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A DIRECT-CATEGORICAL APPROACH TO OPETOPIC SETS AND
OPETOPES

TAICHI UEMURA

Abstract. We propose elementary definitions of opetopic sets and opetopes. We
define opetopic sets by a simple structure on a direct category and several axioms.
Opetopes are then opetopic sets satisfying one more axiom. We show that our definition
is equivalent to the polynomial monad definition given by Kock, Joyal, Batanin, and
Mascari. We also show that our category of opetopes is equivalent to the one given by
Ho Thanh.

1. Introduction

Opetopes and opetopic sets were introduced by Baez and Dolan [1998] as a combinatorial
approach to weak ω-categories. An opetope is a geometric shape of a many-in-single-
out operator in higher dimension. Examples of opetopes of low dimensions are drawn
in Fig. 1. There is only one opetope of dimension 0, the point. There is only one
opetope of dimension 1, the arrow with one target and one source. There are countably
many opetopes of dimension 2. The sources of an opetope of dimension 2 are opetopes
of dimension 1 that form a “pasting diagram”. It can be the case that an opetope of
dimension 2 has no source in which case it looks like an arrow filling a loop. An opetope
of dimension 3 is determined by its pasting diagram of sources, and its target is the
opetope of dimension 2 that has the same “boundary” as the pasting diagram of sources;
see Fig. 2. The opetopes form a category, and opetopic sets are presheaves on the category
of opetopes.

Several equivalent definitions of opetopes have been proposed: Baez and Dolan [1998]
using operads; Leinster [2004] using cartesian monads; Hermida et al. [2002] (called mul-
titopes there) using multicategories. Comparison of these definitions is made by Cheng
[2003, 2004b,a]. More recent accounts are given by Kock et al. [2010] using polynomial
monads and by Curien et al. [2022] using type theory. Ho Thanh [2021] gives an ex-
plicit presentation of the category of opetopes by generators and relations and shows that
presheaves on it, that is, opetopic sets, are equivalent to many-to-one polygraphs. Those
definitions of opetopes, however, require some amount of prerequisites.
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Figure 1: Examples of opetopes of dimension 0, 1, and 2
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Figure 2: Example of opetope of dimension 3, the pasting diagram of sources on the left
and the target on the right.

A more elementary approach to opetopes is taken by Leclerc [2024b]. There, opetopes
are defined as posets of cells whose ordering expresses inclusion of cells. In addition, each
subcell of codimension 1 is marked as a source or a target. That posetal approach works
very well for “positive” opetopes [Zawadowski, 2023; Leclerc, 2024a] in which every subcell
is either a source or a target but not both. However, a general opetope may contain a cell
that is both the source and the target of a loop such as the point in the 2-opetope with
no source (Fig. 1). Due to such loops, the posetal approach to general opetopes is more
complicated than positive opetopes.

In this paper, we propose another elementary definition of opetopes. The idea is to
store cells in a category rather than a poset to distinguish source and target inclusions of
a cell into a loop. For example, the 2-opetope with no source is encoded by a poset and
a category as in Fig. 3. The “source and target” arrow from the 0-cell to the 1-cell in the
posetal encoding is split into a source arrow and a target arrow in the categorical encoding.
This modification eliminates the need for special treatment on loops and simplifies the
theory of opetopes.

We define, before opetopes, opetopic sets by a simple structure on a category and
several axioms. Our formal definition of opetopic sets given in Section 2 takes less than
two pages, and the only prerequisite is basic category theory. In Section 3, we show basic
properties of opetopic sets and morphisms between them. One goal is that every slice of
the category of opetopic sets is a presheaf category (Proposition 3.41).

Opetopes are defined in Section 4 as opetopic sets satisfying one more axiom. An inter-
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Figure 3: Posetal (left) and categorical (right) encodings of the 2-opetope with no source.
c0, c1, and c2 are the 0-cell, the 1-cell (loop), and the 2-cell, respectively, in the opetope.
In the posetal encoding, there is only one arrow from c0 to c1 exhibiting c0 as a source-
and-target of c1. In the categorical encoding, there are two arrows from c0 to c1. One
exhibits c0 as a source of c1, and the other as a target.

esting phenomenon is that the category of opetopes is naturally turned into an opetopic
set. Moreover, the opetopic set of opetopes is the terminal object in the category of
opetopic sets. Consequently, the category of opetopic sets is a presheaf category (The-
orem 4.8). In particular, colimits of opetopic sets exist. We provide in Section 5 some
tools to compute colimits of opetopic sets.

In Section 6, we introduce boundaries and pasting diagrams. We show that an opetope
is completely determined by its boundary (Proposition 6.20) or the pasting diagram
formed by its sources (Corollary 6.24). We provide in Section 7 two operators on past-
ing diagrams, substitution and grafting. Since we already know the presheaf category of
opetopic sets, these operators are simply defined by colimits.

Using the substitution and grafting operators, we show in Section 8 that our definition
of opetopes is equivalent to the polynomial monad definition given by Kock et al. [2010]
(Corollary 8.13). We also see that the category of opetopes is presented by the generators
and relations described by Ho Thanh [2021].

Foundations The results in the present paper are valid in any constructive founda-
tions of mathematics. For concreteness, we choose Univalent Foundations [The Univalent
Foundations Program, 2013] because it seems to be a proper foundation especially for
category theory in that isomorphic objects are identical [Ahrens et al., 2015]. Only one
univalent universe U is needed. An object is said to be small if it is equivalent to an
object in U . We do not assume the law of excluded middle, the axiom of choice, or the
propositional resizing axiom. We use notation (x : A) → B(x) for dependent function
types (Π-types) and (x : A) × B(x) for dependent pair types (Σ-types). A category in
Univalent Foundations [Ahrens et al., 2015] satisfies that the type of identifications x = y
between objects is equivalent to the type of equivalences x ≃ y, so equivalent objects
satisfy the same properties. Obj(C) denotes the type of objects in a category C, and
ArrC(x, y) denotes the set of arrows from x to y in C.
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All the types that appear in this paper are actually 1-truncated, so our language can
be translated into set-theoretic foundations by interpreting types as groupoids [Hofmann
and Streicher, 1998].

2. Definition of opetopic sets

We first introduce our formal definition of opetopic sets (Definition 2.7) and then explain
intuition.

2.1. Definition. We say a category C is gaunt if its type of objects Obj(C) is a set.
The small gaunt categories and the functors between them form a category Gaunt.

2.2. Remark. In terms of set-theoretic foundations, a category is gaunt if its underlying
groupoid is discrete. This is equivalent to that the identities are the only isomorphisms,
which coincides with the definition given in [Barwick and Schommer-Pries, 2021, Defini-
tion 3.1].

2.3. Definition.An ω-direct category is a gaunt category A equipped with a conservative
functor degA : A→ ω called the degree functor, where ω is the poset of natural numbers.
Let DirCatω ⊂ Gaunt ↓ ω denote the full subcategory spanned by the ω-direct categories.

2.4. Definition. Let k : ω and let A be an ω-direct category. We write f : x →k y to
mean that f : x→ y is an arrow in A between objects satisfying that deg(x)+k = deg(y).
Such an arrow is called a k-step arrow. Let Arrk(A) denote the set of k-step arrows in
A. We also define the k-step slice A ↓k x to be the full subcategory of A ↓ x spanned by
the k-step arrows into x. Note that A ↓k x is discrete.

2.5. Definition. A preopetopic set is an ω-direct category A equipped with a subset
S(A) ⊂ Arr1(A) with complement T(A). An arrow in S(A) is called a source arrow and
written as f : x→s y. An arrow in T(A) is called target arrow and written as f : x→t y.
A morphism of preopetopic sets is a morphism of ω-direct categories preserving source
and target arrows. Let PreOSet denote the category of small preopetopic sets.

2.6. Definition. Let A be a preopetopic set and let f : y →1 x and g : z →1 y be 1-step
arrows in A. We say (f, g) is homogeneous if either both f and g are source arrows or
both f and g are target arrows. We say (f, g) is heterogeneous if either f is a source
arrow and g is a target arrow or f is a target arrow and g is a source arrow. By a
homogeneous/heterogeneous factorization of a 2-step arrow h we mean a factorization
h = f ◦ g such that (f, g) is homogeneous/heterogeneous.

2.7. Definition. An opetopic set is a preopetopic set A satisfying the following axioms.

O1. A ↓1 x is finite for every x : A.

O2. For every object x : A of degree ≥ 1, there exists a unique target arrow into x.

O3. For every object x : A of degree 1, there exists a unique source arrow into x.
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O4. Every 2-step arrow y →2 x in A has a unique homogeneous factorization.

O5. Every 2-step arrow y →2 x in A has a unique heterogeneous factorization.

O6. For every object x : A of degree ≥ 2, there exists a 2-step arrow r : A ↓2 x such that,
for every 2-step arrow f : A ↓2 x, there exists a zigzag

f = f0
s0−→ g0

t0←− f1
s1−→ . . .

sm−1−−−→ gm−1
tm−1←−−− fm = r, (1)

where gi’s are source arrows into x, si’s are source arrows in A ↓ x, and ti’s are
target arrows in A ↓ x.

O7. For every target arrow f : y →t x in A and object z : A of degree ≤ deg(y)− 2, the
postcomposition map f! : ArrA(z, y)→ ArrA(z, x) is injective.

O8. For every k ≥ 3, every k-step arrow y →k x in A factors as f ◦ g such that f is a
(k − 1)-step arrow and g is a 1-step arrow.

Let OSet ⊂ PreOSet denote the full subcategory spanned by the opetopic sets.

Let A be an opetopic set. We think of objects in A as cells, and arrows in A determine
the configuration of the cells. A source arrow y →s x exhibits y as a source of x, and
a target arrow y →t x exhibits y as a target of x. Axiom O1 asserts that every cell
x has finitely many sources and targets. Recall that a set X is finite if there (merely)
exist a natural number n : N and an equivalence {k : N | k < n} ≃ X [Rijke, 2022,
Definition 16.3.1]. Axiom O2 asserts that every cell x of dimension ≥ 1 has a unique
target, expressing the single-out nature of opetopes. An opetope may have many sources
with the exception of the opetope of dimension 1 which has a unique source, so we
introduce Axiom O3.

Axioms O4 and O5 assert that, for every 2-step arrow y →2 x, exactly one of the
following holds.

1. y is a source of a source of x and a source of the target of x.

2. y is a source of a source of x and the target of a source of x.

3. y is the target of the target of x and a source of the target of x.

4. y is the target of the target of x and the target of a source of x.

Figure 4 illustrates each of these situations.
Axiom O6, combined with other axioms, expresses that the sources of a cell form a

“tree”. For example, consider the pasting diagram on the left of Fig. 5 which is the sources
of a 3-dimensional cell. We see the zigzag

f0 →s g0
t← f1 →s g1

t← r,
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Figure 4: Illustration of Axioms O4 and O5. In Case 1, y is a source of the source s of
x and a source of the target t of x. In Case 2, y is a source of the source s′ of x and the
target of the source s of x. In Case 3, y is the target of the target t of x and a source
of the target t of x. In Case 4, y is the target of the target t of x and the target of the
source s of x.
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Figure 5: Illustration of Axiom O6. The pasting diagram on the left has the tree structure
on the right. Dots and lines in the tree correspond to 2-dimensional cells and 1-dimensional
cells, respectively, in the pasting diagram.

and one can find a similar zigzag from any 1-cell to r. Moreover, such a zigzag to r is
unique; we will prove this in Lemma 3.7 later. In this way we see the tree structure of
the pasting diagram displayed on the right of Fig. 5.

Axioms O1 to O6 are local conditions in that they mention only 1-step and 2-step
arrows. Axioms O7 and O8 are global conditions for tying cells in all dimensions to-
gether. There can be several axiomatizations. We choose Axioms O7 and O8 as minimal
assumptions to prove basic properties of opetopic sets in Section 3.

2.8. Example.We list in Fig. 6 the categorical encodings of the low-dimensional opetopes
displayed in Fig. 1. One can verify Axioms O1 to O8 for each category.

2.9. Variants of the definition. There are some variants of Definition 2.7.
As already mentioned, Axioms O7 and O8 may be replaced by other axioms. Indeed,

we will prove in Lemma 6.15 that, under Axioms O1 to O6, the conjunction of Axioms O7
and O8 is equivalent to the following stronger variant of Axiom O7.

O7’. For every target arrow f : y →t x in A and object z : A of degree ≤ deg(y)− 2, the
postcomposition map f! : ArrA(z, y)→ ArrA(z, x) is an equivalence.
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Figure 6: Examples of categorical encodings of opetopes of dimension 0, 1, and 2. Target
arrows are marked with “t”. All the other arrows are source arrows. In these examples,
all diagrams into a0 commute, and there is no other non-trivial commutative diagram. In
particular, the parallel arrows from c0 to b0 in the 2-opetope with no source are distinct.

Axiom O3, which singles out degree 1, may be eliminated by augmentation. Specifi-
cally, the following modification yields an equivalent definition.

• Extend A by an initial object ⊥ whose degree is −1.

• Drop Axiom O3.

• Amend Axiom O2 to state “For every object x : A of degree ≥ 0”.

Axiom O3 is recovered as follows. For every object x : A of degree 1, the unique arrow
⊥ → x has a unique heterogeneous factorization f ◦ g by Axiom O5. By the amended
version of Axiom O2, g must be a target arrow. Then f is the unique source arrow into
x.

2.10. Comparison with posetal approaches. Our definition of opetopic sets shares
some ideas with posetal approaches to combinatorics of higher categories.

Axioms O4 and O5 are categorified “oriented thinness” [Hadzihasanovic, 2020, Defini-
tion 5], which is also known as a “balanced coloring” [e.g. Chandler, 2019, Definition 4.6].
A similar property also appears in the study of parity structures [Nguyen, 2018, Theorem
1.36]. Its non-oriented variant is called the “diamond property” in the theory of abstract
polytopes [McMullen and Schulte, 2002]. Axioms O4 and O5 asserts that every 2-step
arrow y →2 x factors in exactly two ways, homogeneously and heterogeneously, forming
a diamond shape.

x

• •

y

α1 α2

β1 β2
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Figure 7: A 3-opetope with multiple loops on a cell.

Let us assign “−” sign to source arrows and “+” sign to target arrows. When signs α1,
β1, α2, and β2 are assigned as in the above diagram, the homogeneity of one factorization
and the heterogeneity of the other are expressed by the single “sign rule” α1β1 = −α2β2.

The posetal definition of opetopes given by Leclerc [2024b, Definition 2.9] also requires
oriented thinness, but it is split into two cases, one for loops and the other for non-loops.
In our categorical approach, there is no need for case splitting.

A posetal approach to opetopes faces the issue of multiple loops on a cell. For ex-
ample, consider the 3-opetope displayed in Fig. 7. It contains loops c4 and c3. They are
distinguished in the picture by the order of occurrence in the pasting diagram of sources
of b1

d2
c2−→ d1

c4−→ d1
c3−→ d1

c1−→ d0.

In a posetal approach, however, there is no apparent way of distinguishing c4 from c3,
because swapping c4 with c3 and b3 with b2 yields the same subcell relation. Leclerc
[2024b] resolves this issue by further requiring a total order on loops on a cell as part of
structure.

In our categorical approach, loops on a cell are distinguished by equality of arrows.
The opetope in Fig. 7 is encoded by a category as in Fig. 8. Here, the first three diamonds
in the lower half of Fig. 8 are the only non-trivial commutative diamonds from d1 to b1.
Then the last diamond in Fig. 8, for example, does not commute. The commutativity of
the first diamond and the non-commutativity of the last diamond distinguishes c4 from
c3.

3. Properties of opetopic sets

We prove basic properties of opetopic sets and morphisms between them: the underlying
category of an opetopic set has a canonical presentation (Section 3.1); every slice of an
opetopic set is finite (Section 3.16); if two morphisms of opetopic sets A → A′ agree at
an object x : A, then they agree on the slice A ↓ x (Section 3.23); any morphism of
opetopic sets induces an equivalence between slices (Section 3.31); every slice OSet ↓ A
is a presheaf category (Section 3.36).
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Figure 8: Categorical encoding of the opetope in Fig. 7 with selected commutative and
non-commutative diamonds. All the diagrams into a0, b0, b2, or b3 commute, the diamond
from d2 to b1 commutes, and the first three diamonds below are the only non-trivial
commutative diamonds from d1 to b1. Target arrows are marked with “t”, and all the
other arrows are source arrows.
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3.1. Generators and relations.We show that the underlying category of an opetopic
set is canonically presented by generating 1-step arrows and equations between 2-step ar-
rows (Proposition 3.15).

3.2. Construction. Let A be an opetopic set. The set gen(A) of canonical generators
for A is the set of 1-step arrows in A. The set rel(A) of canonical relations for A is
the set of equations of the form f1 ◦ g1 = f2 ◦ g2 that hold in A such that (f1, g1) is
heterogeneous and (f2, g2) is homogeneous. Let C(A) be the category with the same object
as A and presented by generators gen(A) and relations rel(A). By definition, we have a
canonical functor C(A) → A, which is conservative because there is no way to construct
a non-trivial equivalence in C(A), by which we regard C(A) an ω-direct category.

We show that the canonical functor C(A) → A is an equivalence (Proposition 3.15).
We prepare a lemma on a tree structure in an opetopic set (Lemma 3.7).

3.3. Definition. A graph G consists of a set V(G) of vertices and a set EG(x, y) of
edges from x to y for every x, y : V(G). We may write f : x→ y instead of f : EG(x, y).
For vertices x, y : G, a path from x to y is a chain of edges

x = z0
f0−→ z1

f1−→ . . .
fm−1−−−→ zm = y.

We say a graph G is a tree if there exists a vertex r : G such that, for every vertex x : G,
there exists a unique path from x to r. In other words, r is the terminal object in the free
category over G, from which it follows that such a vertex r is unique. We refer to r as
the root of G.

When G is a tree, the following induction principle is valid. Let P be a property on
vertices in G. Suppose:

• the root of G satisfies P ; and

• for every edge f : x→ y in G, if y satisfies P , then x satisfies P .

Then every vertex x : G satisfies P . This induction principle is justified by induction on
the length of the unique path from x to the root.

3.4. Construction. Let A be a preopetopic set and let x : A. We define the source
slice A ↓s x ⊂ A ↓1 x to be the subset spanned by the source arrows into x. We define
the target slice A ↓t x ⊂ A ↓1 x to be the subset spanned by the target arrows into x. By
definition, (A ↓s x) + (A ↓t x) ≃ (A ↓1 x).

3.5. Construction. Let A be an opetopic set and let x : A be an object of degree
≥ 1. We refer to the unique target arrow into x, which exists by Axiom O2, as tA(x) :
tA(x)→t x or t(x) : t(x)→t x if A is clear from the context. For k ≤ deg(x), we define

t
k
(x) : tk(x)→k x by t

0
(x) ≡ idx and t

k+1
(x) ≡ t

k
(x) ◦ t(tk(x)).
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3.6. Construction. Let A be an opetopic set and let x : A be an object of degree ≥ 1.
We define a graph G(A, x) as follows. The set of vertices in G(A, x) is (A ↓s x)+(A ↓2 x).
There is no edge between vertices from A ↓s x. There is no edge between vertices from
A ↓2 x. An edge from f : A ↓s x to g : A ↓2 x is a target arrow t : g →t f in A ↓ x. An
edge from g : A ↓2 x to f : A ↓s x is a source arrow s : g →s f in A ↓ x.

3.7. Lemma. Let A be an opetopic set and let x : A be an object of degree ≥ 1.

1. The graph G(A, x) is a tree.

2. If deg(x) = 1, then G(A, x) is a singleton set with no edge.

3. If deg(x) ≥ 2, then the root of G(A, x) is t
2
(x) : A ↓2 x.

Proof. Suppose that deg(x) = 1. Then the set of vertices in G(A, x) is a singleton set
since A ↓2 x is empty and A ↓s x is a singleton by Axiom O3. G(A, x) has no edge by
definition. G(A, x) is a tree whose root is the unique vertex. Suppose that deg(x) ≥ 2.
Take r as in Axiom O6. By the definition of G(A, x), Zigzag (1) is a path in G(A, x)

from f to r. Thus, there is a path p from t
2
(x) to r. By Axiom O4, there is no edge from

t
2
(x). Hence, the length of p is 0, and thus t

2
(x) = r. For every f : A ↓2 x, there is a

path from f to t
2
(x). Such a path is unique by Axioms O4 and O2 and by the fact that

there is no edge from t
2
(x). For every f : A ↓s x, we have the unique edge t : f → g by

Axiom O2 and then a unique path from g to t
2
(x) as we have seen.

We prove C(A) ≃ A by a normalization procedure.

3.8. Definition. Let A be an opetopic set and let k ≥ 2. We say a composable tuple
of 1-step arrows (f1, . . . , fk) in A is in normal form if f1, . . . , fk−2 are target arrows and
(fk−1, fk) is homogeneous. For x, y : A such that deg(x) + k = deg(y), let NFk

A(x, y)
denote the set of composable tuples of 1-step arrows (f1, . . . , fk) in normal form such that
f1 ◦ . . . ◦ fk : x→k y.

We first consider normalization of three 1-step arrows.

3.9. Construction. Let A be an opetopic set and let f : y →3 x be a 3-step arrow. We
define a graph G3(A, f) as follows. A vertex in G3(A, f) is a factorization (p, q, r) of f
into three 1-step arrows f = p ◦ q ◦ r. We add an edge from (p1, q1, r1) to (p2, q2, r2) when
one of the following holds.

1. p1 = p2 is a source arrow, q1 ◦ r1 = q2 ◦ r2, (q1, r1) is heterogeneous, and (q2, r2) is
homogeneous.

2. r1 = r2 is a source arrow, p1 ◦ q1 = p2 ◦ q2, (p1, q1) is homogeneous, and (p2, q2) is
heterogeneous.

3. r1 = r2 is a target arrow, p1 ◦ q1 = p2 ◦ q2, (p1, q1) is heterogeneous, and (p2, q2) is
homogeneous.
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Condition (p1, q1, r1) (p2, q2, r2)
1 (s, s, t) or (s, t, s) (s, s, s) or (s, t, t)
2 (s, s, s) or (t, t, s) (s, t, s) or (t, s, s)
3 (s, t, t) or (t, s, t) (s, s, t) or (t, t, t)

Table 1: Possible combinations of source (s) and target (t) arrows when there is an edge
(p1, q1, r1)→ (p2, q2, r2) in G3(A, f).

These are all the edges in G3(A, f). Table 1 lists all possible combinations of source and
target arrows when there is an edge (p1, q1, r1)→ (p2, q2, r2) in G3(A, f).

3.10. Lemma. Let A be an opetopic set, let f be a 3-step arrow in A, and let v ≡ (p, q,
r) : G3(A, f) be a vertex. Then either there is no edge from v or there is a unique edge
from v. Moreover, the former holds if and only if (p, q, r) is in normal form.

Proof. By Axioms O5 and O4. See also Table 1.

3.11. Lemma. Let A be an opetopic set and let f : y →3 x be a 3-step arrow in A. Then
there exists a natural number n such that every path in G3(A, f) is of length at most n.

Proof. By definition, a path π in G3(A, f) is of the form

. . .→ vi → v′i → vi+1 → . . . ,

where Condition 1 holds for the edge vi → v′i and Condition 2 or 3 holds for the edge
v′i → vi+1. Let vi ≡ (pi, qi, ri) and v′i ≡ (pi, q

′
i, ri+1), and let gi ≡ pi ◦ q′i and hi = qi ◦ ri.

Let zi be the codomain of qi (or the domain of pi). Because a vertex (p, q, r) with p a
target arrow appears only at the start or the end of a path by Table 1, we may assume
that all the pi’s are source arrows. If ri+1 is a source arrow, then q′i is a source arrow,

qi+1 is a target arrow, and we have the edges pi
q′i←− gi

qi+1←−− pi+1 in G(A, x). If ri+1 is
a target arrow, then q′i is a target arrow, qi+1 is a source arrow, and we have the edges

pi
q′i−→ gi

qi+1−−→ pi+1 in G(A, x). In particular, pi’s and gi’s form a zigzag ζ in G(A, x). Let
p : A ↓s x and let i1 < i2 < . . . be the indexes i such that pi = p. Note that we can find
these indexes because the identity type on A ↓s x is decidable by Axiom O1.

Suppose that rij+1 is a source arrow and ij+1 exists. SinceG(A, x) is a tree (Lemma 3.7),

the zigzag ζ between pij and pij+1
begins with pij

q′ij←− gij
qij+1

←−−− pij+1 and ends with

pij+1

qij+1

−−−→ gij
q′ij−→ pij = pij+1

. Hence, pij+1−1 = pij+1, q
′
ij+1−1 = qij+1, and qij+1

= q′ij .

Then qij+1
is always a source arrow, and we have the edges qij

rij−→ hij

rij+1

−−−→ q′ij = qij+1
in

G(A, zij) when qij is also a source arrow.
Suppose that rij+1 is a target arrow and ij+1 exists. Let p′ be the last pi between pij

and pij+1
in the path π with minimum depth (i.e. the length of the path to the root), and

let k1, k2 . . . be the indices k between ij and ij+1 such that pk = p′. Then we have the edges
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pkl−1

q′kl−1−−−→ gkl−1

qkl−→ pkl
q′kl←− gkl

qkl+1←−−− pkl+1 in G(A, x). We see that qkl and q′kl are source

arrows, and we have the edges qkl
rkl−→ hkl

rkl+1−−−→ q′kl in G(A, zkl). From the observation in
the previous paragraph, q′kl = qkl+1

is a source arrow. It then follows that pij and pij+1
lie

in different branches of p′ in G(A, x), which contradicts that pij = pij+1
= p. Therefore,

if rij+1 is a target arrow, then pij is the end of occurrence of p in π.
These observations give a bound 2 × card(A ↓1 x′) for the number of occurrences of

each p : x′ →s x in a path in G3(A, f), where card(A ↓1 x′) is the cardinality of the finite
set A ↓1 x′ (Axiom O1). Since A ↓s x is also finite by Axiom O1, we obtain a bound∑

x′:A↓sx 2× card(A ↓1 x′) for the lengths of paths in G3(A, f).

3.12. Lemma. Let A be an opetopic set, let f be a 3-step arrow in A, and let v : G3(A,
f). Then there exists a unique path in G3(A, f) from v to a vertex in normal form.

Proof. By Lemma 3.10, we can uniquely extend a path from v until it reaches a vertex
in normal form. By Lemma 3.11, this procedure terminates at such a vertex.

We now obtain the normalization procedure.

3.13. Lemma. Let A be an opetopic set and k ≥ 2. Then every k-step arrow f in C(A)
factors into k 1-step arrows g1 ◦ . . . ◦ gk in normal form.

Proof. We proceed by induction on k. The case when k = 2 is by Axiom O4. Suppose
that k ≥ 3. By definition, f factors into 1-step arrows f1 ◦ . . . ◦ fk. By Lemma 3.12,
f1◦f2◦f3 = g1◦g2◦g3 inC(A) with (g1, g2, g3) in normal form, since p1◦q1◦r1 = p2◦q2◦r2 in
C(A) whenever there is an edge (p1, q1, r1)→ (p2, q2, r2) in G3(A, f) by definition. Then
apply the induction hypothesis for g2 ◦ g3 ◦ f4 ◦ . . . ◦ fk.

3.14. Lemma. Let A be an opetopic set, let k ≥ 2, and let x, y : A be objects such that
deg(x) + k = deg(y). Then NFk

A(x, y) ≃ ArrC(A)(x, y) ≃ ArrA(x, y).

Proof. Let H : NFk
A(x, y)→ ArrC(A)(x, y) and K : ArrC(A)(x, y)→ ArrA(x, y) denote

the canonical maps. H is surjective by Lemma 3.13. K is surjective by Axioms O8
and O4. K ◦H is injective by Axioms O2, O7 and O4. Thus, K ◦H is an equivalence,
and then H and K are also equivalences.

3.15. Proposition. Let A be an opetopic set. Then the canonical functor C(A)→ A is
an equivalence.

Proof. By construction, the canonical functor is an equivalence on objects and fully
faithful on 1-step arrows. It is fully faithful on k-step arrows for k ≥ 2 by Lemma 3.14.

3.16. Local finiteness. We show that every slice of an opetopic set is finite (Proposi-
tion 3.22). We say a gaunt category C is finite if Obj(C) is finite and the set of arrows
ArrC(x, y) is finite for all x, y : C.

3.17. Lemma. Let A be an opetopic set, let k ≥ 2, and let x : A be an object of degree
≥ k. Then A ↓k x ≃ ((y : A ↓s tk−2(x))× (A ↓s y)) + ((y : A ↓t tk−2(x))× (A ↓t y)).
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Proof. By Lemma 3.14.

3.18. Lemma. Let A be an opetopic set, let x : A, and let k ≥ 0. Then A ↓k x is finite.

Proof. By case analysis on k. The case when k = 0 is because A ↓0 x ≃ {idx}. The
case when k = 1 is by Axiom O1. The case when k ≥ 2 follows from Lemma 3.17 and
Axiom O1.

3.19. Lemma. Let C be a category and let x, y : C be objects. Then ArrC(x, y) is the
fiber of Obj(C ↓ y)→ Obj(C) over x : Obj(C).

Proof. By definition.

3.20. Lemma. Let C be a category, x : C, and y, z : C ↓ x. Then ArrC↓x(y, z) is the
fiber of Obj(C ↓ z)→ Obj(C ↓ x) over y : Obj(C ↓ x).

Proof. By Lemma 3.19.

3.21. Lemma. Let C be a gaunt category. Suppose that Obj(C ↓ x) is finite for every
x : C. Then C ↓ x is finite for every x : C.

Proof. By assumption, the object part of C ↓ x is finite. The arrow part of it is also
finite by Lemma 3.20.

3.22. Proposition. Let A be an opetopic set. Then A ↓ x is finite for every x : A.

Proof. By Lemma 3.18, Obj(A ↓ x) is finite. Then apply Lemma 3.21.

3.23. Local uniqueness of morphisms. The next goal is local uniqueness of mor-
phisms of opetopic sets (Proposition 3.30), which asserts that, if two morphisms of
opetopic sets A→ A′ agree at an object x : A, then they agree on the slice A ↓ x.

3.24. Construction. Let G be a graph and let x : G be a vertex. We define G ↓ x ≡
(y : G)× EG(y, x).

3.25. Lemma. Let A be an opetopic set and let f : y →s x be a source arrow in A. Then
G(A, x) ↓ f ≃ A ↓s y.

Proof. By definition.

3.26. Lemma. Let A be an opetopic set and let f : y →2 x be a 2-step arrow in A. Then
G(A, x) ↓ f ≃ 0 or G(A, x) ↓ f ≃ 1. The former holds if and only if f factors as a
source arrow followed by a target arrow. The latter holds if and only if f factors as a
target arrow followed by a source arrow.

Proof. By definition and Axiom O5.
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3.27. Lemma. Let F1, F2 : A→ A′ be morphisms of opetopic sets, let x : A, and let x′ : A′

such that F1(x) = F2(x) = x′. Then the induced maps F1 ↓1 x, F2 ↓1 x : A ↓1 x→ A′ ↓1 x′

are identical.

Proof. We prove that the graph morphisms G(F1, x),G(F2, x) : G(A, x) → G(A′, x′)
agree on vertices by induction on deg(x). This implies that F1 ↓s x, F2 ↓s x : A ↓s
x → A′ ↓s x′ are identical. Then, since both F1 and F2 send t(x) to t(x′), we see that
F1 ↓1 x = F2 ↓1 x. The case when deg(x) = 0 is trivial since G(A, x) is empty. Suppose
that deg(x) ≥ 1. We show that F1(f) = F2(f) by induction on f : G(A, x). Both F1

and F2 send the root of G(A, x) to the root of G(A′, x′) by Lemma 3.7. Let h : g → f
be an edge in G(A, x) and suppose that F1(f) = F2(f). If f : A ↓s x, then F1(g) = F2(g)
by Lemma 3.25 and by the induction hypothesis for the domain of f . If f : A ↓2 x, then
F1(g) = F2(g) by Lemma 3.26.

3.28. Lemma. Let F1, F2 : A → A′ be morphisms of opetopic sets, let k ≥ 0, let x : A,
and let x′ : A′ such that F1(x) = F2(x) = x′. Then the induced maps F1 ↓1 x, F2 ↓k x :
A ↓k x→ A′ ↓k x′ are identical.

Proof. By case analysis on k. The case when k = 0 is trivial since A ↓0 x is the
singleton {idx}. The case when k = 1 is Lemma 3.27. The case when k ≥ 2 follows from
Lemmas 3.17 and 3.27.

3.29. Lemma. Let F1, F2 : C → C ′ be functors between gaunt categories. Suppose that,
for every x : C and x′ : C such that F1(x) = F2(x) = x′, the induced maps Obj(F1 ↓ x),
Obj(F2 ↓ x) : Obj(C ↓ x) → Obj(C ′ ↓ x′) are identical. Then, for every x : C and
x′ : C ′ such that F1(x) = F2(x) = x′, the induced functors F1 ↓ x, F2 ↓ x : C ↓ x→ C ′ ↓ x′

are identical.

Proof. The object parts of F1 ↓ x and F2 ↓ x are identical by assumption. The arrow
parts of them are also identical by Lemma 3.20.

3.30. Proposition. Let F1, F2 : A → A′ be morphisms of opetopic sets, let x : A, and
let x′ : A′ such that F1(x) = F2(x) = x′. Then the induced functors F1 ↓ x, F2 ↓ x : A ↓
x→ A′ ↓ x′ are identical.

Proof. By Lemma 3.28, F1 ↓ x and F2 ↓ x agree on objects. Then apply Lemma 3.29.

3.31. Local equivalence. We show that any morphism of opetopic sets induces an
equivalence between slices (Proposition 3.35).

3.32. Lemma. Let F : A → A′ be a morphism of opetopic sets and let x : A. Then the
induced map F ↓1 x : A ↓1 x→ A′ ↓1 F (x) is an equivalence.
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Proof. Let x′ ≡ F (x). We prove that G(F, x) : G(A, x) → G(A′, x′) is an equivalence
on vertices by induction on deg(x). This implies that F ↓s x : A ↓s x → A′ ↓s x′ is
an equivalence. Then, since the fiber of F over t(x′) is the singleton {t(x)}, we see that
F ↓1 x is an equivalence. The case when deg(x) = 0 is trivial since G(A, x) is empty.
Suppose that deg(x) ≥ 1. We prove that the fiber of F over f ′ is contractible by induction
on f ′ : G(A′, x′). The fiber of F over the root of G(A′, x′) consists of only the root of
G(A′, x′) by Lemma 3.7. Let h′ : g′ → f ′ be an edge in G(A′, x′) and suppose that the
fiber of F over f ′ is contractible with center f . If f : A ↓s x, then the fiber of F over g′

is contractible by Lemma 3.25 and by the induction hypothesis for the domain of f . If
f : A ↓2 x, then the fiber of F over g′ is contractible by Lemma 3.26.

3.33. Lemma. Let F : A→ A′ be a morphism of opetopic sets, let x : A, and let k ≥ 0.
Then the induced map F ↓k x : A ↓k x→ A′ ↓k F (x) is an equivalence.

Proof. By case analysis on k. The case when k = 0 is trivial since A ↓0 x is the
singleton {idx}. The case when k = 1 is Lemma 3.27. The case when k ≥ 2 follows from
Lemmas 3.17 and 3.32.

3.34. Lemma. Let F : C → C ′ be a functor. Suppose that the map Obj(F ↓ x) :
Obj(C ↓ x) → Obj(C ′ ↓ F (x)) is an equivalence for every x : C. Then the functor
F ↓ x : C ↓ x→ C ′ ↓ F (x) is an equivalence for every x : C.

Proof. The object part of F ↓ x is an equivalence by assumption. The arrow part of it
is also an equivalence by Lemma 3.20.

3.35. Proposition. Let F : A→ A′ be a morphism of opetopic sets and let x : A. Then
the induced functor F ↓ x : A ↓ x→ A′ ↓ F (x) is an equivalence.

Proof. By Lemma 3.33, Obj(F ↓ x) is an equivalence. Then apply Lemma 3.34.

3.36. Opetopic sets over A as presheaves. We show that each slice OSet ↓ A is
a presheaf category (Proposition 3.41).

3.37. Construction. Let A be a preopetopic set and let p : B → A be a morphism of
ω-direct categories. We extend B to a preopetopic set by S(B) ≡ p−1(S(A)) and T(B) ≡
p−1(T(A)). As a special case, every slice A ↓ x is extended to a preopetopic set. This
preopetopic set structure on B is characterized as the unique one that makes p a morphism
of preopetopic sets. In other words, the forgetful functor PreOSet ↓ A → DirCatω ↓ A
is an equivalence. When A is an opetopic set, we regard OSet ↓ A as a full subcategory
of DirCatω ↓ A via the equivalence PreOSet ↓ A ≃ DirCatω ↓ A.

3.38. Definition. We say a property P on preopetopic sets is local if a preopetopic set
A satisfies P if and only if every slice A ↓ x satisfies P .

3.39. Lemma. Axioms O1 to O8 are local properties on preopetopic sets.

Proof. Straightforward.
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3.40. Definition. Let p : B → A be a functor. We say p is a right fibration if the
induced functor p ↓ y : B ↓ y → A ↓ p(y) is an equivalence for every y : B. We say p
is a discrete fibration if it is a right fibration and every fiber Bx is a set. For a small
category A, the small discrete fibrations over A and the functors over A between them
form a category DFib(A). Every discrete fibration is conservative. Thus, when A is an
ω-direct category, DFib(A) is regarded as a full subcategory of DirCatω ↓ A.

It is a standard fact thatDFib(A) is equivalent to the category of set-valued presheaves
on A.

3.41. Proposition. Let A be an opetopic set. Then OSet ↓ A = DFib(A) in the poset
of full subcategories of DirCatω ↓ A.

Proof. Let P : B → A be a morphism of ω-direct categories. If P is a right fibration,
then B is an opetopic set by Lemma 3.39 since B ↓ y ≃ A ↓ P (y) for every y : B. If B is
an opetopic set, then P is a right fibration by Proposition 3.35.

4. Opetopes

Opetopes are defined as special opetopic sets.

4.1. Definition. An opetope is an opetopic set in which a terminal object exists. We re-
fer to the terminal object in an opetope A as ∗A. Let O ⊂ OSet denote the full subcategory
spanned by the opetopes.

An interesting phenomenon is that O is extended to a small opetopic set (Proposi-
tions 4.4 and 4.5), and thus O is regarded as an object in OSet.

4.2. Construction. We extend O to a preopetopic set as follows. The degree functor
is A 7→ deg(∗A). Clearly it is a functor to ω. It reflects equivalences by Proposition 3.35.
It is then gaunt by Proposition 3.30. Thus, O is an ω-direct category. We say a 1-step
morphism F : A→1 A′ of opetopes is a source/target arrow if the arrow F (∗A)→1 ∗A′ is
a source/target arrow in A′.

4.3. Lemma. Let A be an opetopic set. The morphism of preopetopic sets A → O ↓ A
that sends x : A to the forgetful functor x! : A ↓ x→ A is an equivalence.

Proof. The inverse is given by (F : A′ → A) 7→ F (∗A′). For x : A, we have x!(idx) = x.
For F : A′ → A, we have A′ ≃ A ↓ F (∗A′) by Proposition 3.35.

4.4. Proposition. O is an opetopic set.

Proof. By Lemmas 4.3 and 3.39.

4.5. Proposition. O is small.

Proof. This is because every opetope is finite by Proposition 3.22.
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We show that O : OSet is moreover the terminal object (Proposition 4.7). As a
corollary, OSet is a presheaf category (Theorem 4.8).

4.6. Lemma. Let C be a category and let x : C be an object. Suppose that we have a
natural transformation t : idC ⇒ x such that tx = idx. Then x is a terminal object.

Proof. Let x′ : C be an object. We show that ArrC(x
′, x) is contractible. We have the

arrow tx′ : x′ → x. Let f : x′ → x be an arrow. By the naturality of t, we have tx′ = tx◦f .
Since tx = idx, we have tx′ = f .

4.7. Proposition. O : OSet is the terminal object.

Proof. For A : OSet, we define a morphism of opetopic sets tA : A→ O by tA(x) ≡ A ↓
x. This is natural in A by Proposition 3.35. The component at O : OSet is the morphism
(X 7→ O ↓ X) : O → O, which is equivalent to the identity on O by Lemma 4.3. Then
apply Lemma 4.6.

4.8. Theorem. OSet ≃ DFib(O).

Proof. By Propositions 3.41 and 4.7.

Let us determine the opetopes of low degrees.

4.9. Notation. Let A be an ω-direct category and let n : ω. The fiber of deg : A→ ω
over n is denoted by An.

4.10. Proposition. O0 ≃ 1.

Proof. The singleton {0} with deg(0) ≡ 0 is the only opetope of degree 0.

4.11. Proposition. O1 ≃ 1. Moreover, for the unique opetope A of degree 1, there exist
a unique source morphism into A and a unique target morphism into A.

Proof. Let A be an opetope of degree 1. By Axiom O3, there exists a unique source
arrow x →s ∗A. Since ∗A is the terminal object and since the sets of source and target
arrows are disjoint, we see that x ̸= t(∗A). Hence, A must look like

x→s ∗A t← t(∗A).

It is straightforward to check that this preopetopic set is indeed an opetopic set.

5. The category of opetopic sets

We study the category OSet of opetopic sets in more detail. We first give a way to detect
equivalences in OSet. Of course, equivalences in OSet ≃ DFib(O) (Theorem 4.8) are
detected fiberwise, but since we do not know yet much about opetopes, this is not so
helpful. A more useful sufficient condition is degreewise equivalence (Proposition 5.3).

5.1. Lemma. The forgetful functor OSet→ Gaunt is conservative.
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Proof. By definition, a morphism F : A → B of opetopic sets is an equivalence if and
only if its underlying functor is an equivalence and it reflects source and target arrows.
The second condition automatically holds since the sets of source and target arrows are
complement to each other.

5.2. Lemma. Let F : C → D be a functor and suppose that Obj(F ) : Obj(C)→ Obj(D)
is an equivalence and that F ↓ x : C ↓ x → D ↓ F (x) is an equivalence for every x : C.
Then F is an equivalence.

Proof. By assumption, F is an equivalence on objects. It is also fully faithful by
Lemma 3.19.

5.3. Proposition. The functors (A 7→ An) : OSet → Set for all n : ω are jointly
conservative.

Proof. Let F : A→ B be a morphism of opetopic sets and suppose that Fn : An → Bn

is an equivalence for every n : ω. To see that F is an equivalence, by Lemma 5.1, it
suffices to see that the underlying functor of F is an equivalence, but this follows from
Proposition 3.35 and Lemma 5.2 since F is an equivalence on objects by assumption.

We give some tools to compute colimits in OSet. Fiberwise computation of colimits
in OSet ≃ DFib(O) is not helpful, and degreewise computation (Proposition 5.7) is what
we want.

5.4. Construction. Let A be an opetopic set and let n : ω. We define an opetopic set
A<n to be the category of elements for the proposition-valued presheaf x 7→ (deg(x) < n)
on A.

5.5. Proposition. Let n : ω. Then the functor (A 7→ A<n) : OSet → OSet preserves
small colimits and pullbacks.

Proof. By construction and by Proposition 4.7, the functor A 7→ A<n factors as the
pullback functor OSet ≃ OSet ↓ O → OSet ↓ O<n followed by the forgetful functor
OSet ↓ O<n → OSet. These functors preserve small colimits and pullbacks.

5.6. Proposition. Let n : ω. Then the functor (A 7→ An) : OSet → Set preserves
small colimits and pullbacks.

Proof. The functor A 7→ An factors as the pullback functor OSet ≃ DFib(O)→ Set ↓
On followed by the forgetful functor Set ↓ On → Set. These functors preserve small
colimits and pullbacks.

5.7. Proposition. Let A : I → OSet be a diagram. Then a cocone (f(i) : A(i)→ B)i:I
under A is a colimit cocone if and only if (f(i)n : A(i)n → Bn)i:I is a colimit cocone for
every n : ω.

Proof. By Propositions 5.3 and 5.6.
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5.8. Proposition. Let n ≥ 0 and let A : I → OSet ↓ O<n+1. Then a cocone (f(i) :
A(i) → B)i:I under A is a colimit cocone if and only if (f(i)n : A(i)n → Bn)i:I and
(f(i)<n : A(i)<n → B<n)i:I are colimit cocones.

Proof. Note that Xm ≃ 0 for any X : OSet ↓ O<n+1 and m ≥ n + 1. Thus, the claim
follows from Propositions 5.5 and 5.7.

6. Boundaries and pasting diagrams

We introduce boundaries and pasting diagrams. We show that an opetope is completely
determined by its pasting diagram of source objects (Corollary 6.24).

6.1. Definition. Let n : ω. An n-opetopic set is an opetopic set A whose degree functor
factors through n ⊂ ω. This is equivalent to that the morphism A → O factors through
O<n.

6.2. Definition. Let n : ω. An n-preboundary is an n-opetopic set A equipped with
a subset SBd(A) ⊂ An−1 with complement TBd(A). Objects in SBd(A) are called source
objects. Objects in TBd(A) are called target objects.

6.3. Definition. Let n : ω. An n-prepasting diagram is an (n + 1)-opetopic set A
equipped with two families of sets LA,RA : An−1 → Set. We say an object x : An−1 is
a leaf object if LA(x) is inhabited. We say an object x : An−1 is a root object if RA(x)
is inhabited. Let L(A) ≡ (x : An−1) × LA(x) and R(A) ≡ (x : An−1) × RA(x). When
extending an (n+1)-opetopic set A to an n-prepasting diagram, we specify either LA and
RA or L(A)→ An−1 and R(A)→ An−1.

6.4. Construction. Let n ≥ 1 and let A be an n-preboundary. We define an n-opetopic
set Λs(A) called the source horn of A to be the category of elements for the following
proposition-valued presheaf on A.

x 7→
{

“x is a source object” if deg(x) = n− 1
1 if deg(x) < n− 1

We extend Λs(A) to an (n−1)-prepasting diagram by LΛs(A)(x) ≡ (y : TBd(A))×(x→s y)
and RΛs(A)(x) ≡ (y : TBd(A))× (x→t y).

6.5. Construction. Let n ≥ 0 and let A be an n-prepasting diagram. We define an n-
opetopic set ∂(A) called the boundary of A to be the category of elements for the following
set-valued presheaf on A.

x 7→


0 if deg(x) = n
LA(x) +RA(x) if deg(x) = n− 1
1 if deg(x) < n− 1

We extend ∂(A) to an n-preboundary by SBd(∂(A)) ≡ L(A) and TBd(∂(A)) ≡ R(A).
When n ≥ 1, Λs(∂(A)) is abbreviated to Λs(A).
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6.6. Definition. Let n ≥ 0. We mutually define n-boundaries and n-pasting diagrams.
An n-boundary is an n-preboundary A satisfying the following axioms.

Bd1. When n ≥ 1, there exists a unique target object in A.

Bd2. When n ≥ 1, Λs(A) is an (n− 1)-pasting diagram.

An n-pasting diagram is an n-prepasting diagram A satisfying the following axioms.

PD1. An is finite.

PD2. For every x : An−1, the type LA(x) is a proposition, and it holds if and only if there
is no target arrow from x.

PD3. For every x : An−1, the type RA(x) is a proposition, and it holds if and only if there
is no source arrow from x.

PD4. When n = 0, A0 is contractible.

PD5. For every object x : An−1, there is at most one target arrow from x.

PD6. For every object x : An−1, there is at most one source arrow from x.

PD7. When n ≥ 1, there exists an object r : An−1 such that, for every object x : An−1,
there exists a zigzag

x = x0
f0−→ y0

g0←− x1
f1−→ . . .

fm−1−−−→ ym−1
gm−1←−−− xm = r, (2)

where xi : An−1, yi : An, fi’s are source arrows, and gi’s are target arrows.

PD8. ∂(A) is an n-boundary.

Let Bdn denote the category of small n-boundaries whose morphisms are those morphisms
of opetopic sets preserving source and target objects. Let PDn denote the category of small
n-pasting diagrams whose morphisms are those morphisms of opetopic sets preserving leaf
and root objects. By definition, Λs is a functor Bdn → PDn−1 when n ≥ 1, and ∂ is a
functor PDn → Bdn.

We illustrate some examples of pasting diagrams and boundaries in Fig. 9. Ax-
ioms PD1 to PD7 express that a pasting diagram forms a tree; see Fig. 5. Axiom PD8 is
necessary to exclude, for example, the following diagram.

•

l

r
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•

• •

•

•

•
l

r

l

l l

l

A

•

• •

•

•

•
t

∂(A)

l

• •

•

•

r

Λs(A)

Figure 9: Examples of pasting diagrams and boundaries. A is a 2-pasting diagram, ∂(A)
is its boundary, and Λs(A) is its source horn. Leaves of pasting diagrams are marked with
“l”. The roots of pasting diagrams are marked with “r”. The targets in boundaries are
marked with “t”.

It forms a tree with root r and leaf l, but it is not considered as a pasting diagram due to
the hole surrounded by l. There are n-pasting diagrams A such that An is empty, in which
case the root object in A is also a leaf object. For example, the following is a 2-pasting
diagram.

• •

Its boundary is the following, where the target object is marked with “t”.

• •
t

We construct the boundary of an opetope (Proposition 6.9).

6.7. Construction. Let A be an opetope of degree n ≥ 0. We define ∂(A) ≡ A<n. We
extend it to an n-preboundary where the source/target objects are those x : An−1 such that
the unique arrow x →1 ∗A is a source/target arrow. We call ∂(A) the boundary of A.
When n ≥ 1, Λs(∂(A)) is abbreviated to Λs(A) and called the source horn of A.

6.8. Lemma. Let A be an opetope of degree n ≥ 1. Then ∂(Λs(A)) = ∂(tO(A)) in the
type of (n− 1)-preboundaries.

Proof. ∂(Λs(A)) is the category of elements for the following set-valued presheaf on A.

x 7→


0 if deg(x) ≥ n− 1
(x→s t(∗A)) + (x→t t(∗A)) if deg(x) = n− 2
1 if deg(x) < n− 2
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∂(tO(A)) is the category of elements for the following set-valued presheaf on A.

x 7→


0 if deg(x) ≥ n− 1
(x→s t(∗A)) + (x→t t(∗A)) if deg(x) = n− 2
ArrA(x, t(∗A)) if deg(x) < n− 2

They are equivalent becauseArrA(x, t(∗A)) ≃ NFk−1
A (x, t(∗A)) ≃ NFk

A(x, ∗A) ≃ ArrA(x,
∗A) (Lemma 3.14) is contractible when deg(x) = n− k for k ≥ 3.

6.9. Proposition. ∂(A) is an n-boundary for every opetope A of degree n ≥ 0.

Proof. We proceed by induction on n. Axiom Bd1 is by Axiom O2. Suppose that n ≥ 1
and we verity the (n−1)-pasting diagram axioms for Λs(A). Axiom PD1 is by Axiom O1.
For x : An−2, the type LΛs(A)(x) is the type of factorizations of x →2 ∗A into a source
arrow followed by a target arrow. Thus, Axiom PD2 follows from Axiom O5. Similarly
Axiom PD3 follows from Axiom O4. Axiom PD4 is by Axiom O3. Axiom PD5 follows
from Axiom O5. Axiom PD6 follows from Axiom O4. Axiom PD7 is by Axiom O6.
Axiom PD8 is by Lemma 6.8 and induction hypothesis.

We then show that ∂ : On → Bdn is an equivalence (Proposition 6.20). We prepare
basic lemmas for boundaries and pasting diagrams.

6.10. Construction. Let n ≥ 0 and let A be an n-prepasting diagram. We define a
0-graph GPD(A) as follows. The set of vertices in GPD(A) is An + An−1. There is no
edge between vertices from An. There is no edge between vertices from An−1. An edge
from x : An to y : An−1 is a target arrow f : y →t x. An edge from y : An−1 to x : An is
a source arrow f : y →s x.

6.11. Lemma. Let n ≥ 0 and let A be an n-pasting diagram.

1. GPD(A) is a tree.

2. When n = 0, GPD(A) is a singleton set with no edge.

3. When n ≥ 1, the root of GPD(A) is the unique root object in A, which exists by
Axiom Bd1 for ∂(A).

Proof. When n = 0, GPD(A) is a singleton set with no edge by Axiom PD4 and by
definition. In particular, it is a tree. Suppose that n ≥ 1. Take r : An−1 as in Axiom PD7.
Then Zigzag (2) is a path from x to r in GPD(A). Let t be the unique root object in A.
There is a path p from t to r. By Axiom PD3, the length of p must be 0, and thus t = r.
For every x : An−1, there is a path from x to r. Such a path is unique by Axioms PD6, O2
and PD3. For every x : An, we have a unique edge x→ y by Axiom O2 and then a unique
path from y to r.
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6.12. Lemma. Let n ≥ 1, let A be an n-pasting diagram, and let x : An−1. Then either
x is a root object or there exists a unique source arrow from x.

Proof. Let d be the length of the unique path inGPD(A) from x to the root (Lemma 6.11).
If d = 0, then there is no source arrow from x, and thus x is a root object by Axiom PD3.
If d ≥ 1, then there is a source arrow from x, and such a source arrow is unique by
Axiom PD6.

6.13. Lemma. Let n ≥ 0 and let A be an n-pasting diagram. Then An−1 is finite.

Proof. The case when n = 0 is trivial since A−1 is empty. Suppose that n ≥ 1. We show
that An−1 ≃ 1+((x : An)×(A ↓s x)), which is finite by Axioms PD1 and O1. Let x : An−1.
We proceed by case analysis on x by Lemma 6.12. If x is a root object, we map x to ∗ : 1.
If there is a unique source arrow f : x →s y, we map x to (y, f) : (x′ : An) × (A ↓s x′).
This gives a one-to-one correspondence between An−1 and 1+ ((x : An)× (A ↓s x)).

6.14. Lemma. Let n ≥ 1, let A be an n-pasting diagram, and let x : An−1. Then either
x is a leaf object or there exists a unique target arrow from x.

Proof. By Axiom PD1 and Lemma 6.13, the proposition “there is a target arrow from
x” is decidable: check if t(y) = x for all y : An. Thus, by Axiom PD2, either x is a leaf
object or there is a target arrow from x. In the latter case, such a target arrow is unique
by Axiom PD5.

6.15. Lemma. Let A be a preopetopic set satisfying Axiom O1 to O6. Then A satisfies
Axioms O7 and O8 if and only if, for every k ≥ 3 and x, y : A such that deg(y) + k =
deg(x), the postcomposition map t(x)! : ArrA(y, t(x))→ ArrA(y, x) is an equivalence.

Proof. The “only if” direction follows from Lemma 3.14 as ArrA(y, t(x)) ≃ NFk−1
A (y,

t(x)) ≃ NFk
A(y, x) ≃ ArrA(y, x). We show the “if” direction. Axiom O7 is immediate.

By assumption and Axiom O4, we have NFk
A(y, x) ≃ ArrA(y, x) for every k ≥ 2 and x,

y : A such that deg(y) + k = deg(x). Axiom O8 thus follows.

6.16. Construction. Let n ≥ 1 and let A be an n-boundary. We refer to the unique
target object in A, which exists by Axiom Bd1, as tBd(A).

6.17. Lemma. Let k ≥ 2, let n ≥ 1, let A be an n-boundary, and let x : A be an object
of degree n− 1− k. Then there exists a unique k-step arrow x→k tBd(A).

Proof. By induction on k ≥ 2. Suppose that k = 2. Then x is an object in Λs(Λs(A)) of
degree n−3. By Lemma 6.12, either there is a unique target arrow f : x→t tBd(∂(Λs(A)))
or there is a unique source arrow f : x →s y to a source object y in ∂(Λs(A)). In the
former case, by construction, tBd(∂(Λs(A))) = t(tBd(A)), and thus we have the unique
target arrow g ≡ t(tBd(A)) : tBd(∂(Λs(A))) →t tBd(A). In the latter case, y is a leaf
object in Λs(A) by the definition of ∂(Λs(A)). Then we have a unique source arrow
g : y →s tBd(A). In both cases, (g, f) is the unique homogeneous pair of 1-step arrows
f : y →1 tBd(A) and g : x→1 y. Then the composite g◦f is the unique arrow x→2 tBd(A)
by Axiom O4. Suppose that k ≥ 3. As we have seen, tBd(∂(Λs(A))) = t(tBd(A)). By
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induction hypothesis, we have a unique arrow f : x →k−1 tBd(∂(Λs(A))). Then the
composite t(tBd(A)) ◦ f is the unique arrow x→k tBd(A) by Lemma 6.15.

We now construct an inverse of ∂ : On → Bdn.

6.18. Construction. Let n ≥ 0 and let A be an n-preboundary. We construct a category
Fill(A) from A by freely adjoining a terminal object ∗. We extend it to an ω-direct category
by extending degA by degFill(A)(∗) ≡ n. We further extend it to a preopetopic set where
an arrow is a source/target arrow if either it is a source/target arrow in A or it is the
arrow x→1 ∗ from a source/target object x in A.

6.19. Lemma. Let n ≥ 0 and let A be an n-boundary. Then Fill(A) is an opetope of
degree n.

Proof. Since Fill(A) ↓ x ≃ A ↓ x for x : A by construction, it suffices to verify
Axioms O1 to O8 for x ≡ ∗. Since Fill(A) ↓1 ∗ ≃ An−1 by construction, Axiom O1 is
trivial when n = 0 and follows from Axiom Bd1 and Axiom PD1 for Λs(A) when n ≥ 1.
Axiom O2 is by Axiom Bd1. Axiom O3 is by Axiom PD4 for Λs(A). Axiom O4 follows
from Lemma 6.12 for Λs(A). Axiom O5 follows from Lemma 6.14 for Λs(A). Axiom O6
is by Axiom PD7 for Λs(A). Axioms O7 and O8 follow from Lemmas 6.15 and 6.17.

6.20. Proposition. Let n ≥ 0. Then the functor ∂ : On → Bdn is an equivalence.

Proof. The inverse is given by Fill (Lemma 6.19).

6.21. Corollary. Let n ≥ 0. Then Bdn is a discrete category over a set.

Proof. By Proposition 6.20.

We show that Λs : Bdn+1 → PDn is an equivalence (Proposition 6.23).

6.22. Lemma. Let n ≥ 0. Then the diagram

Bdn+1 PDn

On Bdn

Λs

tBd ∂

∂

(3)

is a pullback of categories, where we identify tBd(A) : An and the associated opetope
A ↓ tBd(A) for A : Bdn+1.

Proof. We first note that Diagram (3) commutes, that is, ∂(Λs(A)) = ∂(tBd(A)) for all
A : Bdn+1. By Proposition 6.20, it suffices to show the case when A is of the form ∂(A′)
for an opetope A′ of degree n+1, but this is just Lemma 6.8. To see that Diagram (3) is
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a pullback, let A : On, B : PDn, and C : Bdn and suppose ∂(A) = ∂(B) = C. Let D(A,
B) be the following pushout in OSet.

C B

A D(A,B)
⌜

By Proposition 5.6, we have 1 + Bn ≃ D(A,B)n. We extend D(A,B) to an (n + 1)-
preboundary by SBd(D(A,B)) ≡ Bn and TBd(D(A,B)) ≡ 1. By Proposition 5.5, we
have B<n ≃ D(A,B)<n. It then follows that B ≃ Λs(D(A,B)) by Proposition 5.3, and
thus D(A,B) is an (n + 1)-boundary. By Proposition 3.35, A ≃ tBd(D(A,B)). We thus
have a section D of Bdn+1 → OSetn×Bdn PDn. To see that D is moreover an inverse, let
X : Bdn+1. We have a canonical morphism D(tBd(X),Λs(X))→ X of (n+1)-boundaries,
which is an equivalence by Corollary 6.21.

6.23. Proposition. Let n ≥ 1. Then the functor Λs : Bdn → PDn−1 is an equivalence.

Proof. By Proposition 6.20 and Lemma 6.22.

6.24. Corollary. Let n ≥ 1. Then the map Λs : On → PDn−1 is an equivalence.

Proof. By Propositions 6.20 and 6.23.

6.25. Corollary. Let n ≥ 0. Then PDn is a discrete category over a set.

Proof. By Corollary 6.24.

7. Substitution and grafting

We introduce two operators on pasting diagrams, substitution and grafting. Substitution
is the operator on n-pasting diagrams replacing n-cells in an n-pasting diagram by n-
pasting diagrams of the same boundaries. For example, let A, B(x0), B(x1), and B(x2)
be the following 2-pasting diagrams.

•

• •

•

•

x0

x1

x2

A

•

• •

•
B(x0)

• •

•

B(x1)

•

•
B(x2)
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Then the result of substitution of B in A is the following 2-pasting diagram.

•

• •

•

•

Grafting is the operator on n-pasting diagrams attaching an n-pasting diagram to each
leaf of an n-pasting diagram. For example, let A, B(y0), B(y1), and B(y2) be the following
2-pasting diagrams.

•

• •

•

y0

y1

y2

A

•

•
•

y0

B(y0)

•

y1

B(y1)

•

•

y2

B(y2)

Then the result of grafting of B to A is the following 2-pasting diagram.

•

•

•

•

We begin with the formal definition of substitution.

7.1. Notation. Let f : B → A be a map between types. We write the fiber of f over
x : A as B[f = x].

7.2. Construction. Let n ≥ 0, let A be an n-pasting diagram, and let B : (x : An) →
PDn[∂ = ∂(A ↓ x)]. We define an opetopic set Subst(A,B) called the substitution of B
in A by the following pushout in OSet.∐

x:An
∂(A ↓ x) A<n

∐
x:An

B(x) Subst(A,B)
⌜

We extend Subst(A,B) to an n-prepasting diagram by L(Subst(A,B)) ≡ L(A) and
R(Subst(A,B)) ≡ R(A).
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7.3. Lemma. Let n ≥ 0, let A be an n-pasting diagram, and let B : (x : An)→ PDn[∂ =
∂(A ↓ x)]. Then (x : An)×B(x)n ≃ Subst(A,B)n.

Proof. By Proposition 5.6.

7.4. Lemma. Let n ≥ 1, let A be an n-pasting diagram, and let B : (x : An)→ PDn[∂ =
∂(A ↓ x)].

1. R(A) + ((x : An−1)× (B(x)n−1 \R(B(x)))) ≃ Subst(A,B)n−1

2. L(A) + ((x : An−1)× (B(x)n−1 \ L(B(x)))) ≃ Subst(A,B)n−1

Proof. We prove the first claim. The second one is similarly proved. Since (x : An) ×
(A ↓1 x) ≃ ((x : An)× (A ↓s x)) + ((x : An)× (A ↓t x)), (x : An)×B(x)n−1 ≃ ((x : An)×
(B(x)n−1\R(B(x))))+((x : An)×R(B(x))), and (x : An)×(A ↓t x) ≃ (x : An)×R(B(x))
as ∂(A ↓ x) = ∂(B(x)), we have the following pushout.

(x : An)× (A ↓s x) (x : An)× (A ↓1 x)

(x : An)× (B(x)n−1 \R(B(x))) (x : An)×B(x)n−1

⌜

By Lemma 6.12, (x : An)× (A ↓s x) ≃ An−1 \R(A). We then have the following pushout
by Proposition 5.6.

An−1 \R(A) An−1

(x : An)× (B(x)n−1 \R(B(x))) Subst(A,B)n−1

⌜

Since R(A) + (An−1 \R(A)) ≃ A, we have R(A) + ((x : An)× (B(x)n−1 \R(B(x)))).

7.5. Lemma. Let n ≥ 1, let A be an n-pasting diagram, and let B : (x : An)→ PDn[∂ =
∂(A ↓ x)]. Then ∂(Subst(A,B)) = ∂(A) in the type of n-preboundaries.

Proof. By Proposition 5.5, A<n−1 ≃ Subst(A,B)<n−1. Thus, the claim is true by
construction.

7.6. Proposition. Let n ≥ 0, let A be an n-pasting diagram, and let B : (x : An) →
PDn[∂ = ∂(A ↓ x)]. Then Subst(A,B) is an n-pasting diagram.

Proof. When n = 0, A0 is contractible by Axiom PD4 with center ∗, and then B(∗) ≃
Subst(A,B). Suppose that n ≥ 1. Axiom PD1 is by Lemma 7.3. Axioms PD2 and PD3
follow from Lemma 7.4. Axiom PD4 is vacuously true. Axioms PD5 to PD7 follow from
Lemma 7.4. Axiom PD8 is by Lemma 7.5.



234 TAICHI UEMURA

The substitution operator is associative in the following sense.

7.7. Proposition. Let n ≥ n, let A be an n-pasting diagram, let B : (x : An) →
PDn[∂ = ∂(A ↓ x)], and let C : (x : An)→ (y : B(x)n)→ PDn[∂ = ∂(B(x) ↓ y)]. Then

Subst(A, (x 7→ Subst(B(x), C(x)))) ≃ Subst(Subst(A,B), ((x, y) 7→ C(x, y))).

Proof. We first note that both sides of the stated equivalence are well-typed. The left
side is well-typed by Lemma 7.5. For the right side, use Lemma 7.3 and the equivalence
B(x) ↓ y ≃ Subst(A,B) ↓ (x, y) for every x : An and y : B(x)n by Proposition 3.35. Let
X be the following pushout ∐

x:An
∂(A ↓ x) A<n

∐
x:An

∐
y:B(x)n

∂(B(x) ↓ y)
∐

x:An
B(x)<n Subst(A,B)<n

∐
x:An

∐
y:B(x)n

C(x, y)
∐

x:An
Subst(B(x), C(x)) X,

⌜

⌜ ⌜

where the upper right square is a pushout by Proposition 5.5. The composite of the upper
right and lower right pushouts exhibits X as Subst(A, (x 7→ Subst(B(x), C(x)))). The
composite of the lower left and lower right pushouts exhibits X as Subst(Subst(A,B),
((x, y) 7→ C(x, y))).

Any opetope of degree n can be turned into an n-pasting diagram, which plays the
role of the unit for substitution (Propositions 7.11 and 7.12).

7.8. Construction. Let A be an opetope of degree n ≥ 0. We define an n-prepasting
diagram ι(A) as follows. The underlying opetopic set of ι(A) is A. An object x : An−1 is
a leaf/root object if the arrow x→1 ∗A is a source/target arrow.

7.9. Lemma. Let A be an opetope of degree n ≥ 0. Then ∂(ι(A)) ≃ ∂(A).

Proof. By construction.

7.10. Proposition. Let A be an opetope of degree n ≥ 0. Then ι(A) is an n-pasting
diagram.

Proof. Straightforward. For Axiom PD8, use Lemma 7.9.

7.11. Proposition. Let A be an opetope of degree n ≥ 0 and let B : PDn[∂ = ∂(A)].
Since ι(A)n = {∗A}, we may regard B as a map (x : ι(A)n)→ PDn[∂ = ∂(A ↓ x)]. Then
Subst(ι(A), B) ≃ B.

Proof. By construction, Subst(ι(A), B) is the pushout of the equivalence ∂(A) ≃ A<n

along ∂(A) = ∂(B)→ B and thus equivalent to B.
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7.12. Proposition. Let n ≥ 0 and let A be an n-pasting diagram. Then Subst(A,
(x 7→ ι(A ↓ x))) ≃ A.

Proof. We first note that Subst(A, (x 7→ ι(A ↓ x))) is well-typed by Lemma 7.9. We
have the following commutative square.∐

x:An
∂(A ↓ x) A<n

∐
x:An

A ↓ x A

(4)

It suffices to show that Square (4) is a pushout. By Proposition 5.6, the fiber of Square (4)
is

0 0

(x : An)× {x} An,≃

which is a pushout. By Proposition 5.5, the restriction of Square (4) to < n is∐
x:An

(A ↓ x)<n A<n

∐
x:An

(A ↓ x)<n A<n,

which is a pushout. Therefore, Square (4) is a pushout by Proposition 5.8.

We then define grafting.

7.13. Construction. Let n ≥ 1 and let A be an n-pasting diagram. We refer to the
unique root object in A as rA and define an opetope tPD(A) to be A ↓ rA.

7.14. Construction. Let n ≥ 0, let A be an (n + 1)-pasting diagram, and let B : (x :
L(A))→ PDn+1[t

PD = A ↓ x]. We define an opetopic set Graft(A,B) called the grafting
of B onto A by the following pushout in OSet.∐

x:L(A) A ↓ x A

∐
x:L(A) B(x) Graft(A,B)

⌜

We extend Graft(A,B) to an (n + 1)-prepasting diagram by L(Graft(A,B)) ≡ (x :
L(A))× L(B(x)) and R(Graft(A,B)) ≡ R(A).

7.15. Lemma. Let n ≥ 0, let A be an (n+ 1)-pasting diagram, and let B : (x : L(A))→
PDn+1[t

PD = A ↓ x]. Then An+1 + ((x : L(A))×B(x)n+1) ≃ Graft(A,B)n+1.

Proof. By Proposition 5.6.
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7.16. Lemma. Let n ≥ 0, let A be an (n+ 1)-pasting diagram, and let B : (x : L(A))→
PDn+1[t

PD = A ↓ x].

1. (An \ L(A)) + ((x : L(A))×B(x)n) ≃ Graft(A,B)n

2. An + ((x : L(A))× (B(x)n \R(B(x)))) ≃ Graft(A,B)n

Proof. By Proposition 5.6, we have the following pushout

L(A) An

(x : L(A))×B(x)n Graft(A,B)n,
⌜

where the left map sends x : L(A) to (x, rB(x)). The first claim directly follows from this
pushout. Since L(A) + ((x : L(A))× (B(x)n \ {rB(x)})) ≃ (x : L(A))×B(x)n, the second
claim follows.

7.17. Lemma. Let n ≥ 0, let A be an (n+ 1)-pasting diagram, and let B : (x : L(A))→
PDn+1[t

PD = A ↓ x]. Then Λs(Graft(A,B)) = Subst(Λs(A), (x 7→ Λs(B(x)))) in the
type of n-prepasting diagrams.

Proof. We first note that Λs(A)n = L(A) and ∂(Λs(B(x))) = ∂(tPD(B(x))) = ∂(A ↓
x) = ∂(Λs(A) ↓ x) for all x : Λs(A)n, and thus Subst(Λs(A), (x 7→ Λs(B(x)))) is well-
typed. We have the following commutative square in OSet.∐

x:Λs(A)n
∂(Λs(A) ↓ x) Λs(A)<n

∐
x:Λs(A)n

Λs(B(x)) Λs(Graft(A,B))

(5)

It suffices to show that Square (5) is a pushout. By Proposition 5.6, the fiber of Square (5)
over n is

0 0

(x : L(A))× L(B(x)) (x : L(A))× L(B(x)),

which is a pushout. By Proposition 5.5, the restriction of Square (5) to < n is∐
x:L(A)(A ↓ x)<n A<n

∐
x:L(A) B(x)<n Graft(A,B)<n,

which is a pushout by the definition of Graft(A,B) and Proposition 5.5. Therefore,
Square (5) is a pushout by Proposition 5.8.
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7.18. Proposition. Let n ≥ 0, let A be an (n + 1)-pasting diagram, and let B : (x :
L(A))→ PDn+1[t

PD = A ↓ x]. Then Graft(A,B) is an (n+ 1)-pasting diagram.

Proof. Axiom PD1 is by Lemma 7.15. Axioms PD2 and PD3 follow from Lemma 7.16.
Axiom PD4 is vacuously true. Axioms PD5 to PD7 follow from Lemma 7.16. Axiom PD8
is by Lemma 7.17.

The grafting operator is associative in the following sense.

7.19. Proposition. Let n ≥ 0, let A be an (n+1)-pasting diagram, let B : (x : L(A))→
PDn+1[t

PD = A ↓ x], and let C : (x : L(A))→ (y : L(B(x)))→ PDn+1[t
PD = B(x) ↓ y].

Then

Graft(A, (x 7→ Graft(B(x), C(x)))) ≃ Graft(Graft(A,B), ((x, y) 7→ C(x, y))).

Proof.We first note that the both sides of the stated equivalence are well-typed. The left
side is well-typed by Lemma 7.17. The right side is well-typed since B(x) ↓ y ≃ Graft(A,
B) ↓ (x, y) for all x : L(A) and y : L(B(x)) by Proposition 3.35. Let X be the following
pushout. ∐

x:L(A) A ↓ x A

∐
x:L(A)

∐
y:L(B(x)) B(x) ↓ y

∐
x:L(A) B(x) Graft(A,B)

∐
x:L(A)

∐
y:L(B(x)) C(x, y)

∐
x:L(A) Graft(B(x), C(x)) X

⌜

⌜ ⌜

The composite of the upper right and lower right pushouts exhibits X as Graft(A, (x 7→
Graft(B(x), C(x)))). The composite of the lower left and lower right pushouts exhibits
X as Graft(Graft(A,B), ((x, y) 7→ C(x, y))).

Any opetope of degree n can be turned into an (n+ 1)-pasting diagram, which plays
the role of the unit for grafting (Propositions 7.23 and 7.24).

7.20. Construction. Let A be an opetope of degree n ≥ 0. We define an (n + 1)-
prepasting diagram σ(A) called the degenerate pasting diagram on A as follows. The
underlying opetopic set of σ(A) is A. The terminal object ∗A : An is both a leaf object and
a root object.

7.21. Lemma. Let A be an opetope of degree n ≥ 0. Then Λs(σ(A)) ≃ A and tPD(σ(A)) ≃
A.

Proof. By construction.

7.22. Proposition. Let A be an opetope of degree n ≥ 0. Then σ(A) is an (n+1)-pasting
diagram.

Proof. Straightforward. For Axiom PD8, use Lemma 7.21.
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7.23. Proposition. Let A be an opetope of degree n ≥ 0 and let B : PDn+1[t
PD = A].

Since L(σ(A)) = {∗A}, we may regard B as a map (x : L(σ(A)))→ PDn+1[t
PD = A ↓ x].

Then Graft(σ(A), B) ≃ B.

Proof. By construction, Graft(A,B) is the pushout of the equivalence A ↓ ∗A ≃ A
along A ↓ ∗A → B and thus equivalent to B.

7.24. Proposition. Let n ≥ 0 and let A be an (n+1)-pasting diagram. Then Graft(A,
(x 7→ σ(A ↓ x))) ≃ A.

Proof. We first note that Graft(A, (x 7→ σ(A ↓ x))) is well-typed by Lemma 7.21. By
construction, Graft(A, (x 7→ σ(A ↓ x))) is the pushout of the equivalence

∐
x:L(A) A ↓

x ≃
∐

x:L(A) σ(A ↓ x) along
∐

x:L(A) A ↓ x→ A and thus equivalent to A.

8. Equivalence with existing definitions

We show that our definition of opetopes is equivalent to the polynomial monad definition
given by Kock et al. [2010]. We also see that the category of opetopes is presented by the
generators and relations described by Ho Thanh [2021].

8.1. Equivalence with the polynomial monad definition. We first review the
polynomial monad definition of opetopes given by Kock et al. [2010]. Let I be a set. We
define FI to be the type of finite sets E equipped with a map E → I. The category PolyI

of (finitary) polynomials on I is defined to be Set ↓ (FI × I). Concretely, a polynomial
P on I consists of a set B(P ) and two maps

FI
EP←−− B(P )

tP−→ I.

We regard B(P ) as an object in Set ↓ I with tP . We refer to
∐

b:B(P )EP (b) : Set ↓ I as

sP : E(P )→ I. A polynomial on I is thus equivalently presented by three maps

I
sP←− E(P )

pP−→ B(P )
tP−→ I,

which is a more standard definition of polynomials [Gambino and Kock, 2013]. For a map
f : I → J , the postcomposition with f induces a functor PolyI → PolyJ . In this way
the map I 7→ PolyI is functorial, and let I : Poly→ Set denote the cocartesian fibration
corresponding to it.

For a polynomial P on I, we define a functor FP : Set ↓ I → Set ↓ I by FP (A)i ≡ (b :
B(P )i) ×ArrSet↓I(EP (b), A), which is identical to (b : B(P )i) × ((e : EP (b)) → AsP (e)).
Every morphism P → Q of polynomials on I induces a natural transformation FP ⇒ FQ

which is cartesian in the sense that all the naturality squares are pullbacks. Let Endc(I)
denote the category of endofunctors on Set ↓ I and cartesian natural transformations be-
tween them. The mapping P 7→ FP defines a fully faithful functor PolyI → Endc(Set ↓
I) [Gambino and Kock, 2013, Lemma 2.15]. The monoidal structure on Endc(Set ↓ I)
given by composition of endofunctors restricts to a monoidal structure on PolyI . The
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category PMI of polynomial monads on I is defined to be the category of monoid objects
in the monoidal category PolyI .

Let P be a polynomial monad on a set I. By a P -polynomial monad we mean an
object in PMI ↓ P . By definition, PolyI ↓ P ≃ Set ↓ B(P ). We thus regard PMI ↓ P
as a category over Set ↓ B(P ). The Baez-Dolan construction P+ is the polynomial
monad on B(P ) whose algebras are the P -polynomial monads. The set OKJBM

n of Kock-
Joyal-Batanin-Mascari (KJBM) opetopes of degree n and the polynomial monad Zn on

OKJBM
n are inductively defined by OKJBM

0 ≡ 1, Z0 ≡ (F1
1←− 1→ 1), OKJBM

n+1 ≡ B(Zn), and
Zn+1 ≡ Z+

n .
Let us concretely describe the structure of a polynomial monad P on I. Because the

identity polynomial on I is FI
よ←− I

id−→ I, where よ denotes the Yoneda embedding, the
unit of P is a map ηP : (i : I) → B(P )i equipped with an equivalence η̄P : よ(i) ≃
EP (ηP (i)). Because the composite P 2 is defined by B(P 2) ≡ FP (B(P )) and EP 2(b1,
b2) ≡

∐
e:EP (b1)

EP (b2(sP (e))), the multiplication of P is a map µP : FP (B(P )) → B(P )

over I equipped with an equivalence µ̄P : (
∐

e:EP (b1)
EP (b2(sP (e)))) ≃ EP (µP (b1, b2)).

Let A : Set ↓ B(P ). The polynomial Q over P corresponding to A is the composite

A → B(P )
(EP ,tP )−−−−→ FI × I, and FQ(X)i = ((b1, b2) : FP (X)i) × Ab1 . A P -polynomial

monad structure on A thus consists of a map ηA : (i : I) → AηP (i) and a map µA : {(b1,
b2) : FP (B(P ))} → Ab1 → ((e : EP (b1)) → Ab2(e)) → AµP (b1,b2) satisfying suitable
associativity and unit laws.

We also recall the notion of a P -tree. For a polynomial P , we define a graph GPoly(P )
as follows. The set of vertices in GPoly(P ) is I(P ) + B(P ). There is no edge between
vertices from I(P ). There is no edge between vertices from B(P ). An edge from x : I(P )
to y : B(P ) is an element e : EP (y)x. An edge from y : B(P ) to x : I(P ) is an identification
tP (y) = x. A polynomial tree is a polynomial P satisfying the following axioms.

PT1. The sets I(P ) and B(P ) are finite.

PT2. The maps tP and sP are injective.

PT3. The graph GPoly(P ) is a tree.

Note that the image of any map between finite sets is decidable. For a polynomial tree P ,
let LTr(P ) denote the complement of the image of tP whose elements are called leaves in
P . The complement of the image of sP is the singleton consisting of the root of the tree
GPoly(P ) by Axiom PT3. We refer to the root of GPoly(P ) as rP and called it the root
of P . For a polynomial P , a P -tree is a polynomial tree T equipped with a morphism
dT : T → P in Poly. Let Tr(P ) denote the category of P -trees whose morphisms are
those morphisms of polynomials over P preserving roots and leaves.

The Baez-Dolan construction P+ has an explicit construction using P -trees. There
is an equivalence h : Obj(Tr(P )) ≃ B(P+) characterized as follows. By the definition
of P+, the object B(P+) ≃ FP+(1) : Set ↓ B(P ) is the free P -polynomial monad over
1. For a P -tree T and i : I(T ), we define a polynomial T ↓∗ x as follows. I(T ↓∗ i) is
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the subset of I(T ) spanned by those i′ such that there is a (unique) path in GPoly(T )
from i′ to i. We define B(T ↓∗ i) ≡ B(T ) ×I(T ) I(T ↓∗ i). The map sT : ET (b) → I(T )
factors through I(T ↓∗ i) when b : B(T ↓∗ i), and thus we can define ET↓∗i(b) ≡ ET (b).
One can show that T ↓∗ i is a polynomial tree. By construction, we have a morphism

T ↓∗ i→ T
dT−→ P in Poly by which we regard T ↓∗ i as a P -tree. Then h(T ) for a P -tree

T is defined by induction on the size of I(T ) as follows.

• If the root rT is a leaf, then h(T ) = ηB(P+)(dT (rT )).

• If there is a (unique) b : B(T )rT , then h(T ) = µB(P+)(ηP+(dT (b)), (e 7→ h(T ↓∗
sT (e)))).

We now prove the equivalence of opetopes in our sense and KJBM opetopes, that is,
On ≃ OKJBM

n (Corollary 8.13). We first make On’s part of polynomial monads.

8.2. Construction. Let A be an opetopic set. For n ≥ 0, we define a polynomial Yn(A)
to be

FAn

EYn(A)←−−−− An+1
tA−→ An,

where EYn(A)(x) ≡ A ↓s x, which is finite by Axiom O1. A morphism F : A → B of
opetopic sets induces a morphism of polynomials Yn(A)→ Yn(B) because A ↓s x ≃ B ↓s
F (x) by Proposition 3.35. In particular, Yn(A) : Poly ↓ Yn(O) by Proposition 4.7.

8.3. Construction. Let n ≥ 0. We define a polynomial Y′
n to be

FBdn

EY′
n←−− PDn

∂−→ Bdn,

where EY′
n
(A) ≡ An, which is finite by Axiom PD1, with (x 7→ ∂(A ↓ x)) : An → Bdn.

We extend Y′
n to a polynomial monad on Bdn as follows. We define ηY′

n
(A) ≡ ι(Fill(A))

and µY′
n
(A,B) ≡ Subst(A,B). We have ηY′

n
(A)n ≃ {∗} and ∂(ηY′

n
(A) ↓ ∗) ≃ A by

construction, and thus よ(A) ≃ EY′
n
(ηY′

n
(A)). By Lemma 7.3,

∐
x:EY′

n
(A) EY′

n
(B(x)) ≃

EY′
n
(µY′

n
(A,B)). The associativity and unit laws follow from Propositions 7.7, 7.11

and 7.12. By Corollary 6.24 and Proposition 6.20, Y′
n ≃ Yn(O), so the polynomial

monad structure on Y′
n is transported to Yn(O). That is, the polynomial monad structure

on Yn(O) is determined by Λs(ηYn(O)(A)) ≃ ι(A) and Λs(µYn(O)(A,B)) ≃ Subst(Λs(A)),
(x 7→ Λs(B(x))).

It suffices to construct an equivalence Yn(O) ≃ Zn (Theorem 8.12). We proceed by
induction on n : N. The base case is easy.

8.4. Lemma. Y0(O) ≃ Z0.

Proof. By Propositions 4.10 and 4.11.



A DIRECT-CATEGORICAL APPROACH TO OPETOPIC SETS AND OPETOPES 241

For the successor case, we show that Yn+1(O) ≃ Yn(O)+ (Lemma 8.11). By the
definition of the Baez-Dolan construction, to get a morphism Yn(O)+ → Yn+1(O) of
polynomial monads on On+1, it suffices to construct a functor Alg(Yn+1(O))→ PMOn ↓
Yn(O) over Set ↓ On+1, where Alg(Yn+1(O)) is the category of Yn+1(O)-algebras.

8.5. Construction. Let n ≥ 0 and let A be a Yn+1(O)-algebra. That is, A : Set ↓ On+1

is equipped with an operator mA : (X : On+2)(a : (x : X ↓s ∗X) → AX↓x) → At(X)

compatible with the polynomial monad structure on Yn+1(O). By Corollary 6.24, mA is
also regarded as an operator (X : PDn+1)(a : (x : Xn+1)) → AFill(∂(X)). We equip A
with a Yn(O)-polynomial monad structure as follows. For X : On, we have σ(X)n+1 ≃ 0
by construction, so let ηA(X) ≡ mA(σ(X), !), where ! is the unique map from 0. Since
Λs(σ(X)) ≃ ι(X) by construction, we see that ηA(X) lies over ηYn(O)(X). For X : On+1,
X ′ : (x : X ↓s ∗X) → On+1[t = X ↓ x], a : AX , and a′ : (x : X ↓s ∗X) → AX′(x), we
have ({∗X} + (

∐
x:X↓s∗X{∗X′})) ≃ Graft(ι(X), (x 7→ ι(X ′(x))))n+1 by Lemma 7.15, and

thus a and a′ defines a map (a, a′) : Graft(ι(X), (x 7→ ι(X ′(x))))n+1 → A. We then
define µA(a, a

′) ≡ mA(Graft(ι(X), (x 7→ ι(X ′(x)))), (a, a′)). Since Λs(Graft(ι(X), (x 7→
ι(X ′(x))))) ≃ Subst(Λs(X), (x 7→ Λs(X ′(x)))) by Lemma 7.17, we see that µA(a, a

′) lies
over µYn(O)(X,X ′). The associativity and unit laws follow from Propositions 7.19, 7.23
and 7.24. This construction extends to a functor Alg(Yn+1(O)) → PMOn ↓ Yn(O)
over Set ↓ On+1, and let K : Yn(O)+ → Yn+1(O) be the corresponding morphism of
polynomial monads on On+1.

To see that K is an equivalence, it suffices to show that the composite

Obj(Tr(Yn(O))) ≃ B(Yn(O)+)
K−→ B(Yn+1(O)) = On+2 ≃ PDn+1 (6)

is an equivalence. We construct an equivalence Obj(Tr(Yn(O))) ≃ PDn+1 (Lemma 8.10)
and see that it coincides with Eq. (6).

8.6. Lemma. Let n ≥ 0 and let A be an (n + 1)-pasting diagram. Then Yn(A) is a
Yn(O)-tree.

Proof. Axiom PT1 is by Axioms PD1 and O1 and Lemma 6.13. Axiom PT2 follows
from Lemmas 6.14 and 6.12. Since GPoly(Yn(A)) ≃ GPD(A) by construction, Axiom PT3
follows from Lemma 6.11.

8.7. Construction. Let n ≥ 0 and let T be a Yn(O)-tree. We construct a graph
GPoly(T )′ from GPoly(T ) by reversing the directions of the edges y → tT (y) for all y : B(T ).
We define a diagram DT : GPoly(T )′ → OSet as follows. A vertex x in GPoly(T )′ is
either in I(T ) or B(T ). In both cases, DT (x) ≡ dT (x) defines an opetope. For an edge
of the form s(e) → y for e : ET (y), let dT send it to the source morphism dT (e) :
dT (s(e)) ≃ s(e′) → dT (y), where e′ is the element corresponding to e via the equivalence
EYn(O)(dT (y)) ≃ ET (y). For an edge of the form tT (y) → y for y : B(T ), let dT send
it to the target morphism dT (tT (y)) ≃ tYn(O)(dT (y)) → dT (y). Finally, we define c(T )
to be the colimit of DT . We further extend c(T ) to an (n + 1)-prepasting diagram by
L(c(T )) ≡

∐
x:LTr(T ) L(DT (x)) and R(c(T )) ≡ R(DT (rT )).
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8.8. Lemma. Let n ≥ 0 and let T be a Yn(O)-tree. Then c(T ) is an (n + 1)-pasting
diagram. Moreover, the following hold.

1. Suppose that the root rT is a leaf. Then σ(dT (rT )) ≃ c(T ).

2. Suppose that there is a (unique) b : B(T )rT . Then Graft(ι(dT (b)), (x 7→ c(T ↓∗
sT (x)))) ≃ c(T ), where we identify L(ι(dT (b))) ≃ dT (b) ↓s ∗dT (b) ≃ ET (b).

Proof. We proceed by induction on the size of I(T ). Suppose that rT is a leaf. Then
GPoly(T )′ is the singleton {rT} with no edge. Then σ(dT (rT )) ≃ c(T ), and thus c(T ) is
an (n + 1)-pasting diagram. Suppose that there is a (unique) b : B(T )rT . By induction
hypothesis, c(T ↓∗ sT (x)) is an (n+1)-pasting diagram for every x : ET (b). Observe that
GPoly(T )′ is the following pushout in the category of graphs∐

e:ET (b){sT (e)} X

∐
e:ET (b) G

Poly(T ↓∗ sT (e))′ GPoly(T )′,
⌜

where X is the full subgraph spanned by rT , b, and sT (e) for all e : ET (b). Then c(T ) is
the following pushout in OSet∐

x:L(ι(dT (b))) dT (b) ↓ x dT (b)

∐
x:L(ι(dT (b))) c(T ↓∗ sT (x)) c(T ),

⌜

where the colimit of the restriction of DT to X is dT (b) because b is the terminal object in
X. Therefore, Graft(ι(dT (b)), (x 7→ c(T ↓∗ sT (x)))) ≃ c(T ) by the definition of Graft,
and thus c(T ) is an (n+ 1)-pasting diagram.

8.9. Lemma. Let P be a polynomial. Then all the morphisms in Tr(P ) are equivalences.

Proof. Let h : T → T ′ be a morphism of P -trees. Since h preserves leaves, we see
that B(T ) ≃ I(T ) ×I(T ′) B(T ′). Thus, it suffices to show that hI : I(T ) → I(T ′) is an
equivalence. We show that the fiber of hI over i

′ : I(T ′) is contractible by induction on the
length of the path in GPoly(T ′) from i′ to the root. If i′ is the root, then the root of T is
the unique element of the fiber of hI over i

′. Suppose that there is a (unique) pair (b′, e′) of
b′ : B(T ′) and e′ : ET ′(b′)i′ . Since h preserves roots, we see that E(T ) ≃ I(T )×I(T ′)E(T

′).
Thus, it suffices to show that the fiber of hE : E(T ) → E(T ′) over (b′, e′) is contractible.
Since E(T ) ≃ B(T ) ×B(T ′) E(T

′) and B(T ) ≃ I(T ) ×I(T ′) B(T ′), this follows from the
induction hypothesis for tT ′(b′) : I(T ′).
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8.10. Lemma. Let n ≥ 0. Then the functors Yn : PDn+1 → Tr(Yn(O)) induced by
Lemma 8.6 and c : Tr(Yn(O))→ PDn+1 induced by Lemma 8.8 are mutual inverses.

Proof. For aYn(O)-tree T , we have a canonical morphism T → Yn(c(T )) of polynomials
over Yn(O) by construction. This morphism preserves roots and leaves and thus is an
equivalence by Lemma 8.9. For an (n + 1)-pasting diagram A, we have a canonical
morphism c(Yn(A))→ A of opetopic sets by construction. This morphism preserves root
and leaf objects and thus is an equivalence by Corollary 6.25.

8.11. Lemma. Let n ≥ 0. Then the morphism K : Yn(O)+ → Yn+1(O) of polynomial
monads on On+1 is an equivalence.

Proof. By Lemma 8.8 and by the definition of the equivalence Obj(Tr(Yn(O))) ≃
B(Yn(O)+), we see that Eq. (6) is equivalent to c : Obj(Tr(Yn(O))) → PDn+1, which
is an equivalence by Lemma 8.10.

8.12. Theorem. Yn(O) ≃ Zn for all n : N.

Proof. By Lemmas 8.4 and 8.11.

8.13. Corollary. On ≃ OKJBM
n for all n : N.

Proof. By Theorem 8.12.

8.14. Equivalence with Ho Thanh’s category of opetopes. We compare the
canonical presentation of our category O of opetopes (Construction 3.2 and Proposi-
tion 3.15) and the presentation given by Ho Thanh [2021, Definition 3.6]. The set of
objects Obj(O) is (n : ω)×On, which coincides with [Ho Thanh, 2021, Definition 3.6 (1)]
by Corollary 8.13. The generating morphisms for O are the source and target morphisms,
which coincides with [Ho Thanh, 2021, Definition 3.6 (2)]. The relations for O are all the
equations f1 ◦ g1 = f2 ◦ g2 that hold in O such that exactly one of the following holds.

1. f1, f2, and g2 are source arrows and g1 is a target arrow. This corresponds to
Eq. (Inner) in [Ho Thanh, 2021, Definition 3.6 (3)].

2. f1 is a source arrow and g1, f2, and g2 are target arrows. This corresponds to
Eq. (Glob1) in [Ho Thanh, 2021, Definition 3.6 (3)].

3. f1 is a target arrow and g1, f2, and g2 are source arrows. This corresponds to
Eq. (Glob2) in [Ho Thanh, 2021, Definition 3.6 (3)].

4. f1, f2, and g2 are target arrows and g1 is a source arrow. This corresponds to
Eq. (Degen) in [Ho Thanh, 2021, Definition 3.6 (3)].

Therefore:

8.15. Theorem. The category of opetopes O is equivalent to the one given by Ho Thanh
[2021, Definition 3.6].
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