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UNIFORM PREORDERS
AND PARTIAL COMBINATORY ALGEBRAS

JONAS FREY

Abstract. Uniform preorders are a class of combinatorial representations of Set-
indexed preorders that generalize Hofstra’s basic relational objects. An indexed preorder
is representable by a uniform preorder if and only if it has a generic predicate. We study
the ∃-completion of indexed preorders on the level of uniform preorders, and identify a
combinatory condition (called ‘relational completeness’) which characterizes those uni-
form preorders with finite meets whose ∃-completions are triposes. The class of triposes
obtained this way contains relative realizability triposes, for which we derive a charac-
terization as a fibrational analogue of the characterization of realizability toposes given
in earlier work by the author.

Besides relative partial combinatory algebras, the class of relationally complete uniform
preorders contains filtered ordered partial combinatory algebras, and it is unclear if there
are any others.
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Introduction

In his seminal article [Hof06], Pieter Hofstra gave an analysis of filtered ordered combina-
tory algebras (filtered OPCAs) in terms of the more primitive notion of basic combinatory
objects (BCOs). These are combinatory representations (A,≤,F) of certain Set-indexed
preorders by partial orders equipped with a class of partial endomaps, and Hofstra showed
that a BCO (A,≤,F) arises from a filtered OPCA if and only if

(1) it is cartesian in the sense that the induced indexed preorder fam(A,≤,F) is an
indexed meet-semilattice, and

(2) the free completion under existential quantification (‘∃-completion’) of fam(A,≤,F)
is a tripos.

The present work gives two variations on this theme, replacing BCOs by the more general
notion of uniform preorder on the one hand, and by the more restrictive notion of discrete
combinatory object on the other hand, together fitting into a sequence

DCO→ BCO→ UOrd→ IOrd

of embeddings of locally ordered categories. A uniform preorder is a set together with a
monoid of binary relations (Definition 1.1), and a DCO is a set with a monoid of partial
functions (Definition 8.1(1)), and the locally ordered categories DCO and UOrd have the
advantage over BCO that their bi-essential images in the locally ordered category IOrd
of Set-indexed preorders admit straightforward characterizations: an indexed preorder is
representable by an uniform preorder iff it has a generic predicate (Lemma 1.6), and it is
representable by a DCO iff it has a discrete generic predicate (Corollary 8.4).

After developing the basic theory of uniform preorders in Sections 1–5, we give a com-
binatorial criterion for the ∃-completion of (the indexed preorder induced by) a cartesian
uniform preorder to be a tripos in Definition 6.3 and Theorem 6.5, which we call rela-
tional completeness. In Example 6.7(2), relational completeness is used to show that the
∃-completion of a tripos is again a tripos, and Remark 6.6(2) gives a characterization of
the triposes that arise as ∃-completions of (the indexed preorders associated to) relation-
ally complete uniform preorders, building on a prior characterization of ∃-completions in
terms of ∃-prime predicates (Proposition 4.3). This characterization is augmented by a
discreteness condition in Theorem 9.5 to yield a characterization of relative realizability
triposes:

A tripos P is a relative realizability tripos if and only if it has enough ∃-prime
predicates, and the indexed sub-preorder prim(P) of ∃-prime predicates has
finite meets and a discrete generic predicate.

In light of the close analogy between Theorem 9.5 and Remark 6.6(2), relationally com-
plete uniform preorders could be viewed as (relative/filtered) relational PCAs.

A central question remains open: every filtered OPCA gives rise to a relationally
complete uniform preorder, but are there any others?
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Most of the work presented here is already contained in the author’s PhD thesis [Fre13],
where the theory of uniform preorders is developed in greater generality, including many-
sorted uniform preorders, and without the use of the axiom of choice. To get a more
accessible presentation, we have left out the subtleties of a choice-free development here,
and focused on the single-sorted case.

1. The locally ordered category of uniform preorders

Uniform preorders were introduced in [Fre13] as representations of certain Set-indexed
preorders that generalize Hofstra’s basic combinatorial objects (BCOs) [Hof06].

Contrary to BCOs, for uniform preorders there exists a straightforward characteriza-
tion of the induced class of indexed preorders, which makes the notion both conceptually
very clear and somewhat tautological. In this section we reconstruct the definition of
uniform preorders from this characterization, after fixing terminology and notation on
locally ordered categories and indexed preorders, which constitute the central formalisms
in this article.

A Set-indexed preorder is a pseudofunctor Setop → Ord where Ord is the locally ordered
category of preorders and monotone maps. We view locally ordered categories as degen-
erate 2-categories, and use 2-categorical concepts and terminology. As we only consider
indexed preorders on Set in this paper, we omit the prefix. Given an indexed preorder P
and a set A, we call P(A) the fiber of P over A, and refer to its elements as predicates on
A. Given a function f : A→ B, the monotone map P(f) is called reindexing along f and
abbreviated f ∗. We write IOrd for the locally ordered category of indexed preorders and
pseudo-natural transformations.

Strict indexed preorders and transformations form a non-full locally ordered subcate-
gory [Setop,Ord] of IOrd, which by a well known argument about models of geometric the-
ories in presheaf categories1 is isomorphic to the locally ordered category Ord([Setop, Set])
of internal preorders in [Setop, Set].

The locally ordered category UOrd of uniform preorders is now characterized as fitting
into the following strict pullback of locally ordered categories, where U sends internal
preorders to underlying presheaves, the categories in the lower line are viewed as having
codiscretely ordered hom-sets (to make U well-defined),よ is the Yoneda embedding, and
fam is the indicated composition.

UOrd
⌟

Ord([Setop, Set]) [Setop,Ord] IOrd

Set [Setop, Set]

J

fam

U

∼=

よ

The 2-functor J is 2-fully faithful sinceよ is, which means that UOrd can be identified

1[Joh02, Corollary D1.2.14(i)] gives a statement for small index categories, but smallness is not essen-
tial.
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with the 2-full subcategory of Ord([Setop, Set]) on internal preorders whose underlying
presheaves are representable. In other words, a uniform preorder is a set A together with
an internal preorder structure onよ(A). Such a preorder structure is given by a subfunctor
ofよ(A)×よ(A) ∼=よ(A×A), i.e. a sieve on A×A, subject to reflexivity and transitivity
conditions.

Since surjections split in Set, sieves are completely determined by their monomor-
phisms, or equivalently subset-inclusions, which means that a sieve on A × A is equiva-
lently represented as a down-closed subset of the powerset P (A× A). We leave it to the
reader to verify that unwinding the meaning of reflexivity, transitivity, monotonicity, and
the hom-set ordering in terms of this representation of sieves yields the following concrete
descriptions of the locally ordered category UOrd and the 2-functor fam.

1.1. Definition. The locally ordered category UOrd of uniform preorders and monotone
maps is defined as follows.

(1) A uniform preorder is a pair (A,R) of a set A and a set R ⊆ P (A × A) of binary
relations on A, such that

– idA ∈ R,
– s ◦ r ∈ R whenever r ∈ R and s ∈ R, and
– s ∈ R whenever r ∈ R and s ⊆ r.

(2) A monotone map between uniform preorders (A,R) and (B, S) is a function f :
A→ B such that for all r ∈ R, the set

(f × f)[r] = f ◦ r ◦ f ◦ = {(fa, fa′) | (a, a′) ∈ r}
is in S.

(3) The ordering relation ≤ on monotone maps f, g : (A,R) → (B, S) is defined by
f ≤ g iff the set

im⟨f, g⟩ = {(fa, ga) | a ∈ A}
is in S.

1.2. Definition. The 2-functor fam : UOrd→ IOrd is defined as follows.

(1) For every uniform preorder (A,R), the indexed preorder fam(A,R) maps

– sets I to preorders (AI ,≤), where φ ≤ ψ : I → A iff

im⟨φ, ψ⟩ = {(φi, ψi) | i ∈ I} (1.1)

is in R, and

– functions f : J → I to monotone maps f ∗ : (AJ ,≤) → (AI ,≤) given by
precomposition.

(2) For every monotone map f : (A,R) → (B,S) between indexed preorders, the com-
ponents of the indexed monotone map fam(f) : fam(A,R)→ fam(B, S) are given by
postcomposition.
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1.3. Remarks.

– Given a uniform preorder (A,R) and predicates, φ, ψ : I → A, we say that a relation
r ∈ R realizes an inequality φ ≤ ψ if im⟨φ, ψ⟩ ⊆ r (and thus im⟨φ, ψ⟩ ∈ R). This is
stable under reindexing: if r realizes φ ≤ ψ and u : J → I then r realizes u∗φ ≤ u∗ψ.

– The ordering on monotone maps f, g : (A,R) → (B, S) defined in 1.1(3) is the
restriction of the ordering on fam(B, S)(A) as defined in 1.2(1).

1.4. Definition. A basis for a uniform preorder (A,R) is a subset R0 ⊆ R of binary
relations whose down-closure ↓R0 in P (A × A) is R, i.e. R and R0 generate the same
sieve on A × A. In other words, R0 ⊆ R is a basis of R if for every r ∈ R there is an
r0 ∈ R0 with r ⊆ r0.

1.5. Remark. Given a set A and a set R0 ⊆ P (A × A) of binary relations, its down-
closure R = ↓R0 is a uniform preorder structure on A iff

(1) there exists an r ∈ R0 with idA ⊆ r, and

(2) for all r, s ∈ R0 there exists a t ∈ R0 with s ◦ r ∈ t.

Just like continuity of functions between topological spaces, monotonicity of functions
between uniform preorders can be expressed in terms of bases. Specifically, given uniform
preorders (A,R) and (B, S) with bases R0 and S0, a function f : A→ B is monotone iff
for all r ∈ R0 there exists an s ∈ S0 with (f × f)[r] ⊆ s, and given φ, ψ : I → A we have
φ ≤ ψ in fam(A,R)(I) iff there exists an r ∈ R0 with im⟨φ, ψ⟩ ⊆ r.

The following lemma gives a better understanding of the combined embedding from
UOrd to IOrd. Recall that a generic predicate in an indexed preorder A is a predicate
ι ∈ A(A) for some A, such that for every other set B and predicate φ ∈ A(B) there exists
a function f : B → A with f ∗ι ∼= φ.

1.6. Lemma. The 2-functor fam : UOrd→ IOrd is a local equivalence, and its bi-essential
image consists of the indexed preorders which admit a generic predicate.

Concretely, if H is an indexed preorder with generic predicate ι ∈ H(A), then the
corresponding uniform preorder is given by (A,R) with

R = {r ⊆ A× A | p∗ι ≤ q∗ι}
r

A A× A A

p q

π2π1

where p, q : r → A are the first and second projections as in the diagram.
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Proof. For the first claim — since UOrd → [Setop,Ord] is an isomorphism on hom-
preorders, and [Setop,Ord] → IOrd is locally order reflecting — it is sufficient to show
that for every uniform preorder (A,R), strict indexed preorder K, and pseudonatural
f : fam(A,R) → K there exists a strict transformation f̄ : fam(A,R) → K with f̄ ∼= f .
The transformation f̄ is given by f̄I(φ : I → A) = φ∗(fA(idA))

2.
For the second claim it is clear that indexed preorders fam(A,R) have generic pred-

icates (the identity), and that this property is stable under equivalence. Conversely, it
was stated earlier that uniform preorders can be identified with strict indexed preorders
whose underlying presheaf of sets is representable, and every indexed preorder H with
generic predicate ι ∈ H(A) is equivalent to the strict indexed preorder with underlying
presheaf Set(−, A), and ordering on Set(I, A) given by f ≤ g iff f ∗ι ≤ g∗ι.

1.7. Examples.

(1) The canonical indexing of a preorder (A,≤) is the strict indexed preorder whose
underlying presheaf is the representable presheaf Set(−, A), and whose fibers are
ordered pointwise, i.e. (φ : I → A) ≤ (ψ : I → A) iff ∀i ∈ I . φ(i) ≤ ψ(i).

The corresponding uniform preorder is (A,R≤) where R≤ = ↓{≤} ⊆ P (A× A).

(2) Hofstra’s basic combinatory objects (BCOs) [Hof06, pg. 241] can be embedded into
uniform preorders: recall that a BCO is a triple (A,≤,F) where (A,≤) is a partial
order and F is a set of monotone partial endofunctions with down-closed domains,
which is weakly closed under composition in the sense that

(i) there exists an i ∈ FA such that i(a) ≤ a for all a ∈ A, and
(ii) for all f, g ∈ F there exists h ∈ F such that h(a) ≤ g(f(a)) whenever the right

side is defined.

Every BCO (A,≤,F), induces a indexed preorder structure on Set(−, A) by setting

(φ : I → A) ≤ (ψ : I → A) iff ∃f ∈ F ∀i ∈ I . f(φ(i)) ≤ ψ(i).

Just as for the indexed preorders associated to ordinary preorders and uniform
preorders, we write fam(A,≤,F) for this indexed preorder.

The corresponding uniform preorder structure RF on A is generated by the relations
{rf ⊆ A × A | f ∈ F}, where rf = {(a, b) | f(a) ≤ b} for f ∈ F . The axioms (i),
(ii) ensure that the relations rf form a basis in the sense of Definition 1.4.

Hofstra defined a locally ordered category BCO of BCOs whose notion of morphism is
a bit subtle, but is justified and fully explained by the fact that it extends the mapping
(A,≤,F) 7→ fam(A,≤,F) to a 2-functor fam : BCO → [Setop,Ord] into strict indexed

2More generally, this argument works for pseudonatural transformations f : H → K between strict
indexed preorders where H’s underlying presheaf of sets is projective, i.e. a coproduct of representables.
Such indexed preorders H correspond to the ‘many-sorted uniform preorders’ studied in [Fre13].
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preorders which is 2-fully faithful, i.e. a local isomorphism. Since the embeddings of Ord
and UOrd into [Setop,Ord] are also local isomorphisms, we obtain a sequence

Ord→ BCO→ UOrd→ [Setop,Ord] (1.2)

of 2-full embeddings of locally ordered categories.

2. Adjunctions of uniform preorders

An adjunction in a locally ordered category A is a pair of arrows f : A→ B, g : B → A,
such that idA ≤ g ◦ f and f ◦ g ≤ idB. Since UOrd → IOrd is a local equivalence, a
monotone map f : (A,R) → (B,S) has a right adjoint in UOrd precisely if fam(f) has
a right adjoint in IOrd. The following lemma gives a criterion for the existence of right
adjoints in which monotonicity does not have to be checked explicitly.

2.1. Lemma. The following are equivalent for uniform preorders (A,R) and (B, S), a
monotone map f : (A,R)→ (B, S), and a function g : B → A.

(1) The function g is a monotone map from (B, S) to (A,R), and right adjoint to f .

(2) (1) The relation im⟨f ◦ g, idB⟩ = {(f(g(b)), b) | b ∈ B} is in S, and
(2) for all s ∈ S, the relation s∗ = {(a, gb) | (fa, b) ∈ s} is in R.

If (B, S) is given by a basis, then it is sufficient to verify (2) on the elements of the basis.

Proof. First assume (1). Condition (1) is equivalent to f ◦ g ≤ idB by (1.1). For
condition (2), let I = {(a, b) ∈ A × B | (fa, b) ∈ s}, and let p : I → A and q : I → B
be the projections. Then we have f ◦ p ≤ q in fam(B, S)(I) by direct verification, and
therefore p ≤ g ◦ q in fam(A,R)(I) by exponential transpose. the latter is equivalent to
the claim.

Conversely, assume (2). To see that postcomposition with g induces a left adjoint to
fam(f) : fam(A,R)→ fam(B, S), it is enough to check that for all sets I and h : I → B,
the function g ◦ h is a greatest element of

Φ = {k : I → A | f ◦ k ≤ h} ⊆ fam(A,R)(I).

We have g ◦ h ∈ Φ by (1). To show that it is a greatest element we have to show that
f ◦ k ≤ h implies k ≤ g ◦ h, which follows from (2) since

im⟨k, g ◦ h⟩ ⊆ im⟨f ◦ k, h⟩∗

and R is down-closed.



158 JONAS FREY

3. Cartesian uniform preorders

The full subcategory of IOrd on indexed preorders admitting a generic predicate is closed
under small 2-products: if (Hk)k∈K is a family of indexed preorders with generic predicates
(ιk ∈ Hk(Ak))k∈K , then a generic predicate of the (pointwise) product

∏
k∈K Hk is given

by the family
(π∗

kιk)k∈K ∈
∏

k∈K Hk(
∏

k∈K Ak).

Thus, UOrd has products which are preserved by fam : UOrd → IOrd. Concretely, the
terminal uniform preorder is the singleton set with the unique uniform preorder structure,
and a product of (A,R) and (B, S) is given by (A×B,R⊗S), where R⊗S is the uniform
preorder structure generated by the basis {r × s | r ∈ R, s ∈ S}.

3.1. Definition. An object A of a locally ordered category A with finite 2-products is
called cartesian if the terminal projection A→ 1 and the diagonal A→ A×A have right
adjoints ⊤ : 1→ A and ∧ : A→ A× A.

Given cartesian objects A,B, a morphism f : A→ B is called cartesian if the diagrams

A× A B ×B

A B

f×f

∧ ∧

f

1

A B

⊤⊤
f

commute up to isomorphism.

Since UOrd→ IOrd is a local equivalence and preserves (finite) 2-products, a uniform
preorder (A,R) is cartesian if and only if fam(A,R) is cartesian, and the latter is easily
seen to be equivalent to fam(A,R) being an indexed meet-semilattice, i.e. an indexed
preorder whose fibers have finite meets, which are preserved by reindexing. Instantiating
Lemma 2.1 we get the following characterization.

3.2. Lemma. A uniform preorder (A,R) is cartesian if and only if there exists a function
∧ : A× A→ A and an element ⊤ ∈ A such that the relations

τ = {(a,⊤) | a ∈ A} λ = {(a ∧ b, a) | a, b ∈ A} ρ = {(a ∧ b, b) | a, b ∈ A}

are in R, and for all r, s ∈ R the relation

⟪r, s⟫ := ∧ ◦ (r × s) ◦ δA = {(a, b ∧ c) | (a, b) ∈ r, (a, c) ∈ s}

is in R.

3.3. Examples.

(1) The canonical indexing of a preorder (A,≤) is an indexed meet/semilattice if and
only if (A,≤) is an meet-semilattice if and only if the uniform preorder (A, ↓{≤})
is cartesian. This follows since Ord → UOrd is 2-fully faithful and preserves finite
2-products.
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(2) The primitive recursive functions f : N → N form a basis (Definition 1.4) for a
uniform preorder structure on N which is cartesian: ⊤ is given by 0 (or any other
number), and a meet operation ∧ : N× N → N is given by any primitive recursive
pairing function.

(3) Instead of primitive recursive function, we can use total recursive, or even partial
recursive functions in the previous example. The last option gives an instance of
the concept of partial combinatory algebra, to which we will come back later.

3.4. Remark. The forgetful functor from cartesian uniform preorders to uniform pre-
orders does not seem to have a left biadjoint, in particular the meet-completion of an
indexed preorder with generic predicate does generally not seem to have have a generic
predicate in general. The situation is different for existential quantification, which we
treat next.

4. Existential quantification

4.1. Definition.

(1) We say that an indexed preorder H has existential quantification, if for every
function u : J → I, the monotone map u∗ : H(I) → H(J) has a left adjoint
∃u : H(J)→ H(I), and the Beck–Chevalley condition holds: for every pullback

L
⌟

K

J I

ū

v̄ v

u

in Set we have u∗ ◦ ∃v ∼= ∃v̄ ◦ ū∗.

(2) We say that an indexed monotone map f : H → K commutes with existential
quantification, if fI ◦ ∃u ∼= ∃u ◦ fJ for all u : J → I.

We write ∃-IOrd for the sub-2-category of IOrd on indexed preorders with existential
quantification, and indexed monotone maps commuting with existential quantifica-
tion, and we write ∃-UOrd for the corresponding sub-2-category of UOrd, given by
the following pullback.

∃-UOrd
⌟

∃-IOrd

UOrd IOrdfam

(3) An indexed monotone map f : A → H from an indexed preorder A to an indexed
preorder H with existential quantification is called an ∃-completion, if for all indexed
preorders K with existential quantification, the precomposition map

(− ◦ f) : ∃-IOrd(H,K) → IOrd(A,K)

is an equivalence of preorders.
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(4) Given a indexed preorder H with existential quantification, a predicate π ∈ H(I)
is called ∃-prime if for all functions I

u←− J
v←− K and predicates φ ∈ H(K) with

u∗π ≤ ∃vφ, there exists a function s : J → K such that v ◦ s = idJ and u∗π ≤ s∗φ.

We write prim(H) for the indexed sub-preorder of H on ∃-prime predicates.

We say that H has enough ∃-prime predicates if for every set I and φ ∈ H(I) there
exists a u : J → I and a π ∈ prim(H)(J) such that ∃uπ ∼= φ.

4.2. Remarks.

– Using the fibrational—rather than indexed—point of view, we can give the following
characterization of ∃-prime predicates: π ∈ H(I) is ∃-prime iff for all f : J → I,
the object (J, f ∗π) of the total category

∫
H has the left lifting property w.r.t.

cocartesian arrows.

– Trotta and Maietti studied generalizations of ∃-completions in [Tro20, MT23].

The notion of ∃-prime predicate gives rise to a sufficient criterion for an indexed
preorder with existential quantification to be a ∃-completion.

4.3. Proposition. Let H be an indexed preorder with existential quantification, and
assume that A ⊆ H is an indexed sub-preorder such that

(1) all predicates in A are ∃-prime in H, and

(2) for every set I and predicate φ ∈ H(I) there exists a function u : J → I and a
predicate π ∈ A(J) such that φ ∼= ∃uπ.

Then the inclusion A ↪→ H is an ∃-completion, and moreover A ↪→ prim(H) is an equiv-
alence, i.e. every ∃-prime predicate in H is isomorphic to one in A. In particular, if H
has enough ∃-prime predicates, then prim(H) ↪→ H is an ∃-completion.

Proof. Given an indexed preorder K with existential quantification and an indexed
monotone map f : A → K, define f̃ : H → K by f̃I(φ) = ∃uf(π) for a choice of
function u : J → I and predicate π ∈ A(J) with ∃uπ ∼= φ. It is straightforward to
verify that f̃ gives a well defined indexed monotone map commuting with existential
quantification, and the assignment f 7→ f̃ gives a pseudoinverse to the restriction map
∃-IOrd(H,K) → IOrd(A,K).

Now assume that π ∈ prim(H)(I), and choose u : J → I and σ ∈ A(J) with ∃uσ ∼= π.
Then from π ≤ ∃uσ it follows that there exists a section s of u with π ≤ s∗σ. On the
other hand, the inequality ∃uσ ≤ π is equivalent to σ ≤ u∗π, which implies s∗σ ≤ π by
applying s∗ on both sides, and we conclude that s∗σ ∼= π.
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4.4. Definition. A primal ∃-completion is an ∃-completion e : A → H fitting the hy-
potheses of Proposition 4.3, i.e. H has enough ∃-primes and e is equivalent to prim(H) ↪→
H.

It is well known that indexed preorders on small index categories C always admit
primal ∃-completions3: given an indexed preorder A : Cop → Ord, predicates on I ∈ C
in its ∃-completion DA : Cop → Ord are given by pairs (J

u→ I, φ ∈ A(J)), where
(J

u→ I, ϕ) ≤ (K
v→ I, ψ) iff there exists a w : J → K such that v ◦ w = u and φ ≤ w∗ψ.

However, for indexed preorders on Set this construction may not be well-defined, since
the resulting indexed preorder may have large fibers. In the following we show that
indexed preorders arising from uniform preorders do always admit primal ∃-completions,
which are again representable by uniform preorders (the question if there are non-primal
∃-completions over Set remains open).

4.5. Definition. For (A,R) a uniform preorder, we define the uniform preorder

D(A,R) = (PA,DR)

where PA is the powerset of A, and DR is the uniform preorder structure on PA generated
by the basis of relations

[r] = {(U, V ) ∈ PA× PA | ∀a ∈ U ∃b ∈ V . (a, b) ∈ r}

for r ∈ R.

4.6. Remarks.

(1) The relations [r] do indeed constitute a basis since idPA ⊆ [idA] and [s] ◦ [r] ⊆ [s ◦ r]
for r, s ∈ R.

(2) Unwinding the definition of D(A,R) we see that for φ, ψ : I → PA we have φ ≤ ψ
in fam(D(A,R))(I) if and only if there exists an r ∈ R such that

∀i ∈ I ∀a ∈ φ(i) ∃b ∈ ψ(i) . (a, b) ∈ r.

4.7. Proposition. Let (A,R) be a uniform preorder. The indexed preorder fam(D(A,R))
has existential quantification and the singleton map η : A→ PA is monotone from (A,R)
to D(A,R). The induced indexed monotone map fam(η) : fam(A,R) → fam(D(A,R)) is
a primal ∃-completion.

3For accounts of closely related constructions see e.g. [Fre13, Definition 3.4.5] for the ∃-completion
of fibered preorders satisfying a stack-condition, [Tro20, Section 4] for ∃-completion of indexed meet-
semilattices, and Hofstra [Hof11, Section 3.2] for the analogous construction for non-posetal fibrations.
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Proof. Existential quantification in fam(D(A,R)) is given by union, i.e.

(∃uφ)(i) =
⋃

u(j)=i φ(j)

for u : J → I and φ : J → PA, and η is monotone since for every r ∈ R we have

{({a}, {a′}) | (a, a′) ∈ r} ⊆ [r].

To show that fam(η) is a primal ∃-completion it remains to show that it is fiberwise order
reflecting, and its image in fam(D(A,R))—the indexed sub-preorder of singleton-valued
predicates, i.e. predicates factoring through η : A → PA—satisfies the hypotheses of
Proposition 4.3.

The fact that fam(η) is order reflecting follows immediately from the explicit descrip-
tion of the fiberwise ordering in fam(D(A,R)) in Remark 4.6(2).

To see that singleton-valued predicates are ∃-prime in fam(D(A,R)), assume φ : I →
A, ψ : J → PA, and u : J → I such that η ◦ φ ≤ ∃uψ. Unwinding definitions this means
that there exists an r ∈ R such that

∀i ∈ I ∀a ∈ {φ(i)} ∃b ∈
⋃

u(j)=i ψ(j) . (a, b) ∈ r ,

i.e.
∀i ∈ I ∃j ∈ J . u(j) = i ∧ ∃b ∈ ψ(j) . (φ(i), b) ∈ r ,

and the required section of u is given by a Skolem function for the first two quantifiers.
Finally, fam(D(A,R)) has ‘enough’ singleton-valued predicates, since every predicate

φ : I → PA can be written as φ = ∃uσ for J =
∐

i∈I φI, u the first projection, and

σ = (J
π2→ A

η→ PA).

4.8. Remark. The assignment (A,R) 7→ D(A,R) gives rise to a left 2-adjoint to the
inclusion ∃-UOrd → UOrd, and the unit η and multiplication µ of the induced 2-monad
D : UOrd → UOrd are componentwise given by singleton map and union. The 2-monad
is lax idempotent4 in the sense that Dη(A,R) ⊣ µ(A,R) ⊣ ηD(A,R) for all uniform preorders
(A,R). In particular, a uniform preorder (A,R) is a D-algebra iff η(A,R) has a left adjoint
(the adjunction is then automatically a reflection, since fam(η(A,R)) is fiberwise order-
reflecting). Finally, the adjunction is monadic, since reflective indexed sub-preorders of
indexed preorders with existential quantification have existential quantification.

5. Indexed frames

We recall the definition of indexed frames from [Fre23].

4Lax idempotent monads were introduced in [Zöb76, Koc95] and are also known as Kock-Zöberlein
monads. (The articles were published 19 years apart, but Kock’s preprint seems to have been contem-
poraneous with Zöberlein’s thesis, on which his article is based. The name lax idempotent is due to
Zöberlein and was later picked up by Kelly and Lack [KL97].)
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5.1. Definition. An indexed frame is an indexed meet-semilattice H which has exis-
tential quantification and moreover satisfies the Frobenius condition: for all functions
u : J → I, and predicates φ ∈ HI and ψ ∈ HJ we have φ ∧ ∃uψ ∼= ∃u(u∗φ ∧ ψ).

5.2. Examples.

(1) The canonical indexing of a poset (A,≤) is an indexed frame if and only if A
is a frame [PP12], i.e. a complete lattice satisfying the infinitary distributive law
a ∧

∨
i bi =

∨
i a ∧ bi.

(2) If (L,≤) is a frame andM is a monoid of frame-endomorphisms (i.e. monotone maps
preserving finite meets and arbitrary joins), we obtain an indexed frame structure
on the representable functor Set(−, L) by setting

φ ≤ ψ if and only if ∃m ∈M ∀i ∈ I . m(φ(i)) ≤ ψ(i)

for φ, ψ : I → L. This indexed frame structure is only representable by an ordinary
frame if M has a least element (which is then an ‘interior operator’ i.e. a posetal
comonad). A non-trivial example is the Lipschitz hyperdoctrine which has been
recently proposed by Reid Barton and Johan Commelin, and is obtained by taking
L = ([0,∞],≥) andM = R>0 acting by multiplication. See also [FvdB22] for similar
constructions of non-Set-based indexed preorders.

Another way of producing indexed frames is given by the following.

5.3. Proposition. If a uniform preorder (A,R) is cartesian then D(A,R) is carte-
sian as well, and η : (A,R) → D(A,R) preserves the cartesian structure. Moreover,
fam(D(A,R)) is an indexed frame.

Proof. To show that D(A,R) is cartesian we use Lemma 3.2 and define ∧ : PA×PA→
PA and ⊤ ∈ PA by U ∧ V = {a ∧ b | a ∈ U, b ∈ V } and ⊤ = {⊤}. Then the verification
of the conditions is straightforward.

6. Relational completeness

6.1. Definition.

(1) We say that an indexed preorder has universal quantification if it satisfies the dual
condition of Definition 4.1(1).

(2) A Heyting preorder5 is a meet-semilattice (H,≤) which is cartesian closed as a
category, i.e. for all a ∈ H the monotone map (− ∧ a) has a right adjoint (a⇒ −)
called Heyting implication.

5Contrary to the better-known Heyting algebras, Heyting preorders need not have finite joins—those
will turn out to exist in the cases we’re interested in, but we don’t have to assume them.
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(3) An indexed meet-semilattice H is said to have implication if its fibers are Heyting
preorders, and this structure is preserved up to isomorphism by reindexing.

(4) A tripos is an indexed meet-semilattice P which has universal quantification, impli-
cation, and a generic predicate.

6.2. Remarks.

(1) Since they’re assumed to have generic predicates, all triposes are representable by
uniform preorders.

(2) As explained in [HJP80, Theorem 1.4], using Prawitz-style second order encod-
ings [Pra65, p. 67] one can show that triposes have existential quantification and
fiberwise finite joins which are stable under reindexing. Thus, triposes are models
of full first order logic.

6.3. Definition. A cartesian uniform preorder (A,R) is called relationally complete if
there exists a relation @ ∈ R (called ‘universal relation’), such that for every relation
r ∈ R there exists a function (i.e. a single-valued and entire relation) r̃ ∈ R with

r ◦ ∧ ⊆ @ ◦ ∧ ◦ (r̃ × idA),

in other words
∀a b c ∈ A . (a ∧ b, c) ∈ r ⇒ (r̃(a) ∧ b, c) ∈ @. (6.1)

6.4. Remark.Relational completeness can be viewed as a generalization of the functional
completeness property of recursive functions expressed by the s-m-n theorem, which in
its most basic form (see e.g. [Cut80, Theorem 4.4.1]) says that for every partial recursive
function f(x, y) in two arguments there exists a total recursive function f̃(x) in one
argument such that the partial functions f(x, y) and ϕf̃(x)(y) are equal, where (ϕn)n∈N is
a effective enumeration of partial recursive functions.

Note that besides using relations instead of partial functions, the statement above is
somewhat weaker than that of the s-m-n theorem since equality of partial functions is
replaced by inclusion of relations. See also Remark 9.3(2).

6.5. Theorem. The following are equivalent for a cartesian uniform preorder (A,R).

(1) (A,R) is relationally complete.

(2) fam(D(A,R)) is a tripos.

Proof. Assume first that fam(D(A,R)) is a tripos, and assume w.l.o.g. that conjunction
is given ‘on the nose’ by the pointwise construction U ∧ V = {u ∧ v | u ∈ U, v ∈ V } from
the proof of Proposition 5.3. Let E ↪→ A× A× P (A× A) be the membership relation,
and define u : E → P (A× A) and φ, ψ : E → PA by

u(b, c, s) = s φ(b, c, s) = {b} ψ(b, c, s) = {c}.
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We set θ = ∀u(φ ⇒ ψ) : P (A × A) → PA and let @ ∈ R such that [@] is a realizer of
u∗θ ∧ φ ≤ ψ. Now for every r ∈ R we construct a pullback

M
⌟

E

A P (A× A)

x

v u

w

M = {(a, b, c) | (a ∧ b, c) ∈ r}
v(a, b, c) = a

x(a, b, c) = (r, b, c)

w(a) = {(b, c) | (a ∧ b, c) ∈ r}

and a simple argument using the Beck–Chevalley condition gives η ≤ w∗θ, where η : A→
PA is the singleton map. Any s ∈ R such that [s] realizes this inequality is total, and using
choice we pick r̃ to be a subfunction, so that ∀a ∈ A . r̃(a) ∈ θ(w(a)). Implication (6.1)
follows since [@] is a realizer of the inequality v∗w∗θ ∧ x∗φ ≤ x∗ψ.

Conversely, assume that (A,R) is relationally complete. Instead of constructing im-
plication and universal quantification separately, we show how to define the ‘synthetic’
connective ∀u(φ ⇒ ψ) for u : J → I and φ, ψ ∈ fam(D(A,R))(I). Implication and uni-
versal quantification can then be recovered by either replacing u by the identity, or φ by
the true predicate. For φ, ψ : J → PA define ∀u(φ⇒ ψ) : I → PA by

∀u(φ⇒ ψ)(i) =
⋂
uj=i

{a ∈ A | ∀b ∈ φ(j)∃c ∈ ψ(j) .@(a ∧ b, c)}.

It is then easy to see that the inequality u∗∀u(φ ⇒ ψ) ∧ φ ≤ ψ is realized by @; and if
ζ : I → PA such that the inequality u∗ξ ∧ φ ≤ ψ is realized by r ∈ R, then r̃ realizes
ξ ≤ ∀u(φ⇒ ψ).

6.6. Remarks.

(1) The list of equivalent statements in Theorem 6.5 can be extended by the following,
where Set[fam(D(A,R))] is the category of partial equivalence relations and com-
patible functional relations6 in the fibered frame fam(D(A,R)), and PAsm(A,R) =∫
(fam(A,R)) is the total category of the indexed preorder fam(A,R) (which is the

classical category of partitioned assemblies if (A,R) comes from a PCA):

(iii) Set[fam(D(A,R))] is a topos.

(iv) Set[fam(D(A,R))] is locally cartesian closed.

(v) PAsm(A,R) is weakly locally cartesian closed.

It is well known that (iii) follows from (ii): this is the reason for the term ‘tripos-
to-topos construction’. Clearly (iii) implies (iv). Next, (iv) implies (ii) since since
every fibered frame H can be presented as

H ≃
(
Setop

∆op

−−→ Set[H]op
sub−→ Ord

)
6The construction of Set[fam(D(A,R))] from fam(D(A,R)) is called exact completion of the ‘existential

elementary doctrine’ fam(D(A,R)) e.g. in [MR12]. If fam(D(A,R)) is a tripos, the construction is the
well known tripos-to-topos construction [HJP80].
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where ∆ is the constant-objects-functor and sub is the indexed preorder of subob-
jects. If Set[H] is locally cartesian closed then H is an indexed Heyting algebra
with ∀ and ∃ since sub is and this property is stable under precomposition with the
finite-limit preserving functor ∆. In the case H = fam(D(A,R)) we furthermore
have a generic predicate, so that fam(D(A,R)) is a tripos.

Finally, the equivalence between (iv) and (v) follows from Carboni–Rosolini’s char-
acterization of locally cartesian closed exact completions (‘the exact completion
of a finite-limit category C is locally cartesian closed iff C is weakly locally carte-
sian closed’, [CR00]), since the category Set[fam(A,R)] is an ex/lex completion of
PAsm(A,R) by means of the functor

PAsm(A,R) → Set[fam(D(A,R))]

which sends φ : I → A to the sub-diagonal p.e.r. on I with support I
φ−→ A ↪→ PA:

to verify this fact observe that the functor is fully faithful, and the objects in its
image are projective and cover all other objects.

Analogous reformulations of relational completeness for many-sorted uniform pre-
orders are given in [Fre13, Theorem 4.10.3].

(2) Theorem 6.5 gives rise to an correspondence between

– relational complete uniform preorders (A,R), and

– triposes P with enough ∃-primes, such that prim(P) has finite meets.

If (A,R) is relationally complete then fam(D(A,R)) is such a tripos, and conversely
if P is such a tripos, then any ∃-prime predicate which covers the generic predicate
of P is generic in prim(P), whence the latter is representable by an uniform preorder
(A,R), which is cartesian by assumption, and relationally complete by the theorem.

In type theoretic, ‘univalent’ language [Uni13] one would state this correspondence
as an equivalence between the type of relationally complete preorders and the type
of the specified triposes. In classical foundations this translates into an equivalence
of two 1-groupoids, which can both be realized as sub-groupoids of the core7 of the
hom-wise poset reflection IOrd.

6.7. Examples.

(1) Let (A,≤) be an meet-semilattice. Then the uniform preorder (A,R≤) correspond-
ing to its canonical indexing fam(A,≤) is relationally complete. This is because
fam(D(A,R≤)) is equivalent to the canonical indexing of the frame of down-sets in
(A,≤), and the latter is known to be a tripos.

7i.e. the subgroupoid of all isos
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(2) If (A,R) is an uniform preorder such that fam(A,R) is a tripos, then (A,R) is
relationally complete, and thus fam(D(A,R)) is a tripos as well. This is shown
using variant of the construction in the proof of Theorem 6.5: we take E ↪→ A ×
A × P (A × A) to be the membership relation as above, let φ, ψ : E → A and
u : E → P (A × A) be three projections, set θ = ∀u(φ ⇒ ψ), and take @ to be a
realizer of u∗θ ∧ φ ≤ ψ. Given r ∈ R we again we construct the pullback

M
⌟

E

A P (A× A)

x

v u

w

M = {(a, b, c) | (a ∧ b, c) ∈ r}
v(a, b, c) = a

x(a, b, c) = (r, b, c)

w(a) = {(b, c) | (a ∧ b, c) ∈ r} ,

and chasing around it we get idA ≤ w∗θ, i.e. θ ◦ w ∈ R, and we take this function
to be r̃. The implication (6.1) follows since @ realizes v∗w∗θ ∧ x∗φ ≤ x∗ψ.

Since fam(A,R) is a tripos by assumption, (A,R) is a D-algebra, i.e. η : (A,R) →
D(A,R) has a left adjoint α : D(A,R) → (A,R) (see Remark 4.8), and it is easy
to verify by hand that this left adjoint is cartesian. In other words, fam(A,R) is
a geometric subtripos of fam(D(A,R)), and this subtripos inclusion gives rise to
a geometric subtopos inclusion Set[fam(A,R)] ↪→ Set[fam(D(A,R))] via the tripos-
to-topos construction. The intermediate quasitopos of separated objects is the q-
topos Q(fam(A,R)) associated to the tripos via the construction described in [Fre15,
Definition 5.1]. We recall that the notion of q-topos is slightly weaker than that of
quasitopos (not requiring coproducts or local cartesian closure), and was introduced
in [Fre15] since the construction of Q(P) does not seem to produce a quasitopos over
arbitrary base categories. However, the argument above shows that the construction
does produce quasitoposes for Set-based triposes.

Another large class of examples of relationally complete uniform preorders is given in
the next section.

7. Ordered partially combinatory algebras

We recall the relevant definitions from [vO08, Section 2.6.5].

7.1. Definition. An ordered applicative structrure (OPAS) is a triple (A,≤, ·) where
(A,≤) is a poset and (− · −) : A× A ⇀ A is a partial binary operation.

7.2. Remarks.

(1) Application associates to the left, i.e. a·b·c is a shorthand for (a·b)·c.

(2) A polynomial over an OPAS (A,≤, ·) is a term built up from variables, constants
from A, and application (−·−). We write p[x1, . . . , xn] for a polynomial which may
(but is not required to) contain the variables x1, . . . , xn, and if a1, . . . , an ∈ A we
write p[a1, . . . , an] for the possibly undefined result of substituting and evaluating.
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(3) When reasoning with partial terms, t↓ means that t is defined, and the statement of
an equality s = t or inequality s ≤ t contains the implicit assertion that both sides
are defined.

7.3. Proposition. The following are equivalent for an OPAS (A,≤, ·).

(1) For all polynomials p[x1, . . . , xn, y] over A there exists an element e ∈ A such that
for all a1, . . . , an, b ∈ A:

– e·a1· . . .·an↓
– p[a1, . . . , an, b]↓ ⇒ e·a1· . . .·an·b↓ ∧ e·a1· . . .·an·b ≤ p[a1, . . . , an, b]

(2) there exist elements k, s ∈ A such that for all a, b, c ∈ A:

– k·a·b ≤ a

– s·a·b↓
– a·c·(b·c)↓ implies s·a·b·c↓ and s·a·b·c ≤ a·c·(b·c)

Proof. [vO08, Theorem 1.8.4].

7.4. Definition.

(1) An ordered combinatory algebra (OPCA) is an OPAS satisfying the equivalent con-
ditions of Proposition 7.3.

(2) A filter on an OPCA is a subset Φ ⊆ A which is upward closed, closed under
application, and contains choices of elements k, s as in Proposition 7.3(2). A filtered
OPCA is a quadruple (A,≤, ·,Φ) where (A,≤, ·) is an OPCA and Φ is a filter on
A.

Given a filtered OPCA (A,≤, ·,Φ) we define a strict indexed preorder structure on the
representable presheaf Set(−, A) by setting

(φ : I → A) ≤ (ψ : I → A) :⇔ ∃e ∈ Φ ∀i ∈ I . e·ϕ(i) ≤ ψ(i) ,

It follows from standard arguments in combinatory logic that this indexed preorder is
well defined (i.e. reflexive and transitive), and actually an indexed meet-semilattice, and
as Hofstra explains in [Hof06, p. 252], its ∃-completion is an ordered variant of a relative
realizability construction and in particular a tripos. Thus, the corresponding uniform
preorder (A,RΦ) is relationally complete by Theorem 6.5.

The mapping from filtered OPCAs to uniform preorders factors through BCOs: the
BCO corresponding to (A,≤, ·,Φ) is given by (A,≤,FΦ), where

FΦ = {(e·−) : A ⇀ A | e ∈ Φ}.

Thus, a basis for the uniform preorder structure RΦ is given by {re ⊆ A × A | e ∈ Φ},
with re = {(a, b) ∈ A× A | e·a ≤ b}.
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In the following we describe the discretely ordered special case of this correspondence,
which identifies filtered (better known as ‘relative’) PCAs with relationally complete dis-
crete combinatory objects. Since discrete combinatory objects admit an easy character-
ization among indexed preorders, this enables us to give a characterization of (relative)
realizability triposes.

8. Discreteness

8.1. Definition.

(1) A discrete combinatory object (DCO) is a uniform preorder where all relations
r ∈ R are single-valued, i.e. partial functions. We write DCO for the full locally
ordered subcategory of UOrd on DCOs.

(2) A predicate δ ∈ A(I) of an indexed preorder A is called discrete if for every surjec-
tion e : K ↠ J , function f : K → I, and predicate φ ∈ A(J) such that e∗φ ≤ f ∗δ,
there exists a (necessarily unique) g : J → I with g ◦ e = f (and therefore φ ≤ g∗δ
since reindexing along split epis is order-reflecting).

8.2. Remarks.

(1) DCOs were introduced in [Fre19, Definition 2.2] in terms of bases, i.e. as sets A
equipped with a set F of partial endofunctions containing the identify and weakly
closed under composition in the sense that for all f, g ∈ F there exists an h ∈ F such
that g ◦ f ⊆ h. Down-closure in P (A×A) of such a structure yields a DCO (A, ↓F)
in the above sense inducing the same indexed preorder and the two definitions give
rise to equivalent locally ordered categories, the principal difference being that for
the above, ‘saturated’ definition, the 2-functor DCO→ IOrd is injective on objects.

(2) In fibrational language, discreteness of δ ∈ A(A) says that (A, δ) has the right lifting
property in the total category

∫
A w.r.t. all cartesian maps over surjections.

(3) It is easy to see that reindexings of discrete predicates along injections are discrete
again. Reindexings along surjections, on the other hand, are discrete only in the
trivial case that the surjection is a bijection.

(4) DCOs embed into BCOs: modulo the issue of bases vs. saturated presentations
discussed in (1), they correspond precisely to BCOs whose order structure is trivial.
Thus, we can extend the sequence (1.2) of embeddings to the following diagram.

Set
⌟

DCO

Ord BCO UOrd [Setop,Ord] IOrd
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The intersection of Ord and DCO is trivial, in the sense that it only contains dis-
cretely ordered representable presheaves: this is because indexed preorders repre-
sentable by ordinary preorders are stacks for the canonical topology, and if fam(A,R)
is such a stack for a DCO (A,R), then R contains only subfunctions of idA (other-
wise, the stack condition would give (a, a) ≤ (a, f(a)) over 2).

The following clarifies the relationship between the two notions of discreteness intro-
duced in Definition 8.1.

8.3. Proposition. A uniform preorder (A,R) is a DCO if and only if the generic pred-
icate idA ∈ fam(A,R)(A) is discrete.

Proof. Assume first that (A,R) is a DCO and consider a span J
e
↞ K

f→ A with e
surjective, and a predicate φ : J → A with e∗φ ≤ f ∗idA. Form the image factorization
(1) of ⟨φ ◦ e, f⟩.

(1)

K r

A× A
⟨φ◦e,f⟩

h

⟨p,q⟩ (2)
K r

J A

h

e pk

φ

Then r ∈ R and therefore p is injective since (A,R) is a DCO. Since e is surjective we
obtain a lifting k in the square (2) and the desired map is q ◦ k.

Conversely assume that idA is discrete, let r ∈ R, write ⟨p, q⟩ : r ↪→ A × A for the

inclusion, and let r
e
↠ U

m
↪→ A be an image factorization of p. We have p∗(idA) =

e∗(m∗(idA)) ≤ q∗(idA), and discreteness of idA implies that there exists g : U → A with
g ◦ e = q. We obtain a factorization ⟨p, q⟩ = ⟨m, g⟩ ◦ e, and since ⟨p, q⟩ is injective we
conclude that e is bijective and thus r is single-valued.

8.4. Corollary. An indexed preorder A is representable by a DCO if and only if it has
a discrete generic predicate.

Proof. This follows from Proposition 8.3 together with Lemma 1.6. A direct proof is
given in [Fre19, Theorem 2.4].

8.5. Remark. It is possible that the same indexed preorder has discrete and non-discrete
generic predicates: if A is an indexed preorder with discrete generic predicate ι ∈ A(A)
and f : B ↠ A is a surjection, then f ∗ι is a generic predicate which is discrete only if f is
a bijection. If f is not a bijection, we obtain a DCO-representation of A with underlying
set A, and a representation as a non-discrete uniform preorder with underlying set B.

8.6. Remark. If a cartesian uniform preorder (A,R) is a DCO, then the relations λ, ρ ∈
R from Lemma 2.1 are partial functions, and jointly form a retraction ⟨λ, ρ⟩ : A ⇀ A×A
of ∧ : A × A → A, i.e. we have ⟨λ, ρ⟩ ◦ ∧ = idA×A. Moveover, although we don’t have
∧ ◦ ⟨λ, ρ⟩ = idA, we have an inclusion ∧ ◦ ⟨λ, ρ⟩ ⊆ idA of partial functions, since by
construction λ an ρ are only defined on the range of ∧.
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More generally we define n-ary versions

∧(n) : An → A for n ∈ N and π
(n)
i ∈ R for 1 ≤ i ≤ n

by ∧(0)(∗) = ⊤, ∧(n+1)(⃗a, b) = ∧(n)(⃗a) ∧ b, and π(n)
i = ρ ◦ λni , so that we have

⟨π(n)
1 , . . . , π(n)

n ⟩ ◦ ∧(n) = idAn and ∧(n) ◦⟨π(n)
1 , . . . , π(n)

n ⟩ ⊆ idA

for all n ∈ N. Loosely following Hofstra [Hof06, pg. 254], we introduce the notation

R(n) = {r ⊆ An × A | ∃s ∈ R . r = s ◦ ∧(n)}
= {r ⊆ An × A | r ◦ ⟨π(n)

1 , . . . , π(n)
n ⟩ ∈ R}

for ‘n-ary computable’ functions, which can be viewed as representing ‘multi-inequalities’
φ1, . . . , φn ≤ ψ matching the form of intuitionistic sequents. A paradigmatic example
is given by the DCO of subrecursive functions (Example 3.3(3)): here R(n) contains pre-
cisely the n-ary partial sub-recursive functions, i.e. sub-functions of n-ary partial recursive
functions in the usual sense.

9. Partial combinatory algebras

Partial combinatory algebras can be viewed as trivially ordered OPCAs, but there is
a slight mismatch with the traditional definition of PCA which we address— following
Streicher [Str17]—by introducing the term of weak PCA.

9.1. Definition.

(1) A weak partial combinatory algebra (weak PCA) is a discretely ordered OPCA, i.e.
a pair (A, ·) such that (A,=, ·) is an OPCA.

(2) A partial combinatory algebra (PCA) is a weak PCA in which the element s from
Proposition 7.3(2) can be chosen such that s·a·b·c↓ (if and) only if a·c·(b·c)↓.

There are obvious ‘filtered’ versions of these definitions, for which we use the adjective
‘relative’ as is more common in the unordered case.

9.2. Definition.

(1) A weak relative PCA is a triple (A, ·, A#) where (A, ·) is a PCA and A# ⊆ A is a
filter in the sense of Definition 7.4(2).

(2) A relative PCA is a weak relative PCA in which the s ∈ A# can be chosen to satisfy
the stronger condition of Definition 9.1(2).
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9.3. Remarks.

(1) Relative PCAs are called elementary inclusions of PCAs in [vO08, Sections 2.6.9
and 4.5].

(2) Faber and van Oosten showed that for every weak PCA (A, ·) there is a PCA
(A, ∗) inducing the same indexed preorder structure on Set(−, A) and thus the same
uniform preorder structure A (strictly speaking their result is phrased in terms
of applicative morphisms, but the statement about indexed preorders is an easy
consequence) [FvO16, Theorem 5.1]. Their argument generalizes easily to relative
PCAs.

Specializing the constructions from Section 7, every relative (weak) PCA (A, ·, A#)
gives rise to a relationally complete DCO (A,RA#

) with a basis given by the set of partial
functions {(e·−) : A ⇀ A | e ∈ A#}. Thus, the fiberwise ordering of the ∃-completion
fam(D(A,RA#

)) is given by

(φ : I → A) ≤ (ψ : I → A) iff ∃e ∈ A# ∀i ∈ I ∀a ∈ φ(i) . e·a ∈ ψ(i),

and we recognize at once that this is the relative realizability tripos induced by (A, ·, A#),
see [vO08, Section 2.6.9].

In the following we sketch the argument that every relationally complete DCO arises
from a relative PCA this way. To start, given a relationally complete DCO (A,R) with
universal relation @ (which we call universal function in the discrete case), we define the
partial binary operation by a·b = @(a ∧ b) and A# ⊆ A by

A# := {a ∈ A | {(⊤, a)} ∈ R} = {a ∈ A | ⊤ ≤ a in fam(A,R)(1)}.

Note that the elements of A# correspond to Hofstra’s designated truth values [Hof06,
pg. 244]. If a, b ∈ A# such that a·b = @(a ∧ b) is defined, then a·b ∈ A# since ⊤ ≤ a and
⊤ ≤ b implies ⊤ ≤ a ∧ b; and a ∧ b ≤ @(a ∧ b), i.e. A# is closed under application in A.

9.4. Proposition. Let (A,R) be a relationally complete cartesian DCO.

(1) For every polynomial p[x1, . . . , xn] over the partial applicative structure (A, ·, A#)
with coefficients in A#, the partial evaluation function a⃗ 7→ p[⃗a] is in R(n) (see
Remark 8.6).

(2) For all n ∈ N and r ∈ R(n+1) there exists e ∈ A# such that for all a1, . . . , an, b ∈ A
we have

– e·a1· . . .·an↓, and
– r(a1, . . . , an, b) = e·a1· . . .·an·b whenever r(a1, . . . , an, b)↓.

(3) (A, ·, A#) is a weak relative PCA, and the induced DCO (A, ↓FA#
) is equal to (A,R).

Proof. This is proved in [Fre19, Lemma 2.14] for the non-relative case, and the gener-
alization to the relative case is straightforward. Hofstra proved analogous statements for
BCOs and filtered OPCAs in [Hof06, Section 6].
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9.5. Theorem. The following are equivalent for a tripos P.

(1) P is equivalent to a relative realizability tripos over a relative PCA.

(2) P has enough ∃-prime predicates, and prim(P) has finite meets and a discrete generic
predicate.

Proof. Assume first that P = fam(D(A,RA#
)) for a relative PCA (A, ·, A#). Then

Proposition 4.7 implies that P has enough ∃-prime predicates, and that P ≃ fam(A, ↓FA#
).

We have established in Section 7 that fam(A, ↓FA#
) is an indexed meet/semilattice. and,

it has a discrete generic predicate by Proposition 8.3.
Conversely, assume (ii). Then prim(P) ↪→ P is an ∃-completion by Proposition 4.3, and

prim(P) is representable by a relative DCO (A,R) by Corollary 8.4. The DCO (A,R) is
cartesian since prim(P) has finite meets, and relationally complete since its ∃-completion
is a tripos. Thus, it comes from a weak relative PCA by Proposition 9.4, and from a
relative PCA by Remark 9.3(2).

9.6. Remark. Theorem 9.5 specializes to a characterization of non-relative realizability
triposes by adding the condition that P is two-valued, i.e. P(1) ≃ {⊥ < ⊤}. This is
equivalent to prim(P)(1) ≃ 1, a property that is called ‘shallow’ in [Fre19].
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Joachim Kock, Universitat Autònoma de Barcelona: Joachim.Kock (at) uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
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