) := Z[Gk,ℓ] where

Gk,ℓ =

{
(y0, . . . , yk) ∈ Mk+1 |

k−1∑
i=0

d(yi, yi+1) = ℓ and for all i, yi ̸= yi+1

}
.

The differential ∂k : MCk,ℓ(M) → MCk−1,ℓ(M) is defined as an alternating sum

∂k =
k∑

i=0

(−1)i∂i
k

where for each 0 < i < k,

∂i
k(y0, . . . , yk) = {

(y0, . . . , yi−1, yi+1, . . . , yk) if d(yi−1, yi) + d(yi, yi+1) = d(yi−1, yi+1)

0 otherwise

and ∂0
k = ∂k

k = 0. The resulting [0,∞)-graded chain complex (MC•,ℓ(M), ∂•) is called the
magnitude complex of M [Leinster and Shulman, 2021, Definition 3.3] and its homology
H•,•(M) is called magnitude homology [Leinster and Shulman, 2021, Definition 3.4]. The
same definitions hold for any generalized metric space, such as M.

The following corollary expresses the magnitude function of M as a weighted sum of
Euler characteristics. It is a direct result of Proposition 3.6 and also mirrors [Leinster
and Shulman, 2021, Theorem 7.14], although the situation is considerably simpler here
because each complex (MC•,ℓ)ℓ is bounded and moreover only finitely many ℓ can arise
as total lengths, which implies we only have to deal with finite sums instead of infinite
series.
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3.14. Proposition. For any t > 0, set q = e−t. Then

Mag(tM) =
∑
ℓ

qℓ
∑
k≥0

(−1)k rank(Hk,ℓ(M))

where the first sum is over those finitely many values of ℓ ∈ [0,∞) for which⋃
k≥0

MCk,ℓ(M) ̸= ∅.

Proof. By combining the definition of the magnitude function and its expression in
Proposition 3.6, we have

Mag(tM) =
∑

x,y∈ob(M)

ζ−1
t (x, y)

=
∑

x,y∈ob(M)

∑
k≥0

∑
nondeg. paths

x=y0→y1→···→yk=y in L

(−1)k
k∏

i=1

π(yi|yi−1)
t.

Observe that the sum over nondegenerate paths can be restricted to those paths x = y0 →
y1 → · · · → yk = y such that

∏k
i=1 π(yi|yi−1) ̸= 0, which implies that d(yi, yi+1) < ∞ for

any i = 0, . . . , k − 1. Further, there is a bijective correspondence between nondegenerate
paths x = y0 → y1 → · · · → yk = y of total length ℓ :=

∑k−1
i=0 d(yi, yi+1) < ∞ and

generators (y0, ..., yk) in Gk,ℓ. Now remark that
∏k

i=1 π(yi|yi−1)
t = exp(−tℓ), and so it is

natural to group all the paths that have the same total distance, resulting in the following:

Mag(tM) =
∑
k≥0

∑
ℓ∈[0,∞)

∑
c∈Gk,ℓ

(−1)ke−tℓ. (13)

Since M is finite, only finitely many real numbers ℓ ∈ [0,∞) can arise as total lengths of
nondegenerate paths, which clarifies the meaning of the second sum. Moreover∑

c∈Gk,ℓ

(−1)ke−tℓ = (−1)kqℓ#Gk,ℓ = (−1)kqℓ rank(MCk,ℓ(M)).

The combination of this fact and Equation (13) yields the claim by following a classical
argument present in the proof of [Leinster and Shulman, 2021, Theorem 6.17], for instance;
it is important that each group MCk,ℓ is finitely generated and that (MC•,ℓ)ℓ is bounded.

3.15. Remark. Proposition 3.14 expresses the magnitude function as a weighted sum of
Euler characteristics. Together with Proposition 3.10, it establishes a connection between
entropy and topological invariants, perhaps sitting alongside other recent results linking
information theory and algebraic topology [Baudot and Bennequin, 2015; Vigneaux, 2020;
Bradley, 2021; Mainiero, 2019].

Finally, we make a few additional observations about the magnitude homology of M,
which is the homology of the magnitude complex defined above. Although Leinster and
Shulman work primarily with metric spaces in [Leinster and Shulman, 2021], two of their
results translate directly to our setting:
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1. The group H0,0(M) is the free abelian group on ob(M), and for any ℓ > 0,
H0,ℓ(M) = 0, cf. [Leinster and Shulman, 2021, Theorem 4.1].

2. The group H1,ℓ(M) is the free abelian group on the set of ordered pairs (x, y) such
that x ̸= y and d(x, y) = ℓ and there does not exist any point strictly between x
and y in L, cf. [Leinster and Shulman, 2021, Theorem 4.3].

Given these facts, one rewrite Equation (10) as

Mag(tM) = rankH0,0(M) −
∑
ℓ≥0

qℓ rankH1,ℓ(M). (14)

We conjecture that higher homology groups vanish. If this is the case, Equation (14)
would also follow Proposition 3.14.

4. Final remarks

We conclude with a few remarks surrounding the results of this article. To start, one might
notice that the zeta function associated with the generalized metric space M relates to
perplexity, which is frequently used in evaluating autoregressive language models. To
elaborate, the perplexity of a tokenized sequence y = a0a1 · · · an is

PPL(x) = exp

{
− 1

n

n∑
i=1

ln p(ai|y<i)

}

where p(−|y<i) is the next-token probability distribution generated by the model when
prompted with y<i [Jurafsky and Martin, 2025, Sec. 3.3], cf. Subsection 2.2. Perplexity
is thus equal to the reciprocal of the zeta function ζt(a0, y) when t = 1/n, and a0 is the
first token (usually ⊥), and y is the full string:

PPL(y) = 1/ζt(a0, y) = 1/et lnπ(y|a0),

or said differently, ζt(a0, y) = 1/PPL(y). So perhaps for intuition, one might wish to
think of the zeta function ζt(x, y) for arbitrary x, y as a generalization of the (reciprocal)
of perplexity.

On a different note, as remarked in the introduction, one advantage to defining an
enriched category of strings from a language is that one can pass to enriched copresheaves
on those strings, and the latter functor category contains rich structure. Concretely,
there is a [0,∞]-category M̂ := [0,∞]M whose objects are [0,∞]-copresheaves, that
is, functions f : M → [0,∞] satisfying max{f(y) − f(x), 0} ≤ M(x, y) for all strings
x and y. The relevance is that while M does not, a priori, have any sort of algebraic
structure, the functor category M̂ does, in the sense that one can compute weighted limits
and colimits between copresheaves that are reminiscent of logical operations on meaning
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representations of texts [Bradley et al., 2022, Section 5]. It may be interesting to compute

the magnitude of an appropriate finite version of M̂, cf. [Leinster, 2008, Example 2.5].
Lastly, let us draw a brief connection to the notion of diversity. Categorical diversity

[Chen and Vigneaux, 2023] depends on a finite category A, a probability mass function
p : ob(A) → [0, 1], and a similarity matrix θ : ob(A) × ob(A) → [0,∞) such that

θ(a, b) = 0 if A(a, b) = ∅.

In the case of a generalized metric space, θ = ζt and diversity is given by

H (M, p, ζ) = −
∑

y∈ob(M)

p(y) log

 ∑
z∈ob(M)

ζt(y, z)p(z)


= −

∑
y∈ob(M)

p(y) log

 ∑
z∈ob(M)

π(z|y)tp(z)

 .

In [Chen and Vigneaux, 2023] the authors make a case for seeing this function as a
probabilistic extension of log(magnitude), just as entropy is a probabilistic extension of
log(cardinality) already in the work of Boltzmann and Gibbs. In the particular case of
metric spaces, there are very deep connections between magnitude and diversity [Meckes,
2015]. We leave a detailed study of diversity of enriched categories of texts for future
work, but remark here that if we take p = π(−|x)|T (x), then we recover the Shannon
entropy of π(−|x)|T (x), which unlike our expression for the magnitude does not treat all
states equally and gives more weight to those that are highly probable.

Very interestingly, in the particular case of a homogeneous and irreducible Markov
chain with transition matrix P : A × A → [0, 1] and with stationary distribution p⊥, in
the sense of Example 2.4, one can verify (following a standard computation, see e.g. the
proof of [Walters, 1982, Thm. 4.27]) that the diversity rate

lim
n→∞

H (M, π(−|⊥)|T (⊥), ζ)

n

= lim
n→∞

− 1

n

∑
(a1,...,aN−1)∈AN−1

π(⊥a1 · · · aN−1|⊥) log π(⊥a1 · · · aN−1|⊥)

equals the Kolmogorov–Sinai entropy (rate) of the Markov chain,

−
∑
a∈A

∑
a′∈A

p⊥(a)P (a, a′) logP (a, a′),

which plays a fundamental role in information theory [Shannon, 1948, App. 3] and is an
asymptotic lower bound for the logarithm of the perplexity of any LM that approximates
the Markov chain [Jurafsky and Martin, 2025, Sec. 3.7].
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Clemens Berger, Université Côte d’Azur: clemens.berger@univ-cotedazur.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu

John Bourke, Masaryk University: bourkej@math.muni.cz
Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt
Valeria de Paiva, Topos Institute: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Rune Haugseng, Norwegian University of Science and Technology: rune.haugseng@ntnu.no
Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt
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