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ON PURE MONOMORPHISMS AND PURE EPIMORPHISMS
IN ACCESSIBLE CATEGORIES

LEONID POSITSELSKI

Abstract. In all κ-accessible additive categories, κ-pure monomorphisms and κ-pure
epimorphisms are well-behaved, as shown in our previous paper [L. Positselski, “Locally
coherent exact categories”, Appl. Categorical Struct. 32, 2024]. This is known to be not
always true in κ-accessible nonadditive categories. Nevertheless, mild assumptions on a
κ-accessible category are sufficient to prove good properties of κ-pure monomorphisms
and κ-pure epimorphisms. In particular, in a κ-accessible category with finite products,
all κ-pure monomorphisms are κ-directed colimits of split monomorphisms, while in
a κ-accessible category with finite coproducts, all κ-pure epimorphisms are κ-directed
colimits of split epimorphisms. We also discuss what we call Quillen exact classes of
monomorphisms and epimorphisms, generalizing the additive concept of one-sided exact
category.
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Introduction

The concept of κ-purity is an important technical tool in locally presentable and accessible
category theory [2, Section 2.D]. The properties of κ-pure monomorphisms and κ-pure
epimorphisms have been studied by Adámek, Rosický, and collaborators in the papers [1,
3, 4], which offer an assortment of theorems and counterexamples (see also the paper
by Hu and Pelletier [18] and the recent prepint of Kanalas [19]). However, the basic
results about κ-purity in κ-accessible categories seem to only have been proved under
assumptions that are somewhat restrictive. In this paper, we explain how to relax some
assumptions.

Let us list what we consider the basic results. In any κ-accessible category with
pushouts, all κ-pure monomorphisms are κ-directed colimits of split monomorphisms [2,
Corollary and Remark 2.30]. In any κ-accessible category with pushouts, all κ-pure
monomorphisms are regular monomorphisms [1, Corollary 1]. In any κ-accessible cat-
egory with pushouts, the class of κ-pure monomorphisms is stable under pushouts [1,
Corollary 2], [3, Proposition 15(i)].

In any κ-accessible category with pullbacks, all κ-pure epimorphisms are κ-directed
colimits of split epimorphisms [3, Proposition 3]. In any κ-accessible category with pull-
backs, all κ-pure epimorphisms are regular epimorphisms [3, Proposition 4(b)]. In any lo-
cally κ-presentable category, the class of κ-pure epimorphisms is stable under pullbacks [3,
Proposition 15(ii)].

In a slightly different setting of the paper [4], some results similar to the above ones are
stated under milder assumptions. In particular, according to [4, Lemma 2.2], existence
of weak pushouts in the full subcategory of finitely presentable objects is sufficient for
the pure monomorphisms in a finitely accessible category to be directed colimits of split
monomorphisms. By [4, Lemma 3.1], existence of weak pullbacks in the full subcategory
of finitely presentable objects is sufficient for the pure epimorphisms in a finitely accessible
category to be directed colimits of split epimorphisms.

For comparison, in any κ-accessible additive category A, all κ-pure monomorphisms are
κ-directed colimits of split monomorphisms, and all κ-pure epimorphisms are κ-directed
colimits of split epimorphisms. All κ-pure monomorphisms in A are regular monomor-
phisms, and all κ-pure epimorphisms are regular epimorphisms. All pushouts of κ-pure
monomorphisms always exist in A, and the class of κ-pure monomorphisms is stable un-
der pushouts. All pullbacks of κ-pure epimorphisms exist in A, and the class of κ-pure
epimorphisms is stable under pullbacks.

Moreover, in any κ-accessible additive category, all κ-pure epimorphisms have kernels,
and all κ-pure monomorphisms have cokernels. The κ-pure monomorphisms are precisely
the kernels of the κ-pure epimorphisms, and the κ-pure epimorphisms are precisely the
cokernels of the κ-pure monomorphisms (this is a generalization of [3, Proposition 5]). All
results mentioned in this and the previous paragraph follow from the exposition in [25,
Section 4], particularly from the existence of the κ-pure exact structure (in the sense of
Quillen) together with [25, Propositions 4.2 and 4.4].

From our perspective, even such assumptions as existence of weak pushouts and weak
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pullbacks are too restrictive, and unnecessarily so, for the purity theory. In particular, an
additive category A need not have weak pushouts or weak pullbacks. For example, the
existence of weak pullbacks in the category A = R–Modinj of injective left modules over a
ring R is equivalent to the existence of injective precovers of all left R-modules (in the sense
of the paper [14]). By [14, Propositions 2.1 and 2.2], injective precovers exist in R–Mod
if and only if R is left Noetherian. Dually, the existence of weak pushouts in the category
A = R–Modproj of projective left R-modules is equivalent to the existence of projective
preenvelopes of all left R-modules. By the argument of [14, proofs of Propositions 2.1
and 5.1], the latter condition implies that the infinite direct products of projective left
R-modules are projective, which does not hold for most rings R (cf. [8, Theorem P], [11,
Theorem 3.3]).

The aim of this paper is to spell out reasonable conditions on a κ-accessible category
A that (1) hold for all κ-accessible additive categories, and (2) imply good properties of
κ-pure monomorphisms and κ-pure epimorphisms. The reader will see that the resulting
conditions are indeed quite mild.

Let us emphasize that some assumptions are certainly necessary for the purity the-
ory in nonadditive categories. In particular, [4, Example 2.5] provides an example of
a finitely accessible category with a pure monomorphism that is not a directed colimit
of split monomorphisms and not a regular monomorphism. In Examples 13.4 and 15.4,
we present an essentially trivial example of an accessible preadditive (but not additive!)
category in which all monomorphisms and epimorphisms are split, but some pushouts of
monomorphisms and some pullbacks of epimorphisms do not exist.

In the context of a κ-accessible category A, we use the terminology strongly κ-pure
monomorphisms for the morphisms in A that can be obtained as κ-directed colimits of
split monomorphisms of κ-presentable objects in A. Similarly, the strongly κ-pure epimor-
phisms are the κ-directed colimits of split epimorphisms between κ-presentable objects.
We start with establishing very mild sufficient conditions for all κ-pure monomorphisms
and κ-pure epimorphisms to be strongly κ-pure. Then we proceed to provide further,
also mild sufficient conditions for strongly κ-pure mono/epimorphisms to be regular and
preserved by pushouts/pullbacks.

As a generalization of κ-pure monomorphisms and κ-pure epimorphisms, we discuss
what we call QE-mono and QE-epi classes of morphisms (where QE means “Quillen
exact”). These are nonadditive generalizations of right exact and left exact categories
inroduced by Rump [29, Definition 4 in Section 5] and studied by Bazzoni and Crivei [9].
In the terminology of Henrard and van Roosmalen [16], the latter (additive categories
with additional structure) are called inflation-exact and deflation-exact categories. See
Rosenberg’s preprints [27, Section 1.1], [28, Chapter I] for prior art in the context of
nonadditive categories.

Given a κ-accessible category A with the full subcategory of κ-presentable objects
A<κ ⊂ A, and given a QE-mono class M or QE-epi class P in A<κ, we prove that the
class of all κ-directed colimits of morphisms fromM (respectively, from P) is a QE-mono
(resp., QE-epi) class of morphisms in A. This provides a nonadditive generalization of the
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results of [25, Sections 1–2], and simultaneously their extension from the setting of exact
categories (in the sense of Quillen [10]) to that of right exact and left exact (additive)
categories.

Notice that the classical notion of an exact category in the sense of Quillen does not
seem to make much sense in the nonadditive setting. The point is that exact categories

are additive categories with a class of admissible short exact sequences 0 −→ K
f−→ L

g−→
M −→ 0, which, first of all, have to be kernel-cokernel pairs : f = ker g and g = coker f .
In the context of nonadditive categories, one does not usually consider kernel-cokernel
pairs of morphisms.

In the general (nonadditive) category theory, there is a natural construction of the
(co)equalizer of a parallel pair of morphisms •⇒ •, which is a single morphism • −→ •.
Conversely, to a single morphism • −→ •, one assigns it (co)kernel pair, which is a parallel
pair of morphisms • ⇒ •. So, instead of a single self-dual concept of a kernel-cokernel
pair, in the nonadditive realm there are two concepts, dual to each other, represented by
diagrams of the shape

• −→ •⇒ • or •⇒ • −→ •.

Accordingly, it seems to be natural to split the single concept of an exact category in the
sense of Quillen into two halves (the forementioned right exact and left exact categories)
before extending in to the nonadditive world. This is the approach that we follow in the
present paper.

Let us mention that, in spite of our discussion above, a self-dual nonadditive version of
Quillen exact categories exists in the literature, introduced by Dyckerhoff and Kapranov
under the name of proto-exact categories [13, Section 2.4]. We do not consider this concept
in the present paper.

Acknowledgement. I am grateful to Jan Št’ov́ıček, Jan Trlifaj, and Jǐŕı Rosický for
organizing the joint Brno–Prague workshop in Brno in June 2025 and inviting me to
give a talk there, which was a major stimulating experience for the present research.
I also wish to thank an anonymous referee for several helpful comments. In particular,
Lemmas 6.1 and 8.1 were suggested to me by the referee. The author is supported by the
GAČR project 23-05148S and the Institute of Mathematics, Czech Academy of Sciences
(research plan RVO: 67985840).

1. Preliminaries on Accessible Categories

We use the book [2] as the background reference source on accessible categories. In
particular, we refer to [2, Definition 1.4, Theorem and Corollary 1.5, Definition 1.13(1),
and Remark 1.21] for a discussion of λ-directed vs. λ-filtered colimits. For an earlier
exposition avoiding a small mistake in [2, proof of Theorem 1.5], see [5].

Let κ be a regular cardinal and A be a category with κ-directed (equivalently,
κ-filtered) colimits. An object S ∈ A is called κ-presentable [2, Definition 1.13(2)] if the
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covariant functor HomA(S,−) : A −→ Sets from A to the category of sets Sets preserves
κ-directed colimits. We denote the full subcategory of κ-presentable objects by A<κ ⊂ A.

The category A is called κ-accessible [2, Definition 2.1] if there is a set of κ-presentable
objects S ⊂ A such that all the objects of A are κ-directed colimits of objects from S. If
this is the case, then the κ-presentable objects of A are precisely all the retracts of the
objects from S.

A category is called accessible if it is κ-accessible for some regular cardinal κ. In
the case of the countable cardinal κ = ℵ0, one speaks of finitely accessible categories [2,
Remark 2.2(1)].

Given a class of objects T ⊂ A, we denote by lim−→(κ)
T ⊂ A the class (or the full

subcategory) of all objects of A that can be obtained as κ-directed colimits of objects
from T. The following proposition is well-known.

1.1. Proposition. Let A be a κ-accessible category and T ⊂ A be a set of (some)
κ-presentable objects. Then the full subcategory B = lim−→(κ)

T ⊂ A is closed under

κ-directed colimits in A. The category B is κ-accessible, and the κ-presentable objects
of B are precisely all the retracts of the objects from T. Equivalently, the κ-presentable
objects of B are precisely all the objects of B that are κ-presentable in A. An object
A ∈ A belongs to B if and only if, for every object S ∈ A<κ, every morphism S −→ A in
A factorizes through an object from T.

Proof. In the context of finitely accessible additive categories, this result goes back to [21,
Proposition 2.1], [12, Section 4.1], and [20, Proposition 5.11]. For the full generality, see,
e. g., [24, Proposition 1.2].

Let A, B, and C be three categories, and let F : A −→ C and G : B −→ C be two
functors. Following [2, Notation 2.42], we denote by F ↓ G the category of all triples
(A,B, h), where A ∈ A and B ∈ B are two objects and h : F (A) −→ G(B) is a morphism
in C. Morphisms in the category F ↓ G are defined in the obvious way.

1.2. Proposition. Let A, B, and C be κ-accessible categories, and let F : A −→ C and
G : B −→ C be functors preserving κ-directed colimits and taking κ-presentable objects to
κ-presentable objects. Then the category F ↓ G is κ-accessible. An object (S, T, u) ∈ F ↓
G is κ-presentable if and only if the object S is κ-presentable in A and the object T is
κ-presentable in B.

Proof. This is [2, proof of Theorem 2.43]; see also [25, Proposition A.3].

The following proposition is a slightly stronger version of Proposition 1.2.

1.3. Proposition. Let A, B, and C be κ-accessible categories, and let F : A −→ C and
G : B −→ C be functors preserving κ-directed colimits and taking κ-presentable objects to
κ-presentable objects. Let S ⊂ A<κ and T ⊂ B<κ be some chosen subsets of κ-presentable
objects in A and B such that all objects of A are κ-directed colimits of objects from S and
all objects of B are κ-directed colimits of objects from T. Then all objects of F ↓ G are
κ-directed colimits of objects (S, T, u) ∈ F ↓ G with S ∈ S and T ∈ T.
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Proof. This is what is actually proved in [2, proof of Theorem 2.43].

A category D is said to be finite if the set of all morphisms in D is finite. More
generally, a category D is said to be κ-small if the cardinality of the set of all morphisms
in D is smaller than κ.

1.4. Proposition. Let A be a κ-accessible category, and let D be a finite category in
which all endomorphisms of objects are identity morphisms. Then the category AD of all
(covariant) functors D −→ A is κ-accessible. A functor F : D −→ A is κ-presentable as
an object of AD if and only if, for every object d ∈ D, the object F (d) is κ-presentable
in A.

Proof. In the case of finitely accessible categories A, this result goes back to [6, Exposé I,
Proposition 8.8.5] and [23, page 55]. For an arbitrary regular cardinal κ, the desired
assertion is a particular case of [17, Theorem 1.3]. See also [25, Proposition A.5].

We use the notation lim←− and lim−→ for limits and colimits in categories. The upper

index, such as in lim←−
A and lim−→

A, is used to indicate that the (co)limit is taken in the
category A. By κ-small (co)limits one means (co)limits of diagrams indexed by κ-small
indexing categories D.

1.5. Lemma. Let A be a κ-accessible category. Then the full subcategory A<κ ⊂ A of all
κ-presentable objects in A is closed under all κ-small colimits that exist in A. Furthermore,
the fully faithful inclusion functor A<κ −→ A preserves all κ-small colimits that exist
in A<κ.

Proof. This follows from the fact that κ-directed colimits commute with κ-small limits
in the category of sets. For the first assertion, see [2, Proposition 1.16]. To prove the
second claim, let D be a κ-small category and let F : D −→ A<κ be a D-indexed diagram
in A<κ with the colimit A = lim−→

A<κ

d∈D F (d) ∈ A<κ computed in the category A<κ. Let B ∈ A

be an arbitrary object, and let B = lim−→
A

ξ∈Ξ Sξ be a representation of B as the colimit of a

diagram of objects Sξ ∈ A<κ, indexed by a κ-directed poset Ξ, the colimit being computed
in the category A. Then in the category of sets we have

lim←−
Sets

d∈D HomA(F (d), B) = lim←−
Sets

d∈D lim−→
Sets

ξ∈Ξ HomA<κ(F (d), Sξ)

= lim−→
Sets

ξ∈Ξ lim←−
Sets

d∈D HomA<κ(F (d), Sξ) = lim−→
Sets

ξ∈Ξ HomA<κ(A, Sξ) = HomA(A,B),

as desired.

In the terminology of [2, Example 6.38], full subcategories S ⊂ A satisfying the as-
sumptions of the next lemma are called weakly colimit-dense.

1.6. Lemma. Let A be a category and S ⊂ A be a full subcategory such that the minimal
full subcategory of A containing S and closed under those colimits that exist in A, coincides
with A. Then the fully faithful inclusion functor S −→ A preserves all those limits that
exist in S.
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Proof. This follows from the fact that limits commute with limits (in any category, and
in particular) in the category of sets. Let D be a small category, let G : D −→ S be
a diagram indexed by D, and let B = lim←−

S

d∈D G(d) ∈ S be the limit of the diagram G

computed in the category S. We have to prove that the natural map HomA(A,B) −→
lim←−

Sets

d∈D HomA(A,G(d)) is a bijection of sets for all objects A ∈ A.
Denote by E the full subcategory of A consisting of all objects E for which the map of

sets HomA(E,B) −→ lim←−
Sets

d∈D HomA(E,G(d)) is bijective. By assumption, we know that
S ⊂ E, and it remains to check that the full subcategory E ⊂ A is closed under those
colimits that exist in A.

Let C be a small category, let F : C −→ E be a diagram indexed by C, and let
A = lim−→

A

c∈C F (c) ∈ A be the colimit of the diagram F computed in the category A. So

the map HomA(F (c), B) −→ lim←−
Sets

d∈D HomA(F (c), G(d)) is a bijection of sets for all c ∈ C.

Then it follows that the map HomA(A,B) −→ lim←−
Sets

d∈D HomA(A,G(d)) is a bijection as
well. Indeed, we have

lim←−
Sets

d∈D HomA(A,G(d)) = lim←−
Sets

d∈D lim←−
Sets

c∈C HomA(F (c), G(d))

= lim←−
Sets

c∈C lim←−
Sets

d∈D HomA(F (c), G(d)) = lim←−
Sets

c∈C HomA(F (c), B) = HomA(A,B).

1.7. Lemma. Let A be a κ-accessible category and A −→ B be a morphism in A such
that the induced map of sets HomA(S,A) −→ HomA(S,B) is bijective for all κ-presentable
objects S ∈ A. Then the morphism A −→ B is an isomorphism in A.

Proof. This follows from the fact that every object C ∈ A is the colimit of the canonical
diagram of morphisms into C from κ-presentable objects of A [2, Section 0.6, Definition
and Remark 1.23, Remark 2.2(4), and Proposition 2.8(i)]. See also [24, Lemma 1.1].

1.8. Lemma. In any κ-accessible category A, κ-directed colimits commute with those
κ-small limits that exist in A. Specifically, if Ξ is κ-directed poset, D is a κ-small category,
and F : Ξ × D −→ A is a functor such that the limit lim←−

A

d∈D F (ξ, d) exists in A for all
ξ ∈ Ξ, then

lim←−
A

d∈D lim−→
A

ξ∈Ξ F (ξ, d) = lim−→
A

ξ∈Ξ lim←−
A

d∈D F (ξ, d). (1)

Proof. This is the generalization of [2, Proposition 1.59] from locally presentable to
accessible categories. As in Lemma 1.5, the basic explanation for why this assertion holds
is because κ-directed colimits commute with κ-small limits in the category of sets. If
the limit in the left-hand side of (1) exists, then the assertion that the natural morphism
from the right-hand side to the left-hand side is an isomorphism follows easily by applying
Lemma 1.7. Notice that the limits in the right-hand side of (1) exist by the assumptions
of the present lemma.

When one wants to prove the existence of the limit in the left-hand side of (1) rather
than assume it, the following argument works. For every object A ∈ A, we need to show
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that the natural map of sets

fA : HomA(A, lim−→
A

ξ∈Ξ lim←−
A

d∈D F (ξ, d)) −−→ lim←−
Sets

d∈D HomA(A, lim−→
A

ξ∈Ξ F (ξ, d))

is a bijection. When the object A ∈ A is κ-presentable, we use the facts that the covari-
ant functor HomA(A,−) takes both limits and κ-directed colimits in A to the respective
(co)limits in Sets in order to reduce the question to the previously mentioned assertion
that κ-directed colimits commute with κ-small limits in the category of sets. In the gen-
eral case, the object A is a (κ-directed) colimit of κ-presentable objects, and it remains to
point out that both the domain and the codomain of the map fA, viewed as contravariant
functors Aop −→ Sets of the varying object A ∈ A, take colimits in A to limits in Sets.

2. Very Weak Cokernel Pairs

Let C be a category. Given a pair of morphisms i : A −→ B and p : B −→ A in C such
that the composition p ◦ i = idA is the identity morphism, one says that i is a split
monomorphism and p is a split epimorphism in C.

By a pushout in C one means the colimit of a diagram of the shape

B

A
g
//

f

OO

C

(2)

A cokernel pair is a pushout of the diagram as above with B = C and f = g. So
the cokernel pair of a morphism f : A −→ B in C is a parallel pair of morphisms k1,
k2 : B ⇒ K such that k1 ◦ f = k2 ◦ f and the triple (K, k1, k2) is universal with this
property in the category C.

The definition of a weak colimit is obtained from the usual definition of a colimit
by dropping the condition of uniqueness of the required morphism and keeping only the
existence. Specifically, let D be a small category and F : D −→ C be a D-indexed diagram
in C. Let A ∈ C be an object and F −→ A be a compatible cocone (i. e., in other words, a
morphism from F to the constant D-indexed diagram in C corresponding to the object A).
Then one says that A is a weak colimit of F if, for every object B ∈ C and any compatible
cocone F −→ B, there exists a (not necessarily unique) morphism A −→ B in C making
the triangular diagram F (d) −→ A −→ B commutative in C for all d ∈ D.

As particular cases of the general definition of a weak colimit, one can speak about
weak pushouts, weak cokernel pairs, etc.

Let f : A −→ B be a morphism and k1, k2 : B ⇒ K be a weak cokernel pair of f . The
parallel pair of identity morphisms idB, idB : B ⇒ B obviously has the property that the
two morphisms have equal compositions with the morphism f . Consequently, there exists
a morphism s : K −→ B such that s ◦ k1 = idB = s ◦ k2. Thus both the morphisms k1
and k2 : B −→ K are split monomorphisms.
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2.1. Definition. Let f : A −→ B be a morphism in C and c1, c2 : B ⇒ C be a parallel
pair of morphisms such that c1 ◦ f = c2 ◦ f . We will say that a parallel pair of morphisms
k1, k2 : B ⇒ K in C is a very weak cokernel pair of f with respect to (c1, c2) if the following
three conditions hold:

� one has k1 ◦ f = k2 ◦ f ;

� there exists a morphism l : K −→ C such that c1 = l ◦ k1 and c2 = l ◦ k2;

� the morphism k1 : B −→ K is a split monomorphism (i. e., there exists a morphism
s : K −→ B such that s ◦ k1 = idB).

The commutative diagram described in Definition 2.1 can be drawn as

B
c1 //

  

k1

  

C

K
l

>>

A

f

OO

f
// B

c2

OO

k2

`` (3)

Here the splitting s of the split monomorphism k1 is not depicted on the diagram (3);
instead, the condition that k1 is a split monomorphism is expressed by the tail at the
beginning of the dotted arrow showing k1.

2.2. Examples. (1) If the morphism f : A −→ B has a weak cokernel pair k1, k2 : B ⇒
K, then (k1, k2) is a very weak cokernel pair of f with respect to every parallel pair of
morphisms (c1, c2) such that c1 ◦ f = c2 ◦ f . This is clear from the discussion above. In
this sense, our terminology is consistent.

(2) Let f : A −→ B and c1, c2 : B ⇒ C be three morphisms such that c1 ◦ f = c2 ◦ f .
Assume that the product K = B × C exists in C, and denote by pB : K −→ B and
pC : K −→ C the product projections. Let ki : B −→ K, i = 1, 2, be the morphisms
for which pB ◦ ki = idB and pC ◦ ki = ci. Then (k1, k2) is a very weak cokernel pair
of f with respect to (c1, c2). Indeed, the equation c1 ◦ f = c2 ◦ f implies k1 ◦ f = k2 ◦ f
by the uniqueness condition in the universal property of the product. In the notation of
Definition 2.1, it remains to put l = pC and s = pB.

We will say that a category C has very weak cokernel pairs if for any three morphisms
f : A −→ B and c1, c2 : B ⇒ C such that c1 ◦ f = c2 ◦ f in C there exists a very weak
cokernel pair of f with respect to (c1, c2) in C.

2.3. Remark. By Example 2.2(2), any category with finite products has very weak
cokernel pairs. In particular, any additive category has very weak cokernel pairs.

Notice, however, that an accessible additive category need not have weak cokernel
pairs in general. For example, let R be an associative ring, and consider the additive
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category of flat left R-modules A = R–Modflat. It is well known that the category A is
finitely accessible.

Given an arbitrary left R-module M , pick a morphism of flat left R-modules f : A −→
B such that M is the cokernel of f in the abelian category R–Mod. Denote by m : B −→
M the natural epimorphism in R–Mod. Let k1, k2 : B ⇒ K be a weak cokernel pair of f
in A. Then we have (k2 − k1) ◦ f = 0, hence there exists a morphism e : M −→ K in
R–Mod such that k2 − k1 = e ◦m. We claim that the morphism e is a flat preenvelope of
M , in the sense of [14].

Indeed, let g : M −→ L be a morphism from M to a flat left R-module L. Consider
the pair of morphisms l1 = 0: B −→ L and l2 = g ◦ m : B −→ L. Then we have
l1 ◦ f = 0 = g ◦ m ◦ f = l2 ◦ f . By assumption, there exists a morphism h : K −→ L
such that l1 = h ◦ k1 and l2 = h ◦ k2. Hence g ◦m = l2 − l1 = h ◦ (k2 − k1) = h ◦ e ◦m.
As the morphism m is an epimorphism in R–Mod, it follows that g = h ◦ e. Thus the
morphism g factorizes through e, as desired.

Conversely, if flat preenvelopes exist in R–Mod, then all weak colimits exist in A =
R–Modflat. Indeed, given a diagram F : D −→ A, denote by M the colimit of F is R–Mod.
Then any flat preenvelope of M is a weak colimit of F in A.

We have shown that weak cokernel pairs exist in A if and only if flat preenvelopes
exist in R–Mod. The latter property holds if and only if the ring R is right coherent [14,
Proposition 5.1]. Taking a ring R that is not right coherent, we obtain an example of a
finitely accessible additive category A without weak cokernel pairs.

2.4. Example. Here is an example of a preadditive but not additive category (i. e., a
category enriched in abelian groups but not having finite products or finite coproducts)
which does not even have very weak cokernel pairs. Let k be a field, n ≥ 1 be an integer,
k–Vect be the category of k-vector spaces, and A ⊂ k–Vect be the full subcategory of
k-vector spaces of finite dimension not exceeding n. For any nonnegative integer i, let ki

denote the k-vector space of dimension i. Let A = 0, B = kn, and C = ki ∈ A, where
0 < i ≤ n. Let f : A −→ B be the zero morphism and c1, c2 : B ⇒ C be a parallel pair
of morphisms such that c1 = 0 and c2 ̸= 0. Then, of course, c1 ◦ f = c2 ◦ f . However,
the morphism f does not have a very weak cokernel pair with respect to (c1, c2). Indeed,
assume for the sake of contradiction that k1, k2 : B ⇒ K is such a very weak cokernel
pair. Let l : K −→ C and s : K −→ B be the related morphisms. So k1 is a split
monomorphism, s ◦ k1 = idB. Since B = kn and the category A contains no vector
spaces of dimension greater than n, the morphism k1 has to be an isomorphism. Then
the equation 0 = c1 = l ◦ k1 implies l = 0, which makes the equation 0 ̸= c2 = l ◦ k2
impossible to satisfy.

2.5. Lemma. Let κ be a regular cardinal and A be a κ-accessible category with very weak
cokernel pairs. Then the full subcategory A<κ ⊂ A of κ-presentable objects in A also has
very weak cokernel pairs.

Proof. Let f : A −→ B and c1, c2 : B ⇒ C be three morphisms in A<κ such that
c1◦f = c2◦f . Let x1, x2 : B ⇒ X be a very weak cokernel pair of f with respect to (c1, c2)
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in the category A, and let y : X −→ C and t : X −→ B be the related morphisms. Let
X = lim−→ξ∈Ξ Kξ be a representation of X as a κ-directed colimit of κ-presentable objects

Kξ in A, indexed by a κ-directed poset Ξ. Denote by wηξ : Kξ −→ Kη (where ξ ≤ η in Ξ)
the transition morphisms and by zξ : Kξ −→ X the canonical morphisms into the colimit.

Since Ξ is κ-directed and B is κ-presentable, there exists an index ξ ∈ Ξ such that
both the morphisms x1 and x2 : B ⇒ X factorize through the morphism zξ. So we have
a parallel pair of morphisms k′

1, k
′
2 : B ⇒ Kξ such that xi = zξ ◦ k′

i for i = 1, 2. By
assumption, we have x1 ◦f = x2 ◦f , so zξ ◦k′

1 ◦f = zξ ◦k′
2 ◦f . Since Ξ is κ-directed and A

is κ-presentable, there exists an index η ∈ Ξ, ξ ≤ η, such that wηξ ◦ k′
1 ◦ f = wηξ ◦ k′

2 ◦ f .
Put ki = wηξ ◦ k′

i for i = 1, 2, and K = Kη.
Then k1, k2 : B ⇒ K is a very weak cokernel pair of f with respect to (c1, c2) in the

category A<κ. Indeed, we have already seen that k1 ◦ f = k2 ◦ f . In the notation of
Definition 2.1, it remains to put l = y ◦ zη and s = t ◦ zη.

3. Strongly Pure Monomorphisms

Let κ be a regular cardinal and A be a κ-accessible category. A morphism m : C −→ D
is said to be a κ-pure monomorphism [2, Definition 2.27] in A if, for every morphism
S −→ T in A<κ and any commutative square diagram

C
m // D

S

c

OO

t
// T

d

OO C

S

c

OO

t
// T

e

__

(4)

in A, there exists a morphism e : T −→ C making the lower triangle commutative.
Let I = (• → •) be the category with two objects and one nonidentity morphism

(acting from one object of I to the other one). Given a category C, we denote by C→ = CI

the category of functors I −→ C, i. e., the category of morphisms in C. So the objects of
C→ are all the morphisms in C, and the morphisms in C→ are all the commutative squares
in C.

3.1. Lemma. (a) All split monomorphisms in A are κ-pure monomorphisms.
(b) All κ-pure monomorphisms are monomorphisms in A.
(c) The class of κ-pure monomorphisms is closed under compositions of morphisms

in A.
(d) If i, j is a composable pair of morphisms in A and i◦j is a κ-pure monomorphism,

then j is a κ-pure monomorphism.
(e) The class of κ-pure monomorphisms in A is closed under κ-directed colimits in A→.

Proof. All the assertions are well-known. Parts (a) and (c–d), mentioned in [2, Exam-
ple 2.28(1) and Remarks 2.28(1–2)], are elementary. Part (b) is [2, Proposition 2.29]. In
part (e), which is [2, Proposition 2.30(i)], one needs to use the fact that all the objects of
(A<κ)

→ are κ-presentable in A→.
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It follows from Lemma 3.1(a,e) that κ-directed colimits of split monomorphisms are
κ-pure monomorphisms in A. The aim of this section is to provide a mild sufficient
condition for the inverse implication. In fact, we will prove a little bit more.

Let us say that a morphism m : C −→ D in A is a strongly κ-pure monomorphism if
m is a κ-directed colimit in A→ of split monomorphisms between κ-presentable objects
in A.

3.2. Proposition. A morphism m in A is a strongly κ-pure monomorphism if and only
if any morphism into m from a morphism in A<κ factorizes through a split monomorphism
in A<κ in the category A→. In other words, m is a strongly κ-pure monomorphism if and
only if, for any morphism t in A<κ and any morphism t −→ m in A→ there exists a split
monomorphism s in A<κ such that the morphism t −→ m factorizes as t −→ s −→ m for
some morphisms t −→ s and s −→ m in A→.

Proof. According to Proposition 1.4 for D = I (or to Proposition 1.2 for A = B = C), the
category A→ is κ-accessible, and the κ-presentable objects of A→ are precisely all the mor-
phisms between κ-presentable objects in A, that is (A→)<κ = (A<κ)

→. (This observation
can be found in [2, Exercise 2.c].) The desired assertion is now provided by Proposition 1.1
applied to the κ-accessible category A→ and the set of κ-presentable objects T consisting
of all the (representatives of isomorphism classes) of split monomorphisms in A<κ.

3.3. Lemma. The class of strongly κ-pure monomorphisms in A is closed under κ-directed
colimits in A→.

Proof. This is another assertion from Proposition 1.1, applicable to the situation at
hand as explained in the proof of Proposition 3.2.

3.4. Theorem. In any κ-accessible category A with very weak cokernel pairs, the classes
of κ-pure monomorphisms and strongly κ-pure monomorphisms coincide. In other words,
all κ-pure monomorphisms in A are κ-directed colimits of split monomorphisms between
κ-presentable objects of A.

Proof. Let m : C −→ D be a κ-pure monomorphism in A, and let t : S −→ T be a
morphism in A<κ. Suppose we are given a morphism t −→ m in A→; this means a
commutative square diagram as in (4). In view of Proposition 3.2, we need to prove that
the morphism (c, d) : t −→ m factorizes through some split monomorphism u : U −→ V
in A<κ, viewed as an object of A→.

The following argument is a nonadditive version of [25, proof of Lemma 4.3]. By
assumption, there exists a lifting e : T −→ C such that c = e ◦ t, as on the triangular
diagram in (4). Consider the parallel pair of morphisms m ◦ e, d : T ⇒ D. We have
m ◦ e ◦ t = m ◦ c = d ◦ t.

Let D = lim−→ξ∈Ξ Wξ be a representation of D as a κ-directed colimit of κ-presentable

objects Wξ, indexed by a κ-directed poset Ξ. Denote by wηξ : Wξ −→ Wη the transition
morphisms (for ξ, η ∈ Ξ, ξ ≤ η) and by zξ : Wξ −→ D the canonical morphisms to the
colimit. Since T ∈ A<κ, there exists an index ξ ∈ Ξ such that both the morphisms m ◦ e



258 LEONID POSITSELSKI

and d : T ⇒ D factorize through the morphism zξ : Wξ −→ D. So we have a parallel
pair of morphisms b′1, b

′
2 : T ⇒ Wξ such that m ◦ e = zξ ◦ b′1 and d = zξ ◦ b′2. Now

zξ ◦ b′1 ◦ t = m ◦ e ◦ t = d ◦ t = zξ ◦ b′2 ◦ t. Since S ∈ A<κ, there exists an index η ∈ Ξ,
ξ ≤ η, such that wηξ ◦ b′1 ◦ t = wηξ ◦ b′2 ◦ t. Put bi = wηξ ◦ b′i, i = 1, 2, and W = Wη. We
have constructed a parallel pair of morphisms b1, b2 : T ⇒ W such that m ◦ e = zη ◦ b1
and d = zη ◦ b2, where W ∈ A<κ and zη : W −→ D. Furthermore, we have b1 ◦ t = b2 ◦ t.
So we obtain a commutative diagram

C
m // D

T

e

OO

b1 //W

zη

OO

S

t

OO

t //

c

>>

T

b2

OO d

cc

Finally, by assumption, very weak cokernel pairs exist in A, and by Lemma 2.5 it
follows that very weak cokernel pairs exist in A<κ as well. Let k1, k2 : T ⇒ V be a
very weak cokernel pair of the morphism t : S −→ T with respect to the parallel pair of
morphisms b1, b2 : T ⇒ W in the category A<κ. Let l : V −→ W and s : V −→ T be the
related morphisms, as per Definition 2.1. Put u = k1 and v = k2, and also z = zηl and
U = T . So, in particular, u is a split monomorphism, s ◦ u = idT . We have arrived to a
commutative diagram

C
m // D

T

e

OO

// u // V

z

OO

S

t

OO

t //

c

>>

T

v

OO d

``

providing the desired factorization t −→ u −→ m, in the category A→, of the morphism
(c, d) : t −→ m through a split monomorphism of κ-presentable objects u : U = T −→ V
in the category A.

3.5. Corollary. In any κ-accessible category A with finite products, the classes of
κ-pure monomorphisms and strongly κ-pure monomorphisms coincide. In other words,
all κ-pure monomorphisms in A are κ-directed colimits of split monomorphisms between
κ-presentable objects of A.

Proof. This is a particular case of Theorem 3.4, in view of Example 2.2(2).

4. Very Weak Split Pullbacks

Let C be a category. Dually to the discussion of weak colimits in Section 2, one defines
the notion of a weak limit of a diagram in C.
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A diagram of the shape

B
f
// A

C

g

OO

(5)

is called a cospan. The limits of cospans are called the pullbacks, and accordingly weak
limits of cospans are called weak pullbacks.

We will say that a cospan (5) is split if a morphism h : C −→ B exists making the
triangular diagram

B
f
// A

C

g

OO

h

__

(6)

commutative. We will say that weak split pullbacks exist in a category C if all split cospans
have weak pullbacks.

Let P be a weak pullback of a split cospan (6), and let pB : P −→ B and pC : P −→ C
be the canonical morphisms from the weak limit. Then it is clear from the definitions that
there exists a morphism s : C −→ P such that pB ◦ s = h and pC ◦ s = idC . Therefore,
the morphism pC is a split epimorphism.

4.1. Definition. Suppose we are given a split cospan diagram (6) in C together with a
commutative square as on the diagram

B
f
// A

C

g

OO

h

__ B
f
// A

Q

qB

OO

qC
// C

g

OO

(7)

We will say that an object P ∈ C together with a pair of morphisms pB : P −→ B and
pC : P −→ C is a very weak split pullback of (f, g) with respect to (qB, qC) if the following
three conditions hold:

� one has f ◦ pB = g ◦ pC ;

� there exists a morphism r : Q −→ P such that qB = pB ◦ r and qC = pC ◦ r;

� the morphism pC : P −→ C is a split epimorphism (i. e., there exists a morphism
s : C −→ P such that pC ◦ s = idC).
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The commutative diagram described in Definition 4.1 can be drawn as

B
f

// A

P

pB
__

pC

�� ��

Q

qB

OO

qC
//

r

??

C

g

OO

(8)

Here the splitting s of the split epimorphism pC is not depicted on the diagram (8);
instead, the condition that pC is a split epimorphism is expressed by the double head at
the end of the dotted arrow showing pC .

4.2. Remark. Dually to cospans, a diagram of the shape (2) is called a span. Notice
that any span consisting of two equal morphisms, B = C and f = g, is a split span (in
the sense dual to our definition of a split cospan in this section). For this reason, using
the terminology very weak split pushouts for the notion dual to very weak split pullbacks,
one can observe that the very weak cokernel pairs from Definition 2.1 are a special case
of very weak split pushouts.

4.3. Examples. (1) If a split cospan f : B −→ A, g : C −→ A has a weak pullback
pB : P −→ B, pC : P −→ C, then (pB, pC) is a very weak split pullback of (f, g) with
respect to any pair of morphisms (qB, qC) such that f ◦ qB = g ◦ qC . This is clear from
the discussion above. In this sense, our terminology is consistent.

(2) Suppose we are given a commutative triangle and a commutative square as in (7).
Assume that the coproduct P = Q ⊔ C exists in C, and denote by iQ : Q −→ P and
iC : C −→ P the coproduct injections. Let pB : P −→ B be the morphism for which
pB ◦iQ = qB and pB ◦iC = h, and let pC : P −→ C be the morphism for which pC ◦iQ = qC
and pC ◦ iC = idC . Then (pB, pC) is a very weak split pullback of (f, g) with respect
to (qB, qC). Indeed, the equations f ◦ qB = g ◦ qC and f ◦ h = g imply f ◦ pB = g ◦ pC by
the uniqueness condition in the universality property of the coproduct. In the notation
of Definition 4.1, it remains to put r = iQ and s = iC .

We will say that a category C has very weak split pullbacks if for every commutative
triangle and commutative square as in (7) there exists a very weak split pullback of (f, g)
with respect to (qB, qC) in C.

4.4. Remark. By Example 4.3(2), any category with finite coproducts has very weak
split pullbacks. In particular, any additive category has very weak split pullbacks.

Notice, however, that an accessible additive category need not have weak split pull-
backs in general. For example, dually to Remark 2.3, let R be an associative ring, and
consider the additive category of injective left R-modules A = R–Modinj. It is well known
that the category A is accessible. In fact, A is κ-accessible whenever λ is a regular cardinal
such every left ideal in R has less than λ generators, ν is any infinite cardinal greater than
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or equal to the cardinality of R such that the set ν<λ of all subsets of ν of the cardinality
smaller than λ has cardinality equal to ν, that is ν<λ = ν, and κ = ν+ is the successor
cardinal of ν (see, e. g., [26, Corollary 3.7]).

Given an arbitrary left R-module M , pick a morphism of injective left R-modules
f : B −→ A such that M is the kernel of f in the abelian category R–Mod. Denote by
m : M −→ B the natural monomorphism in R–Mod. Put C = 0, and let g : C −→ A
be the zero morphism. Then (f, g) is obviously a split cospan in A. Let pB : P −→ B
and pC : P −→ C be a weak pullback of (f, g) in A. Then we have f ◦ pB = 0, hence
there exists a morphism c : P −→M in R–Mod such that pB = m ◦ c. We claim that the
morphism c is an injective precover of M , in the sense of [14].

Indeed, let k : Q −→ M be a morphism into M from an injective left R-module Q.
Consider the pair of morphisms qB = m ◦ k : Q −→ B and qC = 0: Q −→ C. Then we
have f ◦ qB = f ◦m◦k = 0 = g ◦ qC . By assumption, there exists a morphism r : Q −→ P
such that qB = pB ◦ r. Hence m ◦ k = qB = pB ◦ r = m ◦ c ◦ r. As the morphism m is
a monomorphism in R–Mod, it follows that k = c ◦ r. Thus the morphism k factorizes
through c, as desired.

Conversely, if injective precovers exist in R–Mod, then all weak limits exist in A =
R–Modinj. Indeed, given a diagram F : D −→ A, denote by M the limit of F in R–Mod.
Then any injective precover of M is a weak limit of F in A.

We have shown that weak split pullbacks exist in A if and only if injective precovers
exist in R–Mod. The latter property holds if and only if the ring R is left Noetherian [14,
Propositions 2.1 and 2.2]. Taking a ring R that is not left Noetherian, we obtain an
example of an accessible additive category A without weak split pullbacks.

4.5. Example. Dually to Example 2.4, the preadditive category A of k-vector spaces
of dimension not exceeding n (where n ≥ 1 is a fixed integer) does not have very weak
split pullbacks. Specifically, put A = 0, B = kj for some 0 < j ≤ n, C = kn, and
Q = ki for some 0 < i ≤ n. Let f : B −→ A and g : C −→ A be the zero morphisms,
and let qB : Q −→ B and qC : Q −→ C be any morphisms such that qC = 0 and qB ̸= 0.
Then f ◦ qB = g ◦ qC , but the split cospan (f, g) has no very weak split pullback with
respect to (qB, qC) in A. Indeed, if pC : P −→ C is a split epimorphism in A, then pC is
an isomorphism, so the equation 0 = qC = pC ◦ r implies r = 0, which is incompatible
with 0 ̸= qB = pB ◦ r.

4.6. Lemma. Let κ be a regular cardinal and A be a κ-accessible category with very weak
split pullbacks. Then the full subcategory A<κ ⊂ A of κ-presentable objects in A also has
very weak split pullbacks.

Proof. Suppose we are given a commutative triangle and a commutative square (7) in
the category A<κ. Let xB : X −→ B and xC : X −→ C be a very weak split pullback of
(f, g) with respect to (qB, qC) in the category A, and let y : Q −→ X and t : C −→ X
be the related morphisms. Let X = lim−→ξ∈Ξ Pξ be a representation of X as a κ-directed

colimit of κ-presentable objects Pξ in A, indexed by a κ-directed poset Ξ. Denote by
zξ : Pξ −→ X the canonical morphisms into the colimit.
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Since Ξ is κ-directed and Q and C are κ-presentable, there exists an index ξ ∈ Ξ
such that both the morphisms y and t factorize through the morphism zξ. So we have
morphisms r : Q −→ Pξ and s : C −→ Pξ such that y = zξ ◦ r and t = zξ ◦ s. Put
pB = xB ◦ zξ and pC = xC ◦ zξ, and P = Pξ.

Then pB : P −→ B and pC : P −→ C is a very weak split pullback of (f, g) with respect
to (qB, qC) in the category A<κ. Indeed, we have f ◦pB = f ◦xB ◦zξ = g ◦xC ◦zξ = g ◦pC .
Furthermore, pB ◦ r = xB ◦ zξ ◦ r = xB ◦ y = qB and pC ◦ r = xC ◦ zξ ◦ r = xC ◦ y = qC .
Finally, pC ◦ s = xC ◦ zξ ◦ s = xC ◦ t = idC .

5. Strongly Pure Epimorphisms

Let κ be a regular cardinal and A be a κ-accessible category. A morphism p : D −→ E
is said to be a κ-pure epimorphism [3, Definition 1] in A if for every κ-presentable object
S and any morphism e : S −→ E in A there exists a morphism l : S −→ D making the
triangular diagram

D
p
// E

S

e

OO

l

``

(9)

commutative.
We refer to Section 3 for the notation C→ = CI for a category C.

5.1. Lemma. (a) All split epimorphisms in A are κ-pure epimorphisms.
(b) All κ-pure epimorphisms are epimorphisms in A.
(c) The class of κ-pure epimorphisms is closed under compositions of morphisms in A.
(d) If p, q is a composable pair of morphisms in A and p ◦ q is a κ-pure epimorphism,

then p is a κ-pure epimorphism.
(e) The class of κ-pure epimorphisms in A is closed under κ-directed colimits in A→.

Proof. All the assertions are well-known and easy to prove. Parts (a) and (e) are [3,
Example 2(a–b)]. Part (b) is [3, Proposition 4(a)].

It follows from Lemma 5.1(a,e) that κ-directed colimits of split epimorphisms are
κ-pure epimorphisms in A. The aim of this section is to provide a mild sufficient condition
for the inverse implication. In fact, we will prove a little bit more.

Let us say that a morphism p : D −→ E in A is a strongly κ-pure epimorphism if p is
a κ-directed colimit in A→ of split epimorphisms between κ-presentable objects in A.

5.2. Proposition. A morphism p in A is a strongly κ-pure epimorphism if and only
if any morphism into p from a morphism in A<κ factorizes through a split epimorphism
in A<κ in the category A→. In other words, p is a strongly κ-pure epimorphism if and
only if, for any morphism t in A<κ and any morphism t −→ p in A→ there exists a split
epimorphism s in A<κ such that the morphism t −→ m factorizes as t −→ s −→ p for
some morphisms t −→ s and s −→ p in A→.



ON PURE MONOMORPHISMS AND PURE EPIMORPHISMS 263

Proof. Similar to the proof of Proposition 3.2.

5.3. Lemma. The class of strongly κ-pure epimorphisms in A is closed under κ-directed
colimits in A→.

Proof. Similar to the proof of Lemma 3.3.

5.4. Theorem. In any κ-accessible category A with very weak split pullbacks, the classes
of κ-pure epimorphisms and strongly κ-pure epimorphisms coincide. In other words,
all κ-pure epimorphisms in A are κ-directed colimits of split epimorphisms between
κ-presentable objects of A.

Proof. Let p : D −→ E be a κ-pure epimorphism in A, and let t : T −→ S be a morphism
in A<κ. Suppose we are given a morphism t −→ p in A→; this means a commutative square
diagram

D
p
// E

T

d

OO

t
// S

e

OO

(10)

In view of Proposition 5.2, we need to prove that the morphism (d, e) : t −→ p factorizes
through some split epimorphism u : U −→ V in A<κ, viewed as an object of A→.

The following argument is a nonadditive version of [25, proofs of Lemmas 1.5, 2.3,
and 4.1, and Proposition 4.2]. By assumption, there exists a lifting l : S −→ D such that
e = p ◦ l, as on diagram (9). In other words, this means that the pair of morphisms (p, e)
is a split cospan in A.

Following the proof of Proposition 3.2 or [2, Exercise 2.c], any morphism in A, viewed
as an object of A→, is a κ-directed colimit of morphisms between κ-presentable objects.
Let p = lim−→ξ∈Ξ wξ be a representation of the morphism p : D −→ E as a κ-directed

colimit of morphisms wξ : Xξ −→ Yξ, with κ-presentable objects Xξ and Yξ, indexed by a
κ-directed poset Ξ. Denote by x′

ηξ : Xξ −→ Xη and y′ηξ : Yξ −→ Yη the components of the
transition morphisms (x′

ηξ, y
′
ηξ), for all ξ, η ∈ Ξ, ξ ≤ η. Denote also by xξ : Xξ −→ D and

yξ : Yξ −→ E the components of the canonical morphisms to the colimit (xξ, yξ) : wξ −→ p.
Since Ξ is κ-directed and T and S are κ-presentable, there exists an index ξ ∈ Ξ such

that both the morphisms d and l factorize through xξ, while the morphism e factorizes
through yξ. So we have morphisms tX : T −→ Xξ, h : S −→ Xξ, and g′ : S −→ Yξ such
that d = xξ ◦ tX , l = xξ ◦h, and e = yξ ◦g′. Hence yξ ◦wξ ◦ tX = p◦xξ ◦ tX = p◦d = e◦ t =
yξ ◦g′ ◦ t and yξ ◦wξ ◦h = p◦xξ ◦h = p◦ l = e = yξ ◦g′. Since Ξ is κ-directed and T and S
are κ-presentable, there exists an index η ∈ Ξ, ξ ≤ η, such that y′ηξ ◦wξ ◦ tX = y′ηξ ◦ g′ ◦ t
and y′ηξ ◦ wξ ◦ h = y′ηξ ◦ g′.

Put X = Xξ, Y = Yη, f = y′ηξ ◦ wξ : X −→ Y , and g = y′ηξ ◦ g′ : S −→ Y . Then we
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have commutative diagrams in A

D
p
// E

X

xξ

OO

f
// Y

yη

OO

T

tX

OO

t //

d

;;

S

g

OO
e

cc

X
f
// Y

S

g

OO

h

``

with objects S, T , X, Y ∈ A<κ. Now the pair of morphisms (f, g) is a split cospan in A<κ.
For convenience, put tS = t.

Finally, by assumption, very weak split pullbacks exist in A, and by Lemma 4.6 it
follows that very weak split pullbacks exist in A<κ as well. Let uX : U −→ X and
uS : U −→ S be a very weak split pullback of (f, g) with respect to (tX , tS) in the cate-
gory A<κ. Let r : T −→ U and s : S −→ U be the related morphisms, as per Definition 4.1.
So, in particular, uS is a split epimorphism, uS ◦ s = idS. We have arrived to a commu-
tative diagram

D
p
// E

X

xξ

OO

f
// Y

yη

OO

U

uX

OO

uS // // S

g

OO

T

r

OO

t=tS //

d

66

tX

99

S

e

cc

providing the desired factorization t −→ u −→ p, in the category A→, of the morphism
(d, e) : t −→ p through a split epimorphism of κ-presentable objects u = uS : U −→ V = S
in the category A.

5.5. Corollary. In any κ-accessible category A with finite coproducts, the classes
of κ-pure epimorphisms and strongly κ-pure epimorphisms coincide. In other words,
all κ-pure epimorphisms in A are κ-directed colimits of split epimorphisms between
κ-presentable objects of A.

Proof. This is a particular case of Theorem 5.4, in view of Example 4.3(2).

5.6. Remark. The additional assumptions in Theorems 3.4 and 5.4 (on top of the as-
sumption that A is a κ-accessible category) may be mild, but they cannot be completely
dropped. Indeed, the counterexample in [4, Example 2.5] shows that a pure (i. e., ℵ0-pure)
monomorphism in a finitely accessible (i. e., ℵ0-accessible) category A need not be a colimit
of split monomorphisms in general.
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A similar construction provides an example showing that a pure epimorphism in a
finitely accessible category A need not be a directed colimit of split epimorphisms, gener-
ally speaking. In order to obtain the desired counterexample, it suffices to modify [4, Ex-
ample 2.5] as follows. In the notation of [2, Example 2.5], when freely adding morphisms
ei : Bi −→ Ai+1, instead of imposing the relations eimi = ai,i+1, impose the relations
mi+1ei = bi,i+1 for all i = 0, 1, 2, . . . Then the morphismm = lim−→i

mi : lim−→i
Ai −→ lim−→i

Bi

becomes a pure epimorphism that is not a colimit of split epimorphisms (in fact, all split
epimorphisms are isomorphisms in the resulting finitely accessible category A).

6. QE-Mono Classes

Let C be a category. A morphism m : C −→ D in C is called a regular monomorphism if
m is the equalizer of a parallel pair of morphisms e1, e2 : D ⇒ E.

Clearly, every regular monomorphism is a monomorphism. Every split monomorphism
is regular: if s : D −→ C is a morphism such that s ◦m = idC , then m is the equalizer of
the pair of morphisms m ◦ s and idD : D ⇒ D.

A morphism m : C −→ D is said to be an effective monomorphism if m has a cokernel
pair k1, k2 : D ⇒ K in C and m is the equalizer of (k1, k2). One can easily see that if a
regular monomorphism m has a cokernel pair (k1, k2), then m is the equalizer of (k1, k2).
So a monomorphism is effective if and only if it is regular and has a cokernel pair.

6.1. Lemma. For any κ-accessible category A, the class of effective monomorphisms is
closed under κ-directed colimits in A→.

Proof. In any category, colimits commute with colimits; in particular, the κ-directed
colimits preserve cokernel pairs. So, if a morphism m is a κ-directed colimit of effective
monomorphisms mξ, then the colimit of the cokernel pairs of mξ is the cokernel pair of m.
Here we are assuming that the index ξ ranges over a κ-directed poset Ξ. By Lemma 1.8, in
a κ-accessible category, the κ-directed colimits commute with κ-small limits; in particular,
the κ-directed colimits preserve equalizers. Thus m is the equalizer of its cokernel pair.

LetM be a class of morphisms in a category C. We will say thatM is a QE-mono
class in C if the following conditions are satisfied:

i. All pushouts of all morphisms fromM exists in C, and the classM is stable under
pushouts. In other words, for any span (i. e., a pair of morphisms with common
domain) m : C −→ D, f : C −→ C ′ such that m ∈ M, the pushout D′ exists, and
the morphism m′ : C ′ −→ D′ belongs toM,

C ′ m′
// D′

C

f

OO

m
// D

f ′

OO

(11)
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ii. In particular, condition (i) implies that all morphisms fromM have cokernel pairs
in C. It is further required that every morphism fromM is the equalizer of its cok-
ernel pair. In other words, all the morphisms fromM must be effective monomor-
phisms.

iii. All the identity morphisms in C belong to M, and the class of morphisms M is
closed under compositions.

It is clear from the preceding discussion that, assuming condition (i), condition (ii) is
equivalent to the condition that all morphisms fromM are regular monomorphisms in C.

6.2. Examples. (1) If C is an additive category, then a QE-mono class of morphisms
in C is the same thing as a structure of right exact category on C in the sense of [9,
Definition 3.1]. In the terminology of [16, Definition 2.2], such additive categories with
an additional structure are called inflation-exact categories.

(2) If the category Cop opposite to C is regular (in the sense of [7, 15]), then the class
of all regular monomorphisms in C is a QE-mono class. See Example 8.2(2) below.

(3) The compositions of split monomorphisms are always split monomorphisms, and all
split monomorphisms are regular (as explained above). Furthermore, if the morphism m
on the pushout diagram (11) is a split monomorphism with a splitting s : D −→ C, s◦m =
idC , then, by the definition of a pushout, there exists a unique morphism s′ : D′ −→ C ′

such that s′ ◦ m′ = idC′ and s′ ◦ f ′ = f ◦ s (because idC′ ◦ f = f = f ◦ s ◦ m; cf. the
discussion of split pullbacks in Section 4). So all pushouts of split monomorphisms are
split monomorphisms.

Therefore, the classM of all split monomorphisms in a category C is a QE-mono class
if and only all pushouts of split monomorphisms exist in C.

6.3. Remark. One can easily see that all pushouts of split monomorphisms exist in
an additive category if and only if the category is weakly idempotent-complete (in the
sense of [10, Section 7]). However, the following simple example shows that a preadditive
category that is idempotent-complete (in the sense of [10, Section 6]; or which is the same,
has split idempotents in the sense of [2, Observation 2.4]) still need not have pushouts of
split monomorphisms.

Let k be a field, n ≥ 1 be an integer, k–Vect be the category of k-vector spaces, and
A ⊂ k–Vect be the full subcategory of k-vector spaces of finite dimension not exceeding n.
For any nonnegative integer i, let ki denote the k-vector space of dimension i. Then
the pair of split monomorphisms (actually, direct summand injections) b : A = kn−1 −→
kn = B and c : A = kn−1 −→ kn = C does not have a pushout in A. The pushout of
b and c in k–Vect is isomorphic to kn+1, which does not belong to A. Morever, the pair
of morphisms b and c does not have a weak pushout in A; so weak cokernel pairs do not
exist in A. In fact, the morphism b = c does not even have a very weak cokernel pair in A;
cf. Example 2.4.

Let M be a QE-mono class in a category C. For every morphism m : C −→ D
belonging toM, consider its cokernel pair k1, k2 : D ⇒ K. By anM-sequence we mean
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a diagram

C m // D
k1 //

k2
// K

arising from some morphism m ∈M in this way.
Denote by J the category with three objects 1, 2, and 3, and four nonidentity mor-

phisms 1 −→ 2, 2 ⇒ 3, and 1 −→ 3. So both the compositions 1 −→ 2 ⇒ 3 are equal
to one and the same morphism 1 −→ 3. Given a category C, we are interested in the
category of diagrams CJ . In particular, for any QE-mono classM in C, theM-sequences
form a subclass of objects of CJ .

Let A be a κ-accessible category. We will say that a QE-mono classM in A is locally
κ-coherent if theM-sequences in A are precisely all the κ-directed colimits ofM-sequences
in A with all the three terms C, D, K belonging to A<κ. Here the κ-directed colimits are
taken in the diagram category AJ . The terminology “locally κ-coherent” comes from the
paper [25, Section 1].

6.4. Lemma. For any locally κ-coherent QE-mono classM in a κ-accessible category A,
the class of allM-sequences is closed under κ-directed colimits in AJ .

Proof. By Proposition 1.4, the category AJ is κ-accessible, and its κ-presentable objects
are precisely all the J-shaped diagrams in A<κ. Now the desired assertion follows from
Proposition 1.1 applied to the κ-accessible category AJ .

6.5. Lemma. A QE-mono class M in a κ-accessible category A is locally κ-coherent if
and only if M is precisely the class of all κ-directed colimits of the morphisms from M
whose domains and codomains are κ-presentable. Here the κ-directed colimits are taken
in the category of morphisms A→.

Proof. The point is that the full subcategory of κ-presentable objects A<κ is closed
under finite colimits in A (meaning those finite colimits that exist in A); see Lemma 1.5.
In particularly, A<κ is closed in A under the cokernel pairs of those morphisms that
have cokernel pairs in A. So, in the notation above, if C, D ∈ A<κ, then K ∈ A<κ.
Furthermore, all existing colimits commute with all existing colimits in any category; in
particular, κ-directed colimits preserve cokernel pairs in A.

6.6. Proposition. Let M be a locally κ-coherent QE-mono class in a κ-accessible cat-
egory A. Then the classM∩ A→

<κ of all morphisms fromM with κ-presentable domains
and codomains is a QE-mono class in the category A<κ. Furthermore, the classM∩A→

<κ

is closed under retracts in the category A→
<κ = (A→)<κ = (A<κ)

→.

Proof. Condition (iii) obviously holds for M∩ A→
<κ whenever it holds for M. Condi-

tion (i) holds forM∩ A→
<κ whenever it holds forM, because the full subcategory A<κ is

closed in A under all the pushouts that exist in A (by Lemma 1.5). Finally, condition (ii)
holds for M ∩ A→

<κ whenever conditions (i) and (ii) hold for M, because any diagram
in A<κ that is an equalizer diagram in A is also an equalizer diagram in A<κ. These
arguments do not even use the assumption of local κ-coherence of the QE-mono classM
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in A. The classM∩A→
<κ is closed under retracts in A→

<κ because retracts are special cases
of κ-directed colimits in A→, see [2, Observation 2.4].

7. Construction of Locally Coherent QE-Mono Classes

Let D be the finite category
3

1

OO

// 2

i. e., the category with three objects 1, 2, 3 and two nonidentity morphisms 1 −→ 2 and
1 −→ 3. By the category of spans in a category C we mean the category of D-shaped
diagrams in C, that is, the category of functors CD.

7.1. Theorem. Let A be a κ-accessible category and N be a QE-mono class in the cate-
gory A<κ. Then the class lim−→(κ)

N ⊂ A→ of all κ-directed colimits of morphisms from N
(the colimits being taken in A→) is a locally κ-coherent QE-mono class in the category A.

Proof. PutM = lim−→(κ)
N . In order to check that condition (i) for the class N in A<κ

implies condition (i) for the classM in A, let us show that all spans (m, f) in A (where
m : C −→ D and f : C −→ C ′) such that m ∈M, are κ-directed colimits, in the category
of spans in A, of spans (n, g) in A<κ such that n ∈ N .

Once again, we use the fact that the category of morphisms A→ is κ-accessible, and
its κ-presentable objects are precisely all the morphisms with κ-presentable domains and
codomains. Let M be the full subcategory in A→ whose objects are all the morphisms
belonging to M. By Proposition 1.1 applied to the category A→, the category M is
κ-accessible, and its κ-presentable objects are precisely all the retracts of the morphisms
belonging to N . Now let F : M −→ A be the functor taking every morphism m : C −→ D
to its domain C, and let G : A −→ A be the identity functor. Then the category F ↓ G
defined in Section 1 is precisely the category of all spans (m, f) in A with m ∈ M. By
Proposition 1.2, it follows that the category F ↓ G is κ-accessible, and its κ-presentable
objects are precisely all the spans (n′, g′) in A<κ such that n′ is a retract of a morphism
belonging to N .

Moreover, let S ⊂ M<κ be a set of representatives of the isomorphism classes of
morphisms belonging to N , and let T ⊂ A<κ be a set of representatives of the isomor-
phism classes of κ-presentable objects of A. Then Proposition 1.3 applied to the sets
of κ-presentable objects S and T tells us that all spans (m, f) ∈ AD with m ∈ M are
κ-directed colimits, in the category of spans AD, of spans (n, g) ∈ (A<κ)

D with n ∈ N (as
desired).

By the second assertion of Lemma 1.5, any finite colimit in A<κ is also a colimit in A.
In particular, this applies to pushouts. So pushouts of the spans (n, g) in A<κ remain
pushouts in A. Since κ-directed colimits always preserve pushouts, we have shown that
condition (i) for N in A<κ implies condition (i) forM in A.
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The proof of the assertion that conditions (i) and (ii) for N in A<κ imply condition (ii)
forM in A is somewhat similar, and based on the arguments above together with Lem-
mas 1.6 and 6.1. By assumption, every morphism n ∈ N is the equalizer in A<κ of its
cokernel pair in A<κ. We have already seen that the cokernel pair of n in A<κ is also
the cokernel pair of n in A. By Lemma 1.6, any limit that exists in A<κ is also a limit
in A. Therefore, n is the equalizer in A of its cokernel pair in A. So n is an effective
monomorphism in A. Now any morphism m ∈ M is a κ-directed colimit in A→ of mor-
phisms n ∈ N , and κ-directed colimits of effective monomorphisms in A are effective
monomorphisms in A by Lemma 6.1.

Let us prove that conditions (i) and (iii) for N in A<κ imply condition (iii) for M
in A. Obviously, every identity morphism in A is a κ-directed colimit of identity morphisms
in A<κ. It remains to show that the classM is closed under compositions. Let m′ : C −→
D and m′′ : D −→ E be two morphisms belonging to M. By Proposition 1.1, in order
to prove that the composition m = m′′ ◦m′ belongs toM, we need to check that every
morphism t −→ m in A→ from a morphism t with κ-presentable domain and codomain,
t ∈ (A→)<κ = (A<κ)

→, into the morphism m factorizes as t −→ n −→ m, where n ∈ N .
So we have a commutative diagram

C
m′
// D m′′

// E

S

c

OO

t
// T

e

OO

in A with κ-presentable objects S and T .
Considering the composition m′ ◦ c : S −→ D of two morphisms c : S −→ C and

m′ : C −→ D, have a morphism (m′ ◦ c, e) : t −→ m′′ in the category A→. Since the
morphism m′′ : D −→ E belongs to M, by Proposition 1.1 the morphism (m′ ◦ c, e)
factorizes as t −→ v −→ m′′, where v : U −→ V is some morphism belonging to N . So
we have a commutative diagram

C
m′
// D

m′′
// E

U

d

OO

v // V

f

OO

S

c

OO

t
//

u

>>

T

g

OO
e

``

in A with κ-presentable objects S, T , U , and V .
Now we have a morphism (c, d) : u −→ m′ in the category A→, where u is a morphism

with κ-presentable domain and codomain. Since the morphism m′ : C −→ D belongs
to M, by Proposition 1.1 the morphism (c, d) factorizes as u −→ n′ −→ m′, where
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n′ : X −→ Y is some morphism belonging to N . Hence we have a commutative diagram

C m′
// D m′′

// E

X n′
//

c′

OO

Y

d′

OO

U

d

XX

v //

y

OO

V

f

OO

S

c

CC

t
//

u

>>
x

OO

T

g

OO

e

[[

(12)

in A with κ-presentable objects S, T , U , V , X, and Y .
Finally, by condition (i) for the class N in A<κ, the span v : U −→ V , y : U −→ Y

has a pushout in A<κ, which by Lemma 1.5 is also a pushout in A. Denote the resulting
pushout square by

Y
n′′
// Z

U

y

OO

v // V

h

OO

Condition (i) for the class N in A<κ also tells us that n′′ ∈ N (since v ∈ N ).
We have a pair of morphisms m′′ ◦d′ : Y −→ E and f : V −→ E such that m′′ ◦d′ ◦y =

f ◦ v. Hence there exists a unique morphism e′ : Z −→ E making the diagram

D m′′
// E

Y n′′
//

d′

OO

Z

e′

OO

U

y

OO

v // V

h

OO
f

\\

commutative. We have arrived to the commutative diagram

C m′
// D m′′

// E

X n′
//

c′

OO

Y

d′

OO

n′′
// Z

e′

OO

U
v //

y

OO

V

h

OO

S

c

CC

t
//

u

>>
x

OO

T

g

OO

e

[[
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proving that the morphism t −→ m = m′′ ◦m′ in A→ factorizes as t −→ n −→ m, where
n = n′′ ◦ n′.

As both the morphisms n′ and n′′ belong to N by construction, so does their com-
position n′′ ◦ n′, by condition (iii) for the class N in A<κ. This finishes the proof of
condition (iii) for the classM in A.

It remains to say that one obviously has N ⊂ M∩ A→
<κ. In fact, by Proposition 1.1,

M∩A→
<κ is precisely the class of all retracts of the morphisms from N (the retracts being

taken in the category A→ or A→
<κ). So the QE-mono classM in A is locally κ-coherent by

Lemmas 6.4 and 6.5.

7.2. Corollary. For any κ-accessible category A, there is a bijective correspondence
between locally κ-coherent QE-mono classes in A and QE-mono classes in the category A<κ

closed under retracts in A→
<κ. The bijection assigns to every locally κ-coherent QE-mono

classM in A the retraction-closed QE-mono class N =M∩A→
<κ in A<κ. Conversely, to

every retraction-closed QE-mono class N in A<κ, the locally κ-coherent QE-mono class
M = lim−→(κ)

N in A is assigned.

Proof. For every locally κ-coherent QE-mono class M in A, the class N = M∩ A→
<κ

is a retraction-closed QE-mono class in A<κ by Proposition 6.6. For every QE-mono
class N in A<κ, the class M = lim−→(κ)

N is a locally κ-coherent QE-mono class in A

by Theorem 7.1. For any locally κ-coherent QE-mono class M in A, one has M =
lim−→(κ)

(M∩ A→
<κ) by Lemma 6.5. For any retraction-closed QE-mono class N in A<κ, one

has N = (lim−→(κ)
N ) ∩ A→

<κ by Proposition 1.1, as it was already mentioned in the last

paragraph of the proof of Theorem 7.1.

7.3. Remark. For any κ-accessible category A, the full subcategory A<κ ⊂ A has split
idempotents, because the category A has split idempotents by [2, Observation 2.4] and
A<κ is closed under retracts in A. Conversely, for any small category S with split idem-
potents and any regular cardinal κ, there exists a unique (up to natural equivalence)
κ-accessible category A such that the category A<κ is equivalent to S [2, Theorem 2.26
and Remark 2.26(1)].

A discussion of the retraction-closedness property of QE-mono or QE-epi classes in
additive categories, including in particular idempotent-complete and weakly idempotent-
complete additive categories, can be found in [16, Theorems 1.1 and 1.2]. In the nonad-
ditive context, we will continue this discussion below in Section 10. At the moment, we
restrict ourselves to the following simple counterexample.

7.4. Example. A QE-mono class in an additive category S with split idempotents need
not be closed under retracts in general. Indeed, let S = k–vect be the category of finite-
dimensional vector spaces over a field k, and let N be the class of all monomorphisms n
in S with the dimension of the cokernel dimk(cokern) divisible by a fixed integer q ≥ 2.
One can easily check that conditions (i–iii) are satisfied for the class N in the category S
(in particular, because the cokernels are not changed by pushouts), but N is not closed
under retracts in the category S→. Obviously, one has S = A<ℵ0 , where A = k–Vect is the
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finitely accessible category of k-vector spaces. The classM = lim−→(κ)
N ⊂ A→ consists of

all monomorphisms in A.

8. QE-Epi Classes

Let C be a category. Dually to the discussion in Section 6, a morphism p : D −→ E in C
is called a regular epimorphism if p is the coequalizer of a parallel pair of morphisms d1,
d2 : C ⇒ D.

Clearly, every regular epimorphism is an epimorphism. Every split epimorphism is
regular: if s : E −→ D is a morphism such that p ◦ s = idE, then p is the coequalizer of
the pair of morphisms s ◦ p and idD : D ⇒ D.

Dually to the definition in Section 2, by the kernel pair of a morphism p one means
the pullback of the cospan (p, p), cf. diagram (5). A morphism p : D −→ E in C is said to
be an effective epimorphism if p has a kernel pair k1, k2 : K ⇒ D and p is the coequalizer
of (k1, k2). One can easily see that if a regular epimorphism p has a kernel pair (k1, k2),
then p is the coequalizer of (k1, k2). So an epimorphism is effective if and only if it is
regular and has a kernel pair.

8.1. Lemma. (a) Let C be a small category and A be a category such that the colimits of
all diagrams indexed by C exist in A. Let P : C −→ A→ be a diagram such that P (c) is
an effective epimorphism in A for all objects c ∈ C. Then the colimit of P , computed in
A→, is a regular epimorphism in A.

(b) For any κ-accessible category A, the class of effective epimorphisms is closed under
κ-directed colimits in A→.

Proof. Part (a): the kernel pairs of the morphisms P (c), c ∈ C, form a diagram
K : C −→ A⇒ in the category A⇒ of parallel pairs of morphisms in A. By assump-
tion, the morphism P (c) is the coequalizer of the parallel pair of morphisms K(c) in A
for every object c ∈ C. The colimit of K computed in A⇒, which exists by assumption, is
a parallel pair of morphisms in A whose coequalizer is the colimit of P computed in A→.
Indeed, colimits commute with colimits in any category; so, in particular, colimits indexed
by C preserve coequalizers in A.

Part (b): by Lemma 1.8, in a κ-accessible category, the κ-directed colimits commute
with κ-small limits; in particular, the κ-directed colimits preserve kernel pairs. So, if a
morphism p is a κ-directed colimit of effective epimorphisms pξ, then the colimit of the
kernel pairs of pξ is the kernel pair of p. Here we are assuming that the index ξ ranges
over a κ-directed poset Ξ. In any category, colimits commute with colimits; in particular,
the κ-directed colimits preserve coequalizers. Thus p is the coequalizer of its kernel pair.

Let P be a class of morphism in a category C. We will say that P is a QE-epi class
in C if the following conditions are satisfied:

i∗. All pullbacks of all morphisms from P exists in C, and the class P is stable under
pulbacks. In other words, for any cospan p : D −→ E, f : E ′ −→ E such that
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p ∈ P , the pullback D′ exists, and the morphism p′ : D′ −→ E ′ belongs to P ,

D
p
// E

D′

f ′

OO

p′
// E ′

f

OO

(13)

ii∗. In particular, condition (i∗) implies that all morphisms from P have kernel pairs in C.
It is further required that every morphism from P is the coequalizer of its kernel
pair. In other words, all the morphisms from P must be effective epimorphisms.

iii∗. All the identity morphisms in C belong to P , and the class of morphisms P is closed
under compositions.

It is clear from the preceding discussion that, assuming condition (i∗), condition (ii∗)
is equivalent to the condition that all morphisms from P are regular epimorphisms in C.

8.2. Examples. (1) If C is an additive category, then a QE-epi class of morphisms in C is
the same thing as a structure of left exact category on C in the sense of [9, Definition 3.1].
In the terminology of [16, Definition 2.2], such additive categories with an additional
structure are called deflation-exact categories.

(2) In any regular category C (in the sense of [7, 15]), the class of all regular epimor-
phisms is a QE-epi class [15, Definition 1.10 and Proposition 1.13(3)].

(3) The compositions of split epimorphisms are always split epimorphisms, and all
split epimorphisms are regular (as explained above). Furthermore, all pushouts of split
epimorphisms are split epimorphisms by the argument dual to the one in Example 6.2(3).
Therefore, the class P of all split epimorphisms in a category C is a QE-epi class if and
only all pullbacks of split epimorphisms exist in C.

8.3. Remark. Dually to Remark 6.3, all pullbacks of split epimorphisms exist in an
additive category if and only if the category is weakly idempotent-complete. However,
the idempotent-complete preadditive category A of k-vector spaces of finite dimension ≤ n
(where n ≥ 1 is a fixed integer) does not have pullbacks of split epimorphisms. In fact,
the category A does not even have very weak split pullbacks of split epimorphisms; see
Example 4.5. It is also clear from Example 4.5 (take j = n) that the category A does not
have (even weak) kernel pairs of split epimorphisms.

Let P be a QE-epi class in a category C. For every morphism p : D −→ E belonging
to P , consider its kernel pair k1, k2 : K ⇒ D. By a P-sequence we mean a diagram

K
k1 //

k2
// D

p
// E

arising from some morphism p ∈ P in this way.
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Let A be a κ-accessible category. We will say that a QE-epi class P in A is locally
κ-coherent if the P-sequences in A are precisely all the κ-directed colimits of P-sequences
in A with all the three terms K, D, E belonging to A<κ. Here the κ-directed colimits are
taken in the diagram category AJop

, where J is the finite category defined in Section 6.
The terminology “locally κ-coherent” comes from the paper [25, Section 1].

8.4. Lemma. For any locally κ-coherent QE-epi class P in a κ-accessible category A, the
class of all P-sequences is closed under κ-directed colimits in AJop

.

Proof. This is completely similar to Lemma 6.4.

Notice the difference between the formulations of the following lemma and its version
for QE-mono classes (Lemma 6.5 above).

8.5. Lemma. A QE-epi class P in a κ-accessible category A is locally κ-coherent if and
only if the following two conditions hold:

1. P is precisely the class of all κ-directed colimits of the morphisms from P whose
domains and codomains are κ-presentable. Here the κ-directed colimits are taken in
the category of morphisms A→.

2. For any morphism p ∈ P whose domain and codomain are κ-presentable, the domain
of the kernel pair of p is κ-presentable as well.

Proof. The proof of this lemma only uses condition (i∗) from the definition of a QE-epi
class; conditions (ii∗) and (iii∗) are not used. Let P be a locally κ-coherent QE-epi class
in A. To check condition (2), assume that a morphism p in A is a κ-directed colimit of
some morphisms pξ, the colimit being taken in the category A→, that is p = lim−→

A→

ξ∈Ξ pξ,

where Ξ is a κ-directed poset. If the domain and codomain of p are κ-presentable, then p is
a κ-presentable object of A→, and it follows that p is a retract of one of the morphisms pξ.
Now if p has a kernel pair (k1, k2) in A and pξ has a kernel pair (kξ,1, kξ,2) in A, then
(k1, k2) is a retract of (kξ,1, kξ,2). In particular, the domain K of (k1, k2) is a retract of
the domain Kξ of (kξ,1, kξ,2). Hence if Kξ is κ-presentable, then K is κ-presentable, too.
After condition (2) is proved, condition (1) becomes obvious. Conversely, if conditions
(1) and (2) hold then, in order to check that P is locally κ-coherent, one needs to use the
fact that κ-directed colimits preserve finite limits (in particular, kernel pairs) in A. This
is Lemma 1.8.

Let A be a κ-accessible category. We will say that a locally κ-coherent QE-epi class P in
A is strongly locally κ-coherent if it satisfies the following stronger version of condition (2)
from Lemma 8.5:

2′. for any pullback diagram (13) in A with κ-presentable objects D, E, E ′ and a
morphism p ∈ P , the object D′ is also κ-presentable.
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8.6. Remark. Under a natural additional assumption, any locally κ-coherent QE-epi
class in a κ-accessible additive category A is strongly locally κ-coherent. Indeed, given
a morphism p : D −→ E with a kernel pair k1, k2 : K ⇒ D in an idempotent-complete
additive category A, the kernel k′ : K ′ −→ D of the morphism p can be constructed as the
image of a suitable idempotent endomorphism K −→ K. In fact, one has K ≃ D ⊕K ′.
Given a morphism f : E ′ −→ E, the pullback D′ of the pair of morphisms p : D −→ E and
f : E ′ −→ E can be constructed as the kernel of the induced morphism (p, f) : D⊕E ′ −→
E. Hence, in the situation at hand, condition (2) implies D′ ∈ A<κ provided that D, E,
E ′ ∈ A<κ and (p, f) ∈ P .

It remains to make sure that (p, f) ∈ P whenever p ∈ P . Denoting by iD : D −→
D⊕E ′ the direct summand injection, we have (p, f) ◦ iD = p. By the pullback axiom (i∗)
above, the pullbackD′ of the pair of morphisms p and f exists in A; so the morphism (p, f)
has a kernel in A. Assuming the axiom dual to [9, axiom [R3] from Definition 3.2], or
which is the same, [16, axiom R3 from Definition 2.3], it follows that (p, f) ∈ P whenever
p ∈ P . See Section 10 below for a further discussion.

We are not aware of any example of a locally κ-coherent QE-epi class (in any
κ-accessible category) that is not strongly locally κ-coherent.

8.7. Proposition. Let P be a locally κ-coherent QE-epi class in a κ-accessible cate-
gory A. Then the class P ∩A→

<κ of all morphisms from P with κ-presentable domains and
codomains is closed under retracts in the category A→

<κ. The locally κ-coherent QE-epi
class P is strongly locally κ-coherent if and only if the class P ∩A→

<κ is a QE-epi class in
the category A<κ.

Proof. The first assertion is provable similarly to the proof of the second assertion of
Proposition 6.6. Let us prove the second assertion. “If”: assuming that the class P ∩A→

<κ

satisfies condition (i∗) in the category A<κ, condition (2′) for the class P in A follows,
because all limits (in particular, pullbacks) that exist in A<κ are also limits in A by
Lemma 1.6. “Only if”: condition (iii∗) obviously holds for P ∩ A→

<κ whenever it holds
for P . Condition (i∗) holds for P ∩A→

<κ whenever it holds for P and P is strongly locally
κ-coherent, because any square diagram in A<κ that is a pullback diagram in A is also a
pullback diagram in A<κ. Finally, condition (ii∗) holds for P ∩ A→

<κ whenever conditions
(i∗) and (ii∗) hold for P and P is strongly locally κ-coherent, because any diagram in A<κ

that is a coequalizer diagram in A is also a coequalizer diagram in A<κ.

9. Construction of Strongly Locally Coherent QE-Epi Classes

Let D be the finite category defined in Section 7. By the category of cospans in a category
C we mean the category of Dop-shaped diagrams in C, i. e., the category of functors CDop

.

9.1. Theorem. Let A be a κ-accessible category and Q be a QE-epi class in the cate-
gory A<κ. Then the class lim−→(κ)

Q ⊂ A→ of all κ-directed colimits of morphisms from

Q (the colimits being taken in A→) is a strongly locally κ-coherent QE-epi class in the
category A.
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Proof. The argument is largely similar to the proof of Theorem 7.1, but there are some
differences. Put P = lim−→(κ)

Q. In order to check that condition (i∗) for the class Q in A<κ

implies condition (i∗) for the class P in A, let us show that all cospans (p, f) in A (where
p : D −→ E and f : E ′ −→ E) such that p ∈ P , are κ-directed colimits, in the category
of cospans in A, of cospans (q, g) in A<κ such that q ∈ Q.

As usual, we keep in mind the fact that the category of morphisms A→ is κ-accessible,
and its κ-presentable objects are precisely all the morphisms with κ-presentable domains
and codomains. Let P be the full subcategory in A→ whose objects are all the mor-
phisms belonging to P . By Proposition 1.1 applied to the category A→, the category P is
κ-accessible, and its κ-presentable objects are precisely all the retracts of the morphisms
belonging to Q. Now let F : A −→ A be the identity functor, and let G : P −→ A be the
functor taking every morphism p : D −→ E to its codomain E. Then the category F ↓ G
defined in Section 1 is precisely the category of all cospans (p, f) in A with p ∈ P . By
Proposition 1.2, it follows that the category F ↓ G is κ-accessible, and its κ-presentable
objects are precisely all the cospans (q′, g′) in A<κ such that q′ is a retract of a morphism
belonging to Q.

Moreover, let S ⊂ A<κ be a set of representatives of the isomorphism classes of
κ-presentable objects of A, and let T ⊂ P<κ be a set of representatives of the isomor-
phism classes of morphisms belonging to Q. Then Proposition 1.3 applied to the sets
of κ-presentable objects S and T tells us that all cospans (p, f) ∈ ADop

with p ∈ P are
κ-directed colimits, in the category of cospans ADop

, of cospans (q, g) ∈ (A<κ)
Dop

with
q ∈ Q (as desired).

By Lemma 1.6, any limit in A<κ is also a limit in A. In particular, this applies to
pullbacks. So pullbacks of the cospans (q, g) in A<κ remain pullbacks in A. Since κ-directed
colimits in A preserve pullbacks by Lemma 1.8, we have shown that condition (i∗) for Q
in A<κ implies condition (i∗) for P in A.

The proof of the assertion that conditions (i∗) and (ii∗) for Q in A<κ imply condi-
tion (ii∗) for P in A is somewhat similar, and based on the arguments above together with
Lemmas 1.5 and 8.1. By assumption, every morphism q ∈ Q is the coequalizer in A<κ of
its kernel pair in A<κ. We have already seen that the kernel pair of q in A<κ is also the
kernel pair of q in A. By the second assertion of Lemma 1.5, any finite colimit that exists
in A<κ is also a colimit in A. Therefore, q is the coequalizer in A of its kernel pair in A.
So q is an effective epimorphism in A. Now any morphism p ∈ P is a κ-directed colimit
in A→ of morphisms q ∈ Q, and κ-directed colimits of effective epimorphisms in A are
effective epimorphisms in A by Lemma 8.1(b).

Let us prove that conditions (i∗) and (iii∗) for Q in A<κ imply condition (iii∗) for P
in A. The assertion concerning the identity morphisms is obvious. We need to show that
the class P is closed under compositions. Let p′ : C −→ D and p′′ : D −→ E be two
morphisms belonging to P . By Proposition 1.1, in order to prove that the composition
p = p′′ ◦ p′ belongs to P , we need to check that every morphism t −→ p in A→ from a
morphism t with κ-presentable domain and codomain, t ∈ (A→)<κ = (A<κ)

→, into the
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morphism p factorizes as t −→ q −→ p, where q ∈ Q. So we have a commutative diagram

C
p′
// D

p′′
// E

T

c

OO

t
// S

e

OO

in A with κ-presentable objects S and T .
Arguing exactly as in the proof of Theorem 7.1, we construct a commutative diagram

similar to (12). Let us redraw it here in our current notation:

C
p′
// D

p′′
// E

U
v //

c′

OO

V

d′

OO

Y

d

XX

q′′
//

h

OO

Z

f

OO

T

c

CC

t
//

y

>>
u

OO

S

g

OO

e

[[

(14)

So (14) is a commutative diagram in A with κ-presentable objects S, T , U , V , X, and Y ,
and morphisms v, q′′ ∈ Q.

By condition (i∗) for the class Q in A<κ, the cospan v : U −→ V , h : Y −→ V has
a pullback in A<κ, which by Lemma 1.6 is also a pullback in A. Denote the resulting
pullback square by

U v // V

X

h′

OO

q′
// Y

h

OO

Condition (i∗) for the class Q in A<κ also tells us that q′ ∈ Q (since v ∈ Q).
We have a pair of morphisms u : T −→ U and y : T −→ Y such that v ◦ u = h ◦ y.

Hence there exists a unique morphism x : T −→ X making the diagram

U v // V

X
q′
//

h′

OO

Y

h

OO

T

x

OO
u

BB

y

>>
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commutative. We have arrived to the commutative diagram

C
p′
// D

p′′
// E

U
v //

c′

OO

V

d′

OO

X
q′
//

h′

OO

Y
q′′
//

h

OO

Z

f

OO

T

c

CC

t
//

y

>>

x

OO

S

g

OO

e

[[

proving that the morphism t −→ p = p′′ ◦ p′ in A→ factorizes as t −→ q −→ p, where
q = q′′ ◦ q′.

As both the morphisms q′ and q′′ belong to Q by construction, so does their com-
position q′′ ◦ q′, by condition (iii∗) for the class Q in A<κ. This finishes the proof of
condition (iii∗) for the class P in A.

It remains to prove that the QE-epi class P is strongly locally κ-coherent. In fact, by
Proposition 1.1, P ∩ A→

<κ is precisely the class of all retracts of the morphisms from Q
(the retracts being taken in the category A→ or A→

<κ). So the QE-epi class P in A satisfies
condition (1) of Lemma 8.5 in view of Lemma 8.4. To check condition (2′) from Section 8
for the class P , notice that, in view of the proof of condition (i∗) for the class P above,
every cospan (p, f) ∈ (A<κ)

Dop
in A<κ with a morphism p ∈ P is a retract of a cospan

(q, g) ∈ (A<κ)
Dop

in A<κ with a morphism q ∈ Q. Furthermore, the pullback of (q, g) in
A<κ is also the pullback of (q, g) in A. It follows that the pullback of (p, f) in A is a retract
of the pullback of (q, g), and it remains to point out that the full subcategory A<κ ⊂ A is
closed under retracts in A.

9.2. Corollary. For any κ-accessible category A, there is a bijective correspondence
between strongly locally κ-coherent QE-epi classes in A and QE-epi classes in the cat-
egory A<κ closed under retracts in A→

<κ. The bijection assigns to every strongly lo-
cally κ-coherent QE-epi class P in A the retraction-closed QE-epi class Q = P ∩ A→

<κ

in A<κ. Conversely, to every retraction-closed QE-epi class Q in A<κ, the strongly locally
κ-coherent QE-epi class P = lim−→(κ)

Q in A is assigned.

Proof. For every strongly locally κ-coherent QE-epi class P in A, the class Q = P ∩A→
<κ

is a retraction-closed QE-epi class in A<κ by Proposition 8.7. For every QE-epi class
Q in A<κ, the class P = lim−→(κ)

Q is a strongly locally κ-coherent QE-epi class in A by

Theorem 9.1. For any strongly locally κ-coherent QE-epi class P in A, one has P =
lim−→(κ)

(P ∩ A→
<κ) by Lemma 8.5(1). For any retraction-closed QE-epi class Q in A<κ, one

has Q = (lim−→(κ)
Q) ∩ A→

<κ by Proposition 1.1, as it was already mentioned in the last

paragraph of the proof of Theorem 9.1.
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9.3. Example. Dually to Example 7.4, a QE-epi class in an additive category S with
split idempotents need not be closed under retracts in general. Indeed, let S = k–vect be
the category of finite-dimensional vector spaces over a field k, and let Q be the class of
all epimorphisms q in S with the dimension of the kernel dimk(ker q) divisible by a fixed
integer n ≥ 2. Then conditions (i∗–iii∗) are satisfied for the class Q in the category S,
but Q is not closed under retracts in the category S→. Furthermore, one has S = A<ℵ0 ,
where A = k–Vect is the finitely accessible category of k-vector spaces. The class P =
lim−→(κ)

Q ⊂ A→ consists of all epimorphisms in A.

10. Strong QE-Epi Classes

Let C be a category. We will say that a QE-epi class P in C (as defined in Section 8) is a
strong QE-epi class if it satisfies the following additional condition:

iv∗. If p, q is a composable pair of morphisms in C and p ◦ q ∈ P , then p ∈ P .

In the context of additive categories, our axiom (iv∗) coincides with [16, axiom R3+ from
Definition 3.1]. A similar but slightly more general definition of a strongly left exact
additive category can be found in [9, Definition 3.2].

10.1. Lemma. Any strong QE-epi class in a category C is closed under retracts in the
category C→.

Proof. Let p : B −→ C be a morphism belonging to P , and let q : D −→ E be a retract
of the morphism p. So we have a commutative diagram

D
q
// E

B
p
//

sD

OO

C

sE

OO

D
q
//

iD

OO
idD

>>

E

iE

OO
idE

``

By condition (i∗), there exists a pullback diagram

B
p
// C

F
p′
//

j

OO

E

iE

OO
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in the category C, and the morphism p′ : F −→ E belongs to P . Now we have commutative
diagrams

D
q
// E

B
p
//

sD

OO

C

sE

OO

F
p′
//

j

OO

E

iE

OO
idE

`` D
q
// E

B

sD

OO

F

j

OO p′

GG

with p′ ∈ P . By condition (iv∗), it follows that q ∈ P .
The following proposition is a weak nonadditive version of [16, Theorem 1.2].

10.2. Proposition. Let C be a category with finite coproducts and P be a QE-epi class
in C. Then P is a strong QE-epi class in C if and only if the following two conditions
hold:

1. the class P is closed under retracts in C→;

2. for any three objects A, B, C ∈ C and any two morphisms p : A −→ C and f : B −→
C such that p ∈ P, the induced morphism from the coproduct (p, f) : A ⊔ B −→ C
also belongs to P.

Proof. “Only if”: condition (1) holds by Lemma 10.1 (this implication does not depend
on the assumption of existence of finite coproducts in C). Condition (2) follows from (iv∗),
since the composition A −→ A ⊔B −→ C is equal to p ∈ P .

“If”: Let q : C −→ D and p : D −→ E be a pair of morphisms in C such that the com-
position r = p ◦ q belongs to P . Then, by (2), the morphism (r, p) : C ⊔D −→ E belongs
to P . It remains to point out that the morphism p is a retract of the morphism (r, p), in
view of commutativity of the diagram

D
p
// E

C ⊔D

(q,idD)

OO

(r,p)
// E

D

iD

OO

p
// E

where iD : D −→ C ⊔D is the coproduct injection.

11. Characterization of Strongly Locally Coherent Strong QE-Epi Class

Let A be a κ-accessible category. By a strongly locally κ-coherent strong QE-epi class
in A we mean a strong QE-epi class P in A (in the sense of Section 10) that is strongly
locally κ-coherent as a QE-epi class in A (in the sense of Section 8).
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11.1. Proposition. Let A be a κ-accessible category with finite coproducts and Q be a
strong QE-epi class in the category A<κ. Let P = lim←−(κ)

Q ⊂ A→ be the related (strongly

locally κ-coherent) QE-epi class in the category A, as per Theorem 9.1. Then a morphism
p : D −→ E in A belongs to P if and only if, for every object S ∈ A<κ and every morphism
e : S −→ E there exists a commutative square diagram

D
p
// E

T

d

OO

q
// S

e

OO

(15)

with an object T ∈ A<κ and a morphism q ∈ Q.

Proof. This is a nonadditive version of [25, Lemmas 1.5 and 2.3]. “Only if”: this
implication does not depend on the assumption of existence of finite coproducts in A.
The assumption that Q is a strong QE-epi class is not needed for this implication, either;
it is only important that the class Q satisfies condition (i∗) in the category A<κ.

Suppose that p = lim−→
A→

ξ∈Ξ uξ, where uξ : Xξ −→ Yξ are some morphisms belonging to Q
and Ξ is a κ-directed poset. Let xξ : Xξ −→ D and yξ : Yξ −→ E be the natural morphisms
to the colimit. Then, since the object S is κ-accessible, the morphism e : S −→ E
factorizes through the morphism yξ for some index ξ ∈ Ξ. So we have a morphism
v : S −→ Yξ such that e = yξ ◦ v. Put X = Xξ, Y = Yξ, x = xξ, y = yξ, and u = uξ.

Applying condition (i∗) to the pair of morphisms u : X −→ Y and v : S −→ Y in the
category A<κ, with the morphism u belonging to Q, we obtain a pullback diagram

X
u // Y

T

v′

OO

q
// S

v

OO

in the category A<κ with the morphism q belonging to Q. Now we have the commutative
diagram

D
p
// E

X

x

OO

u // Y

y

OO

T

v′

OO

q
// S

v

OO
e

``

leading to the desired commutative square diagram (15).
“If”: given a morphism s : U −→ S in A<κ and a morphism s −→ p in A→, we need

to find a morphism r ∈ Q such that the morphism s −→ p factorizes as s −→ r −→ p
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in A→. So suppose we are given a commutative square diagram

D
p
// E

U

u

OO

s
// S

e

OO

in A with κ-presentable objects U and S. By assumption, we can extend the morphisms p
and e to a commutative square diagram (15) with a morphism q ∈ Q. Now we have a
commutative diagram

D
p
// E

T ⊔ U

(d,u)

OO

(q,s)
// S

e

OO

U

iU

OO

s
//

u

;;

S

where iU : U −→ T ⊔U is the coproduct injection. Here the coproduct T ⊔U computed in
A belongs to A<κ by Lemma 1.5; so it is also the coproduct in A<κ. By Proposition 10.2(2),
the morphism r = (q, s) : T ⊔ U −→ S belongs to Q, providing the desired factorization
s −→ r −→ p.

11.2. Theorem. Let A be a κ-accessible category with finite coproducts. Then, for any
strong QE-epi class Q in the category A<κ, the (strongly locally κ-coherent) QE-epi class
lim−→(κ)

Q is a strong QE-epi class in the category A. Conversely, for any strongly locally

κ-coherent strong QE-epi class P in A, the QE-epi class P ∩ A→
<κ in the category A<κ is

a strong QE-epi class.

Proof. To prove the first assertion, we use the characterization of the class P = lim−→(κ)
Q

provided by Proposition 11.1. Let p′ : C −→ D and p′′ : D −→ E be two morphisms in A
such that the composition p′′ ◦ p′ belongs to P . Suppose we are given an object S ∈ A<κ

and a morphism e : S −→ E. By Proposition 11.1, there is a commutative diagram

C
p′
// D

p′′
// E

T

c

OO

q
// S

e

OO

with a morphism q ∈ Q. Setting d = p′ ◦ c : T −→ D, we obtain the desired commutative
diagram (15) for the morphisms p′′ and e. Applying Proposition 11.1 again, we can
conclude that p′′ ∈ P .

The second assertion of the theorem is obvious and does not depend on the assumption
that A has finite coproducts.
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11.3. Remark. One can say that a QE-mono class M in a category C is a strong
QE-mono class if it satisfies condition (iv) dual to condition (iv∗) from Section 10. It
would be interesting to know whether a version of Theorem 11.2 holds for strong QE-mono
classes, or what assumptions on a κ-accessible category A are needed for it to hold. Let N
be a strong QE-mono class in A<κ; does it follow thatM = lim−→(κ)

N is a strong QE-mono

class in A?

12. Regularity of Strongly Pure Monomorphisms

Let κ be a regular cardinal and A be a κ-accessible category. The definition of a strongly
κ-pure monomorphism in A was given in Section 3. For the definition of a regular
monomorphism, see Section 6.

12.1. Proposition. Let A be a κ-accessible category such that every split monomorphism
in A has a cokernel pair. Then all strongly κ-pure monomorphisms in A are regular
monomorphisms.

Proof. The assumption of the proposition means that all split monomorphisms in A
are effective (since all split monomorphisms are always regular; see Section 6). By
Lemma 6.1, it follows that all the κ-directed colimits of split monomorphisms in A are ef-
fective monomorphisms, too. For an alternative argument applicable under slightly more
restrictive assumptions, see Proposition 13.1 below.

The definition of a very weak cokernel pair was given in Section 2.

12.2. Corollary. Let A be a κ-accessible category with very weak cokernel pairs (e. g.,
this holds if A has finite products). Assume further that every split monomorphism in
A<κ has a cokernel pair (in A<κ, or equivalently, in A). Then all κ-pure monomorphisms
in A are regular monomorphisms.

Proof. In any κ-accessible category with very weak cokernel pairs, the classes of κ-pure
and strongly κ-pure monomorphisms coincide by Theorem 3.4. Any category with finite
products has very weak cokernel pairs by Example 2.2(2). For a morphism i in A<κ, the
cokernel pair of i in A<κ is the same thing as the cokernel pair of i in A by Lemma 1.5.
The rest is clear from the proof of Proposition 12.1.

12.3. Example. Any accessible category has split idempotents [2, Observation 2.4]. In
particular, any accessible additive category is idempotent-complete. By Remark 6.3, it
follows that all pushouts of split monomorphisms exist in any accessible additive cate-
gory A. In particular, all split monomorphisms have cokernel pairs in A. Thus it follows
from Corollary 12.2 that all κ-pure monomorphisms are regular in any κ-accessible addi-
tive category A. This result also follows from the discussion of the κ-pure exact structure
on a κ-accessible additive category in [25, Section 4]. The specific references are [25,
Proposition 2.5] (for the existence of the κ-pure exact structure) and [25, Proposition 4.4]
(for the description of the admissible monomorphisms in the κ-pure exact structure).
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13. Pushouts of Strongly Pure Monomorphisms

The discussion in this section is just a special case of Sections 6–7.

13.1. Proposition. Let A be a κ-accessible category such that pushouts of split
monomorphisms exist in A. Then all pushouts of strongly κ-pure monomorphisms exist
in A, and all such pushouts are strongly κ-pure monomorphisms themselves.

Proof. Let N be the class of all split monomorphisms in A<κ. For any span in A<κ,
if the pushout exists in A, then it belongs to A<κ by Lemma 1.5. So all pushouts of
split monomorphisms exist in A<κ under out assumptions. By Example 6.2(3), it follows
that N is a QE-mono class in A<κ. Applying Theorem 7.1, we conclude that the class of
strongly κ-pure monomorphisms M = lim−→(κ)

N is a QE-mono class in A. In particular,

condition (i) from Section 6 is satisfied forM, as desired.

13.2. Corollary. Let A be a κ-accessible category with very weak cokernel pairs (e. g.,
this holds if A has finite products). Assume further that pushouts of split monomorphisms
exist in A<κ. Then all pushouts of κ-pure monomorphisms exist in A, and all such
pushouts are κ-pure monomorphisms themselves.

Proof. Follows from Theorem 3.4, Example 2.2(2), and the proof of Proposition 13.1
(cf. the proof of Corollary 12.2).

13.3. Example. According to Example 12.3, all pushouts of split monomorphisms exist
in any accessible additive category A. So it follows from Corollary 13.2 that κ-pure
monomorphisms are stable under pushouts in any κ-accessible additive category A. This
result also follows from the discussion of the κ-pure exact structure on A in [25, Section 4];
see Example 12.3 for specific references.

13.4. Example. Any small category with split idempotents is accessible [22, Theo-
rem 2.2.2]. Therefore, Remark 6.3 provides an example of an accessible preadditive
category that does not have pushouts (or even cokernel pairs, or even very weak cok-
ernel pairs) of split monomorphisms. So pushouts of pure monomorphisms need not exist
in an accessible preadditive category, generally speaking.

14. Regularity of Strongly Pure Epimorphisms

Let κ be a regular cardinal and A be a κ-accessible category. The definition of a strongly
κ-pure epimorphism in A was given in Section 5. For the definition of a regular epimor-
phism, see Section 8.

14.1. Proposition. Let A be a κ-accessible category such that every split epimorphism in
A has a kernel pair. Then all strongly κ-pure epimorphisms in A are regular epimorphisms.
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Proof. The assumption of the proposition means that all split epimorphisms in A are ef-
fective (since all split epimorphisms are always regular; see Section 8). By Lemma 8.1(b),
it follows that all the κ-directed colimits of split epimorphisms in A are effective epimor-
phisms, too. For an alternative argument applicable under slightly more restrictive (or
slightly different) assumptions, see Proposition 15.1 below.

The definition of a very weak split pullback was given in Section 4.

14.2. Corollary. Let A be a κ-accessible category with very weak split pullbacks (e. g.,
this holds if A has finite coproducts). Assume further that every split epimorphism in A<κ

has a kernel pair in A (in particular, this holds if every split epimorphism has a kernel
pair in A<κ). Then all κ-pure epimorphisms in A are regular epimorphisms.

Proof. In any κ-accessible category with very weak split pullbacks, the classes of κ-pure
and strongly κ-pure epimorphisms coincide by Theorem 5.4. Any category with finite
coproducts has very weak split pullbacks by Example 4.3(2). For a morphism p in A<κ, if
the kernel pair of p exists in A<κ, then it is also the kernel pair of p in A by Lemma 1.6.
The rest is clear from the proof of Proposition 14.1.

14.3. Example. Similarly to Example 12.3, all pullbacks of split epimorphisms exist in
any accessible additive category A by Remark 8.3. In particular, all split epimorphisms
have kernel pairs in A. Similarly, all split epimorphisms have kernel pairs in A<κ, since
A<κ is idempotent-complete by Remark 7.3. Thus it follows from Corollary 14.2 that all
κ-pure epimorphisms are regular in any κ-accessible additive category A. This result also
follows from the discussion of the κ-pure exact structure on a κ-accessible additive category
in [25, Section 4]. The specific references are [25, Proposition 2.5] (for the existence of
the κ-pure exact structure) and [25, Proposition 4.2] (for the description of the admissible
epimorphisms in the κ-pure exact structure).

15. Pullbacks of Strongly Pure Epimorphisms

15.1. Proposition. Let A be a κ-accessible category such that pullbacks of split epimor-
phisms exist in the category A<κ. Then all pullbacks of strongly κ-pure epimorphisms exist
in A, and all such pullbacks are strongly κ-pure epimorphisms themselves.

Proof. Let Q be the class of all split epimorphisms in A<κ. By Example 8.2(3), Q is
a QE-epi class in A<κ. Applying Theorem 9.1, we conclude that the class of strongly
κ-pure epimorphisms P = lim−→(κ)

Q is a QE-epi class in A. In particular, condition (i∗)

from Section 8 is satisfied for P , as desired.

15.2. Corollary. Let A be a κ-accessible category with very weak split pullbacks (e. g.,
this holds if A has finite coproducts). Assume further that pullbacks of split epimorphisms
exist in A<κ. (More generally, it suffices to assume that every split epimorphism in
A<κ has a pullback in A along every morphism in A<κ.) Then all pullbacks of κ-pure
epimorphisms exist in A, and all such pullbacks are κ-pure epimorphisms themselves.
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Proof. The main assertion is obtained by combining Theorem 5.4, Example 4.3(2), and
Proposition 15.1 (cf. the proof of Corollary 14.2). For the more general assertion under
the assumption in parentheses, one needs to follow the proof of condition (i∗) for the class
P in Theorem 9.1.

15.3. Example. According to Example 14.3, all pullbacks of split epimorphisms exist
in any κ-accessible additive category A, as well as in its full subcategory A<κ. So it
follows from Corollary 15.2 that κ-pure epimorphisms are stable under pullbacks in any
κ-accessible additive category A. This result also follows from the discussion of the κ-pure
exact structure on A in [25, Section 4]; see Example 14.3 for specific references.

15.4. Example. Any small category with split idempotents is accessible [22, Theo-
rem 2.2.2]. Therefore, Remark 8.3 provides an example of an accessible preadditive
category that does not have pullbacks (or even kernel pairs) of split epimorphisms. So
pullbacks of pure epimorphisms need not exist in an accessible preadditive category in
general.
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Žitná 25, 115 67 Praha 1
Czech Republic
Email: positselski@math.cas.cz

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Nathanael Arkor, Tallinn University of Technology.

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

TEX editor emeritus. Michael Barr, McGill University: michael.barr@mcgill.ca

Transmitting editors.
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