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ON THE GEOMETRIC NOTION OF CONNECTION
AND ITS EXPRESSION IN TANGENT CATEGORIES

RORY B. B. LUCYSHYN-WRIGHT

Abstract. Tangent categories provide an axiomatic approach to key structural as-
pects of differential geometry that exist not only in the classical category of smooth
manifolds but also in algebraic geometry, homological algebra, computer science, and
combinatorics. Generalizing the notion of (linear) connection on a smooth vector bun-
dle, Cockett and Cruttwell have defined a notion of connection on a differential bundle
in an arbitrary tangent category. Herein, we establish equivalent formulations of this
notion of connection that reduce the amount of specified structure required. Further,
one of our equivalent formulations substantially reduces the number of axioms imposed,
and others provide useful abstract conceptualizations of connections. In particular, we
show that a connection on a differential bundle E over M is equivalently given by a
single morphism K that induces a suitable decomposition of TE as a biproduct. We
also show that a connection is equivalently given by a vertical connection K for which
a certain associated diagram is a limit diagram.

1. Introduction

To view a particular geometric space as merely a smooth manifold, merely an analytic
space, or merely a scheme sometimes entails neglecting further relevant structure that the
space may carry, such as Riemannian or Hermitian structure. In differential geometry, the
concept of affine connection captures one such notion of further geometric structure, a
notion that is substantially more general than Riemannian structure and yet still gives rise
to many important derived phenomena such as geodesics, curvature, parallel transport,
and holonomy.

Cockett and Cruttwell [3] have defined a notion of affine connection on an object M
of any suitably structured category X , so that the classical notion is recovered when
X is the category Mf of smooth manifolds. Cockett and Cruttwell work within the
framework of tangent categories [9, 2], which are categories X in which each object M
is equipped with a tangent bundle TM , with an associated morphism pM : TM → M
and several further structural morphisms +M , 0M , `M , and cM , satisfying certain axioms.
The category Mf is one example of a tangent category, in the company of many other
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examples, including categories from algebraic geometry, computer science, combinatorics,
and homological algebra.

Inspired by formulations of connections established by Ehresmann and by Patterson
[8], Cockett and Cruttwell define an affine connection on a given object M of a tangent
category X as a pair (K,H) consisting of morphisms

K : T 2M → TM H : TM ×M TM → T 2M

in X , satisfying certain axioms, where T 2M = TTM and we write TM×M TM to denote
the fibre product of pM : TM →M with itself.

The notion of affine connection on a smooth manifold is subsumed by the more general
notion of (linear) connection on a vector bundle q : E → M over M , since an affine
connection on M is, by definition, a connection on the tangent bundle pM : TM → M
of M . In an arbitrary tangent category, one has available a generalization of the notion
of vector bundle that is formulated without reference to the ring of real numbers, namely
the notion of differential bundle [4]. Explicitly, a differential bundle

E = (E, q, σ, ζ, λ)

over an object M of X consists of a morphism q : E → M in X equipped with the
structure of a commutative monoid (E, q, σ, ζ) in the slice category X /M , together with
a specified morphism λ : E → TE called the lift, satisfying certain axioms. In particular,
the tangent bundle pM : TM → M carries the structure of a differential bundle, which
we write herein as

TM = (TM, pM ,+M , 0M , `M),

where +M , 0M , `M are certain of the structural morphisms possessed by the tangent
category X .

Cockett and Cruttwell define a connection [3] on a differential bundle E over M as a
pair (K,H) consisting of morphisms

K : TE → E H : E ×M TM → TE

in X , satisfying several axioms; see 3.3 below1. A connection in this sense consists of a
vertical connection K and a horizontal connection H that are suitably compatible. The
authors establish certain conditions under which a horizontal connection H determines
a compatible vertical connection K, and vice versa, except that the passage from a ver-
tical connection K to a compatible horizontal connection H is achieved only under the
assumption that there exists some (not necessarily compatible) horizontal connection on
E [3, Propositions 5.12, 5.13].

In the present paper, we establish equivalent formulations of the above notion of
connection that reduce the amount of specified structure required. Further, one of our

1As in [3], we shall only consider connections on differential bundles E that satisfy the following
blanket assumption: For all natural numbers m,n ∈ N the fibre product of m instances of E and n
instances of TM , over the base object M , exists in X and is preserved by T k for each k ∈ N (3.1).
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equivalent formulations substantially reduces the number of axioms imposed, and others
provide useful abstract conceptualizations of connections, in terms of the standard notion
of biproduct. We show that the original axioms for connections in tangent categories
arise as subtle generic features of certain biproducts of differential bundles, and this
analysis enables us to remove some of these axioms through a new formulation in terms
of just a single morphism K. The fact that we have been able to establish these useful
equivalent formulations is a further testament to the coherence and suitability of the
original definition of Cockett and Cruttwell.

The key idea that enables our approach to connections is the fact that a connection
(K,H) on a differential bundle E over M induces a ‘coordinatization’ of TE, by providing
a decomposition of TE as a fibre product

TE = E ×M TM ×M E (1.0.i)

over M . Indeed, Cockett and Cruttwell have proved in [3, Prop. 5.8] that the diagram

TE
pE

}}
T (q)
��

K

""
E

q ""

TM

pM
��

E

q}}
M

(1.0.ii)

presents TE as such a fibre product. In particular, an affine connection (K,H) allows us
to express the second tangent bundle T 2M as fibre product T 2M = TM ×M TM ×M TM
over M of three instances of TM . In this way, an affine connection allows second-order
tangent vectors to be expressed as triples of tangent vectors at a common point. In the
case where X is the category Mf of smooth manifolds, this phenomenon was discovered
by Dombrowski [5], who defined the map K in terms of a given Koszul connection ∇.
As a simple example in Mf, one may take M = Rn, so that M carries a canonical affine
connection that allows us to express T 2M as a three-fold fibre product TM ×M TM ×M
TM = M ×M3 = M4 of TM = M2 over M .

Herein we show that a connection on a differential bundle E = (E, q, σ, ζ, λ) over M
can be described equivalently as a morphism K inducing a fibre product decomposition
(1.0.i) that satisfies certain natural further conditions. One of our results of this type is
as follows:

Theorem 8.2(2). A connection on E is equivalently given by a retraction
K : TE → E of λ such that TE underlies a product of differential bundles
E ×M TM ×M E over M whose third projection is K and whose first and
second partial bundles (5.3) are

TE = (TE, pE,+E, 0E, `E) and TE = (TE, T (q), T (σ), T (ζ), T (λ)),

respectively.
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A product E ×M TM ×M E satisfying the specified conditions is not only unique up to
isomorphism if it exists, but moreover its underlying fibre product diagram in X must
be precisely (1.0.ii).

Here we have employed the notion of j-th partial bundle, which we now explain. Given
a finite product of differential bundles F = F1 ×M ... ×M Fn over M , if certain products
of differential bundles exist, then the underlying object F acquires the structure of a
differential bundle over Fj, for each j ∈ {1, ..., n}, which we call the j-th partial bundle of
the given product (5.3). For example, the first partial bundle of the given product is the
pullback of F2 ×M ...×M Fn along F1 →M .

The category DBunM of differential bundles over an object M is an additive category,
in the sense that it is enriched in commutative monoids, so finite products in DBunM are
biproducts, which we also call Whitney sums with a nod to the classical case. It follows
that we can reformulate the preceding theorem as follows:

Theorem 8.2(1). A connection on E is equivalently given by a morphism
K : TE → E such that TE underlies a biproduct of differential bundles
E⊕MTM⊕ME over M whose third projection is K, whose third injection is
λ, and whose first and second partial bundles are TE and TE, respectively.

The first and second injections of the biproduct are then necessarily 0E : E → TE and
T (ζ) : TM → TE.

This formulation in terms of biproducts gives us a straightforward recipe for recovering
the associated horizontal connection H:

Given a morphism K as in Theorem 8.2(1), the associated horizontal
connection H : E ×M TM → TE is precisely the canonical injection

H : E ⊕M TM −→ E ⊕M TM ⊕M E

of the first two factors of the given biproduct.

In the formulation of Cockett and Cruttwell, a morphism K : TE → E is called a
vertical connection on the differential bundle E = (E, q, σ, ζ, λ) if it is a retraction of λ
and satisfies axioms (C.1) and (C.2) in 3.3 below, while a morphism H : E×M TM → TE
is called a horizontal connection on E if it is a section of 〈pE, T (q)〉 and satisfies axioms
(C.3) and (C.4) of 3.3. A pair (K,H) consisting of a vertical connection and a horizontal
connection is then called a connection if it satisfies two further axioms, (C.5) and (C.6)
in 3.3, which demand that K and H be compatible in a suitable sense. Collectively, the
resulting axioms for a connection assert the equality of ten pairs of morphisms in X (cf.
[3, Lemmas 3.3, 4.6, Def. 5.2]). Cockett and Cruttwell prove that if the tangent category
X has negatives, meaning that the commutative monoid structure on TM is an abelian
group for each object M , then for any horizontal connection H on E there is an associated
vertical connection K such that (K,H) is a connection [3, Prop. 5.12]. Again supposing
that X has negatives, Cockett and Cruttwell also prove a result in the opposite direction,
except with an additional hypothesis: If K is a vertical connection on E and there exists
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a horizontal connection on E, then we can associate to K a horizontal connection H for
which (K,H) is a connection [3, Prop. 5.13].

Without assuming negatives or the existence of a horizontal connection on the given
differential bundle E, we prove herein that if a vertical connection K satisfies the further
assumption that (1.0.ii) is a fibre product diagram in X , then there is a unique hori-
zontal connection H on E such that (K,H) is a connection. This leads to the following
economical formulation of connections:

Theorem 8.2(3). A connection on E is equivalently given by a vertical
connection K : TE → E on E such that (1.0.ii) is a fibre product diagram
in X .

Thus we have obtained an equivalent formulation of connections in terms of a single
morphismK that is required to satisfy the equational axioms for a vertical connection (3.3)
(representing a total of four equations) together with a single ‘exactness’ axiom. We call
a vertical connection K satisfying this additional axiom an effective vertical connection.
It follows that a vertical connection K is effective if and only if there exists a (necessarily
unique) horizontal connection H such that (K,H) is a connection (8.1).

Looking toward future work in tangent categories, the axiomatic simplicity and con-
ceptual insights afforded by the above formulations of connections hold the potential to
facilitate work with connections and guide the exploration of notions of higher-order con-
nection2 that suitably decompose the higher tangent bundles. In fact, Theorem 8.2(3) is
applied in [1] to facilitate the study of categories of geometric spaces associated to tangent
categories.

Acknowledgement. The author thanks the anonymous referee for helpful suggestions,
including the idea of introducing a term for limits preserved by the iterates of the tangent
functor (2.3.6).

2. Background

2.1. Basic categorical notions and notations.

2.1.1. With regard to basic categorical matters, we shall mostly adhere to the nota-
tional conventions of [2], which are very efficient for some kinds of equational reasoning
in tangent categories but require a mild departure from common notations for functor
application and whiskering, as follows. Given morphisms f : A → B and g : B → C
in a category C , we denote the associated composite morphism A → C by fg, thus
employing diagrammatic composition order unless otherwise indicated. Nevertheless,
the result of applying a functor H to a morphism g is written as H(g). Correspond-
ingly, we will write the composite of functors G : B → C and H : C → D in non-
diagrammatic order as HG (even though this is not the practice in [2]). Given a natural

2In the context of synthetic differential geometry, notions of higher connection have been introduced
in [7, 6].
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transformation γ : G ⇒ G′ : B → C and functors F : A → B and H : C → D ,
we denote the resulting ‘whiskered’ natural transformations by H(γ) : HG ⇒ HG′

and γF : GF ⇒ GF ′. Given a product of a sequence of n objects in a given cate-
gory, where n is a natural number, we denote the product projections by π1, ..., πn so
that our notation accords directly with locutions such as “the first projection” (cf. [2,
p. 334]).

All given categories herein are assumed locally small.

2.1.2. Given an object C of a category C , we shall denote by C /C the slice category
over C , whose objects we shall write as pairs (B, f) consisting of an object B of C
equipped with a morphism f : B → C in C . We will sometimes omit explicit mention of
the associated morphism f . Given a family of morphisms (fi : Bi → C)i∈I in C , a fibre
product (over C) of the family (fi)i∈I is, by definition, a product in C /C of the family of
objects (Bi, fi) (i ∈ I). We shall denote such a fibre product by

∏M
i∈I(Bi, fi), or

∏M
i∈I Bi

when the associated morphisms fi are understood. When I = {1, 2, ...n} for some n
natural number n ∈ N, we will often denote such a fibre product by B1×MB2×M ...×MBn.

A fibre product of (fi)i∈I in C is equivalently described as a limit, in C , of the diagram
consisting of the object C together with the morphisms fi : Bi → C (i ∈ I). In the case
where I is empty, a cone for this diagram is given by just a single object of C /C. On
the other hand, if I is nonempty, then a cone for this diagram is equivalently given by an
object A of C equipped with a family of morphisms (gi : A → Bi)i∈I with the property
that gifi = gjfj for all i, j ∈ I. Still supposing that I is nonempty, a fibre product

∏M
i∈I Bi

over C is equipped with a universal such family (πi :
∏M

i∈I Bi → Bi)i∈I , which is therefore
a jointly monic family of morphisms in C . We shall call the diagram in C consisting of
the morphisms πi and fi (i ∈ I) a fibre product diagram.

Given a single morphism f : B → C in C and a natural number n, an n-th fibre
power of f in C is, by definition, a fibre product over C of the constant family (f : B →
C)i∈N, 16i6n. The n-th fibre power of f shall be denoted by f (n) : Bn/C → C.

2.2. Additive categories, commutative monoids, and biproducts.

2.2.1. By an additive category we shall mean a locally small category A in which
each hom-set A (A,B) with A,B ∈ obA is equipped with the structure of a commutative
monoid, with operations written as + and 0, such that for every morphism f : A →
B and every object C, the mappings A (C, f) : A (C,A) → A (C,B) and A (f, C) :
A (B,C) → A (A,C) are homomorphisms of commutative monoids. Additive categories
in this sense are equivalently described as categories enriched in the symmetric monoidal
closed category of commutative monoids. Our usage of the term additive category is
non-standard, as the term is more often used to refer to categories that are enriched in
abelian groups and have finite biproducts. We shall say that a functor F : A → B
between additive categories is an additive functor if each mapping FAB : A (A,B) →
B(FA, FB) is a homomorphism of commutative monoids, where A,B ∈ obA .

A (finite) biproduct of a given finite family of objects (Ai)i∈I in an additive category
A is, by definition, an object A = ⊕i∈IAi of A equipped with morphisms πi : A→ Ai and
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ιi : Ai → A (i ∈ I) such that (1) ιiπi = 1Ai
: Ai → Ai for all i ∈ I, (2) ιiπj = 0 : Ai → Aj

for all i, j ∈ I with i 6= j, and (3)
∑

i∈I πiιi = 1A : A→ A, where the latter finite sum is
taken in the commutative monoid A (A,A). We call the morphisms πi and ιi projections
and injections, respectively. Clearly any additive functor F : A → B preserves finite
biproducts, in the evident sense.

Given a finite biproduct A = ⊕i∈IAi in an additive category A , the associated mor-
phisms πi necessarily present A as a product Πi∈IAi in A , and the morphisms ιi present
A as a coproduct3 qi∈IAi in A .

Conversely, any finite product Πi∈IAi in an additive category A necessarily carries the
structure of a biproduct ⊕i∈IAi. Indeed, the needed morphisms ιi : Ai → A are uniquely
defined by conditions (1) and (2) in the above definition of biproduct.

As a consequence, every additive functor preserves finite products.

2.2.2. Given an arbitrary category C , we denote by CMon(C ) the category of com-
mutative monoids in C . Explicitly, an object C of CMon(C ) is given by an object
|C | of C equipped with specified finite powers |C |n (n ∈ N) and morphisms 0 : 1 → |C |
and + : |C |2 → |C | satisfying the usual diagrammatic associativity, commutativity, and
unit axioms; a morphism in CMon(C ) is given by a morphism in C that preserves the
operations 0 and +. Hence CMon(C ) is isomorphic to the category of T -algebras in C
for the Lawvere theory T of commutative monoids.

Note that CMon(C ) carries the structure of an additive category (2.2.1), with the
obvious ‘pointwise’ addition operation on morphisms. Hence finite products in CMon(C )
are equivalently described as finite biproducts in CMon(C ). Further, finite products in
CMon(C ) are formed as in C :

2.2.3. Proposition. Let (Ci)i∈I be a finite family of commutative monoids in an arbi-
trary category C , with underlying objects |Ci| in C . Then a product

∏
i∈I Ci in CMon(C )

is equivalently given by a product X =
∏

i∈I |Ci| in C equipped with specified finite powers
Xn in C (n ∈ N).

Proof. Given a product X =
∏

i∈I |Ci| in C with specified finite powers, it is well-known
and easily verified that there are unique morphisms + : X2 → X and 0 : X0 → X in
C such that C = (X,+, 0) is a commutative monoid and the projections πi : X → |Ci|
are morphisms of commutative monoids πi : C → Ci. Conversely, let C =

∏
i∈I Ci be a

product in CMon(C ). Given any object Z of C , the functor C (Z,−) : C → Set preserves
finite products and hence lifts to an additive functor C (Z,−)∗ : CMon(C )→ CMon(Set),
which necessarily preserves finite products, by 2.2.1. The forgetful functor CMon(Set)→
Set preserves limits, so the composite functor

CMon(C )
C (Z,−)∗−−−−−→ CMon(Set) −→ Set

3In fact, the notion of biproduct is sometimes defined in terms of specified product and coproduct
structure satisfying conditions (1) and (2) of the preceding paragraph.
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preserves finite products. But this composite functor sends the product cone (πi : C →
Ci)i∈I to the cone (C (Z, πi) : C (Z, |C |) → C (Z, |Ci|))i∈I , which is therefore a product
cone in Set. Therefore, the morphisms πi : |C | → |Ci| present |C | as a product in C .

2.2.4. Remark. The preceding proposition shows that the forgetful functor CMon(C )→
C preserves finite products, even if it does not have a left adjoint and C does not have
finite products. By contrast, familiar arguments to the effect that algebraic functors
preserve limits do not apply in such circumstances.

2.2.5. Let X be an arbitrary category. Given an object M of X , a commutative
monoid over M , also called an additive bundle over M is, by definition, a commutative
monoid ((E, q),+, 0) in the slice category C /M (so that q : E → M in X ). In view of
2.2.2, every commutative monoid (E, q,+, 0) over M is equipped with an n-th fibre power
q(n) : En/M → M of q for each n ∈ N. Given commutative monoids E = (E, q,+, 0)
and F = (F, r,+, 0) over M and N , respectively, a morphism of additive bundles
(g, f) : E → F consists of a pair of morphisms g : E → F and f : M → N in X with
qf = gr such that the diagrams

E
g // F E ×M E

+
��

g×g // F ×N F
+
��

M

0

OO

f
// N

0

OO

E g
// F

commute, where g × g = 〈π1g, π2g〉 denotes the morphism induced by g on each factor.

2.3. Tangent categories.

2.3.1. Let X be a category equipped with an endofunctor T : X → X and a natural
transformation p : T → 1X . Suppose that for each object M of X and each natural
number n ∈ N, the morphism pM : TM →M has an n-th fibre power

p
(n)
M : TnM = (TM)n/M −→M

in X that is preserved by the m-fold composite functor Tm for each m ∈ N. These fibre
powers induce a functor Tn : X → X for each n ∈ N. Given natural transformations
+ : T2 → T , 0 : 1X → T , let us say that T := (T, p,+, 0) is an additive bundle
structure on X if for each object M of X , (TM, pM ,+M , 0M) is a commutative monoid
over M (2.2.5).

2.3.2. Notation. Given an object M of a category X equipped with an additive bundle
structure T = (T, p,+, 0), let

TM = (TM, pM ,+M , 0M)

denote the associated commutative monoid over M . In particular, T 2M = TTM carries
the structure of a commutative monoid over TM , namely

T (TM) = (T 2M, pTM ,+TM , 0TM) .



840 RORY B. B. LUCYSHYN-WRIGHT

Also, given any commutative monoid E = (E, q, σ, ζ) over M , whose addition and zero
morphisms we write as σ : E ×M E → E and ζ : M → E, respectively, note that if T
preserves finite fibre powers of q then

TE = (TE, T (q), T (σ), T (ζ)) (2.3.i)

is a commutative monoid over TM in X . In particular, this entails that

T (TM) = (T 2M,T (pM), T (+M), T (0M))

is a commutative monoid over TM in X , so that T 2M thus carries two canonical com-
mutative monoid structures over TM .

2.3.3. By definition, a tangent category [2] is a category X equipped with an additive
bundle structure T = (T, p,+, 0) and natural transformations

` : T → T 2 = TT , c : T 2 → T 2,

called the vertical lift and the canonical flip, such that

1. for each object M of X ,

(`M , 0M) : TM → T (TM),

(cM , 1TM) : T (TM)→ T (TM)

are morphisms of additive bundles (2.2.5);

2. the following equations hold (recalling our notations for whiskering 2.1.1)

cc = 1 : T 2 → T 2, `c = ` : T → T 2, `T (`) = ``T : T → T 3,

T (c)cTT (c) = cTT (c)cT : T 3 → T 3, `TT (c)cT = cT (`) : T 2 → T 3;

3. the axiom of universality of the vertical lift [2, 2.3] holds.

We say that a tangent category X has negatives if for every object M of X the
commutative monoid (TM, pM ,+M , 0M) is an abelian group in X /M .

2.3.4. Example (Local coordinates for the second tangent bundle). The
category of smooth manifolds Mf is a tangent category [2]. For each smooth manifold M ,
pM : TM →M is the tangent bundle of M , and T : Mf→ Mf assigns to each smooth map
f its associated differential T (f). The structural morphisms pM ,+M , 0M , `M , cM admit
simple descriptions in terms of local coordinates, by applying the following description on
each coordinate patch [2]. Letting V = Rn be a finite-dimensional vector space, we can
express the tangent bundle of V as the first4 projection pV = π1 : TV = V 2 = V ×V → V ,

4In [2] the second projection is employed in such situations, whereas we now employ instead the first
projection in order to accord with the common differential-geometric convention of writing the base-point
x in the leftmost coordinate and the vector t in the rightmost.



ON THE GEOMETRIC NOTION OF CONNECTION 841

so that elements of TV are pairs (x, t) consisting of a point x ∈ V and a tangent vector
t ∈ V , with pV (x, t) = x. Now 0V : V → TV is the map V → V 2 given by x 7→ (x, 0).
The second fibre power T2V → V of pV may be expressed as the first projection π1 :
V 3 → V , and the fibrewise addition map +V : T2V → TV is the map V 3 → V 2 given by
(x, t1, t2) 7→ (x, t1 + t2).

Since the ‘total space’ TV = V 2 of the tangent bundle of V = Rn is itself a finite-
dimensional vector space, its tangent bundle pTV : T 2V = TTV → TV is the first
projection5 π1 : (V × V ) × (V × V ) −→ V × V , which (upon omitting parentheses) we
may express as

pTV = 〈π1, π2〉 : T 2V = V 4 −→ V 2 = TV, (x, t, u, v) 7→ (x, t) .

Hence we regard an element δ = (x, t, u, v) of T 2V = V 4 as consisting of a base-point
x, a tangent vector t at x, and a tangent vector (u, v) at (x, t). Further, we regard u as
a tangent vector at x, and we regard v as a tangent vector at t (since the differentials
T (π1), T (π2) : T (V 2)→ TV send δ to the elements (x, u), (t, v) ∈ TV = V 2, respectively).
For this reason, we think of v as a second-order tangent vector, whereas we regard t and
u as first-order tangent vectors.

The canonical flip cV : T 2V → T 2V is given by

cV = 〈π1, π3, π2, π4〉 : T 2V = V 4 −→ V 4 = T 2V, (x, t, u, v) 7→ (x, u, t, v)

The map T (pV ) : T 2V → TV can be expressed as

T (pV ) = 〈π1, π3〉 : T 2V = V 4 −→ V 2 = TV, (x, t, u, v) 7→ (x, u) .

2.3.5. Remark. It is important to note that a tangent category X is not assumed to
have pullbacks. Indeed, the category of smooth manifolds Mf (2.3.4) does not have all
pullbacks. However Mf does have certain pullbacks, including pullbacks of submersions
along arbitrary smooth maps; a smooth map f : X → Y is called a submersion if its
differential T (f) is fibrewise surjective, in the sense that for any x ∈ X and any tangent
vector w at f(x) on Y , there exists a tangent vector v at x on X with (T (f))(v) = w.

We shall now introduce some convenient terminology for certain classes of limits with
which we shall work frequently in this paper:

2.3.6. Definition. Given a tangent category X , a tangential limit in X is a limit
in X that is preserved by T n : X → X for each n ∈ N. We shall employ similar
terminology with respect to specific kinds of limits, thus defining notions of tangential
pullback, tangential fibre product, and m-th tangential fibre power (m ∈ N) as
special cases of the notion of tangential limit. For example, in any tangent category, the
finite fibre powers of each projection pM are tangential.

5In [2], the second projection is used (cf. Footnote 4) and hence the components of T 2V = V 4 are
written in the opposite order therein, with the base-point in the rightmost coordinate.
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2.4. Differential bundles.

Throughout the remainder of the paper, X will denote a given tangent category.

2.4.1. Given an object M of X , a differential bundle [4] over M is a commutative
monoid E = (E, q, σ, ζ) over M (2.2.5) equipped with a morphism λ : E → TE (called
the lift) such that

1. for each n ∈ N, the n-th fibre power of q is tangential (2.3.6);

2. (λ, 0M) : E → TE is a morphism of additive bundles;

3. (λ, ζ) : E → TE is a morphism of additive bundles;

4. the following diagram is a tangential pullback (2.3.6)

E ×M E

proj
��

µ // TE

T (q)
��

M
0M

// TM

where proj = π1q = π2q denotes the projection and µ is the composite

E ×M E
〈π1λ,π20E〉−−−−−−→ TE ×TM TE = T (E ×M E)

T (σ)−−→ TE ;

5. λ`E = λT (λ).

By 2.2.5, a differential bundle (E, q, σ, ζ, λ) is equipped with a specified fibre power q(n) :
En/M →M of q for each n ∈ N.

2.4.2. Example. For each object M of X , TM = (TM, pM , 0M ,+M) (2.3.2) is a differ-
ential bundle over M when equipped with the vertical lift `M : TM → T 2M [4, Example
2.4]. This differential bundle, which we shall denote also by

TM = (TM, pM , 0M ,+M , `M),

deserves to be called the tangent bundle of M . The axiom of universality of the vertical
lift (2.3.3) requires precisely that TM satisfy axiom 4 of 2.4.1; see [4, Def. 2.1] and the
footnote there.

2.4.3. Example. Any smooth vector bundle q : E →M carries the structure of a differ-
ential bundle in the tangent category Mf of smooth manifolds; in fact, among differential
bundles in Mf, those that are smooth vector bundles in the traditional sense are precisely
those whose fibres have constant dimension [4, Example 2.4].
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2.4.4. Example. Given any differential bundle E = (E, q, σ, ζ, λ) over M , there is an
associated differential bundle

TE = (TE, T (q), T (σ), T (ζ), T (λ)cE) (2.4.i)

over TM , whose lift morphism is the composite TE
T (λ)−−→ T 2E

cE−→ T 2E [4, Lemma 2.5].
Note that the notation (2.4.i) extends our similar notation for additive bundles (2.3.i).

2.4.5. Given differential bundles E = (E, q, σ, ζ, λ) and F = (F, r, σ′, ζ ′, λ′) over M and
N , respectively, a linear morphism of differential bundles (g, f) : E → F consists of
a pair of morphisms g : E → F and f : M → N in X such that qf = gr and λT (g) = gλ′.
Remarkably, any linear morphism of differential bundles (g, f) : E → F is automatically
a morphism of additive bundles [4, Prop. 2.16], i.e., it follows that (g, f) preserves the
commutative monoid structures. With these morphisms, differential bundles over various
bases are the objects of a category DBun.

If E and F are both differential bundles over M , then a linear morphism of dif-
ferential bundles over M , written g : E → F , is given by a morphism g : E → F in
X such that (g, 1M) : E → F is a linear morphism of differential bundles. With these
morphisms, differential bundles over M are the objects a category DBunM .

2.4.6. We shall say that differential bundles E and F over M are concretely isomor-
phic if there is an isomorphism E → F in DBunM that is sent by the forgetful functor
DBunM → X /M to an identity morphism. Hence E and F are concretely isomorphic
iff their underlying objects (E, q) and (F, r) of X /M are identical and the identity mor-
phism on E = F is an isomorphism E ∼= F in DBunM . If this is the case, then E and F
are identical iff they have the same specified n-th fibre power of q = r for each n ∈ N (cf.
2.4.1). Note that if E = (E, q, σ, ζ, λ) and F = (F, r, σ′, ζ ′, λ′) are concretely isomorphic,
then E = F , q = r, ζ = ζ ′, and λ = λ′, so E and F differ only insofar as they may have
different specified fibre powers of q = r and addition morphisms σ, σ′ that are merely
isomorphic (as objects of X /E).

It is shown in [4, Lemma 2.7] that one can ‘pull back’ a differential bundle along a
morphism in X , provided that certain assumptions are satisfied. The precise assumptions
needed are expressed within the discussion that precedes Lemma 2.7 of [4], and so the
result can be stated explicitly as follows:

2.4.7. Proposition ([4, Lemma 2.7]). Let E = (E, q, σ, ζ, λ) be a differential bundle
over M , and for each n ∈ N, let q(n) denote the n-th fibre power of q. Suppose that
f : N →M is a morphism in X such that the tangential pullback (2.3.6) of q(n) along f
exists in X for each n. Then the pullback f ∗(q) : N ×M E → N of q along f carries the
structure of a differential bundle f ∗(E) over N . Further,

(f ′, f) : f ∗(E)→ E (2.4.ii)

is a linear morphism of differential bundles, where f ′ : N ×M E → E is the pullback of
f along q. Moreover, the morphism (2.4.ii) in DBun is a cartesian arrow, over f , with
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respect to functor cod : DBun→ X that sends each differential bundle (F, r, σ′, ζ ′, λ′) to
the codomain of r.

2.4.8. If the assumptions of 2.4.7 are satisfied, then we say that the differential bundle E
has a pullback along f , or that the pullback of E along f exists. Let us assume for
the moment that this is the case. We then call f ∗(E) the pullback of E along f . More
precisely, a pullback of E along f is a differential bundle F equipped with a cartesian
arrow α : F → E over f with respect to cod : DBun → X . Any two such differential
bundles are isomorphic, so we call each of them the pullback. Moreover, given any two
pullbacks (F , α) and (G, β) of E along f : N →M , there is a unique isomorphism F ∼= G
in DBunN that commutes with the cartesian arrows α, β in DBun. Hence, in view of the
construction of f ∗(E) in 2.4.7 we find that for any given pullback (F , α) of E along f , if
we write F = (F, r, σ′, ζ ′, λ′) and α = (α1, α2), then the square

F

r
��

α1 // E

q
��

N
α2 = f

//M

is a pullback in X , which we call the pullback in X underlying (F , α), or simply the
pullback in X underlying α. Still assuming that the pullback f ∗(E) exists, if α : F → E
is any given morphism over f in DBun, then α is cartesian if and only if the commutative
square underlying α is a pullback square in X ; indeed, any such morphism α factors
through the pullback f ∗(E)→ E by way of unique morphism φ : F → f ∗(E) in DBunN ,
and if the square underlying α is a pullback it follows that φ is an isomorphism in X /N
and hence in DBunN . Note also that if two pullbacks (F , α) and (G, β) of E along f
have the same underlying pullback in X , then F and G are concretely isomorphic as
differential bundles over N (2.4.6).

3. Review of connections in tangent categories

The paper [3] defines a notion of connection on a differential bundle E = (E, q, σ, ζ, λ)
over an object M , where the authors use a definition of the notion of differential bundle
that is slightly different from the original definition [4, Def. 2.3] in that it incorporates
the following additional condition [3, Def. 2.2]:

3.1. Basic Condition. For all natural numbers m,n ∈ N, there is an associated tan-
gential fibre product

Em/M ×M TnM

of q(m) : Em/M →M and p
(n)
M : TnM →M in X (2.3.6).

Rather than building this condition into the definition of differential bundle, we will retain
the original definition [4, Def. 2.3], which we reviewed in 2.4.1.



ON THE GEOMETRIC NOTION OF CONNECTION 845

3.2. It is noted in [3, Example 2.3] that Basic Condition 3.1 is satisfied by wide classes
of examples of differential bundles, including the following:

1. The tangent bundle TM always satisfies Basic Condition 3.1.

2. If X = Mf is the category of smooth manifolds and E = (E, q, σ, ζ, λ) is a vector
bundle, considered as a differential bundle in X (2.4.3), then E satisfies Basic
Condition 3.1.

Let us fix a differential bundle E = (E, q, σ, ζ, λ), over M , satisfying Basic Condition
3.1. Then, in view of 2.4.8, the following pullbacks of differential bundles exist: (1)
the pullback p∗M(E) of E along pM : TM → M , and (2) the pullback q∗(TM) of TM
along q : E → M . Therefore the object E ×M TM of X carries two differential bundle
structures, namely p∗M(E) and q∗(TM), over TM and over E, respectively.

3.3. Definition (Cockett and Cruttwell [3]).

1. A vertical connection on E is a morphism K : TE → E in X such that K is a
retraction of λ : E → TE and satisfies the following axioms:

(C.1) (K, pM) : TE → E is a linear morphism of differential bundles;

(C.2) (K, q) : TE → E is a linear morphism of differential bundles.

2. A horizontal connection on E is a morphism6 H : E ×M TM → TE in X such
that H is a section of U = 〈pE, T (q)〉 and satisfies the following axioms:

(C.3) (H, 1E) : q∗(TM)→ TE is a linear morphism of differential bundles;

(C.4) (H, 1TM) : p∗M(E)→ TE is a linear morphism of differential bundles.

3. A connection on E is a pair (K,H) consisting of a vertical connection K and a
horizontal connection H, on E, such that the following axioms hold:

(C.5) HK = π1qζ : E ×M TM → E;

(C.6) 〈K, pE〉µ + UH = 1TE

where µ : E ×M E → TE is as defined in 2.4.1 and we write + in infix nota-
tion to denote the binary operation defined as follows: Apply the finite-product-
preserving functor (X /E)((TE, pE),−) : X /E → Set to the commutative monoid
(TE, pE,+E, 0E) in order to obtain a commutative monoid structure on the hom-set
(X /E)((TE, pE), (TE, pE)).

4. A connection (K,H) on E is said to be an affine connection on M if E = TM .

6Whereas in [3] the domain of H is written as TM×ME, we write it herein as E×MTM for consistency
with certain equivalent formulations developed in this paper.
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3.4. Given a vertical connection K on E, there is at most one horizontal connection H
such that (K,H) is a connection on E. Indeed, this is proved in [3, Prop. 5.10], where it
is also proved that for a given horizontal connection H on E there is at most one vertical
connection K such that (K,H) is a connection on E.

3.5. Theorem ([3, Prop. 5.12, Prop. 5.13]).

1. Let K be a vertical connection on E. Suppose that X has negatives (2.3.3), and
suppose that E carries at least one horizontal connection. Then there is an associated
horizontal connection H on E such that (K,H) is a connection.

2. Let H be a horizontal connection on E, and suppose that X has negatives. Then
there is an associated vertical connection K on E such that (K,H) is a connection.

3.6. Example (The canonical affine connection on Rn). Continuing Example
2.3.4, let X = Mf be the category of smooth manifolds, and let V = Rn, considered as
an object of Mf. In view of 3.5, one can consult [3, Example 3.6] for a treatment of the
various affine connections on V ; we now consider one particularly simple example. There
is a connection (K,H) on TV in which7

K = 〈π1, π4〉 : T 2V = V 4 −→ V 2 = TV, (x, t, u, v) 7→ (x, v).

The domain of the map H is the fibre product TV ×V TV = V 2 ×V V 2 of two instances
of pV = π1 : V 2 → V , so we may take TV ×V TV = V 3 with associated projection
π1 : V 3 → V . With this convention, H is given as follows:

H : TV ×V TV = V 3 −→ V 4 = T 2V, (x, t, u) 7→ (x, t, u, 0).

4. Biproducts of differential bundles: Whitney sums

In the sections that follow, we shall establish a useful equivalent formulation of connections
in tangent categories. As a key ingredient in this study of connections, we now examine
closely the formation of products and biproducts of differential bundles over a fixed base.
The paper [4] constructs finite products of differential bundles over a fixed base object,
under certain assumptions on the given tangent category X and the bundles involved.
In the present section, we instead treat the question of existence of the product of a given
finite family of differential bundles over an object M of an arbitrary tangent category.
But first let us begin with the following observation:

4.1. Proposition. The category DBunM of differential bundles over M is an additive
category. Hence finite products in DBunM are biproducts (2.2.1).

7Recall that we write the base-point x in the leftmost coordinate of an element (x, t, u, v) of T 2V = V 4

(2.3.4), thus writing the components of (x, t, u, v) in an order opposite to that employed in [3]; cf. Footnote
5.
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Proof. By 2.4.5, there is a faithful ‘forgetful’ functor DBunM → A , where A =
CMon(X /M). Hence, since A is an additive category (2.2.2) it suffices to show that
for any pair of differential bundles E = (E, q, σ, ζ, λ), F = (F, r, σ′, ζ ′, λ′), the subset

DBunM(E,F ) ↪→ A (E,F )

is a submonoid, where we do not distinguish notationally between a differential bundle
and its underlying commutative monoid. The zero element of the commutative monoid
A (E,F ) is the composite qζ ′ : E → F , which is a morphism of differential bundles over
M since

λT (qζ ′) = λT (q)T (ζ ′) = q0MT (ζ ′) = ζ ′λ′ ,

using 2.4.1(2). Also, given linear morphisms of differential bundles f, g : E → F , their

sum f + g in A (E,F ) is the composite E
〈f,g〉−−→ F ×M F

σ′−→ F , which we claim is a
morphism of differential bundles over M . Indeed, we have a diagram

E

λ
��

〈f,g〉 // F ×M F

λ′×λ′
��

σ′ // F

λ′

��
TE

T (〈f,g〉)
// T (F ×M F )

T (σ′)
// TF

(4.1.i)

recalling that T (F ×M F ) is a fibre product TF ×TM TF by 2.4.1(1), so that T (〈f, g〉)
is the induced morphism 〈T (f), T (g)〉 : TE → TF ×TM TF . Hence the leftmost square
commutes since f and g are morphisms of differential bundles over M , and the rightmost
square commutes by 2.4.1(2).

4.2. Proposition. There is an additive functor

DBunM → DBunTM , E 7→ TE

that sends each differential bundle E over M to the differential bundle TE over TM
defined in 2.4.4 and sends each morphism f to T (f).

Proof. Given f : E → F in DBunM , where E = (E, q, σ, ζ, λ) and F = (F, r, σ′, ζ ′, λ′), we
deduce that T (f) : TE → TF is a morphism in DBunTM since T (f)T (r) = T (fr) = T (q)
and the diagram

TE

T (f)
��

T (λ) // T 2E

T 2(f)
��

cE // T 2E

T 2(f)
��

TF
T (λ′)

// T 2F cF
// T 2F

commutes, using the naturality of c and the fact that f is a morphism of differential
bundles over M . Given a pair of morphisms f, g : E → F in DBunM , their sum f + g is
the top row in the diagram (4.1.i), so T (f + g) is the bottom row in (4.1.i). But we noted
in the proof of the preceding Proposition that the morphism T (〈f, g〉) appearing in that
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same diagram (4.1.i) can be described equally as 〈T (f), T (g)〉 : TE → TF ×TM TF , so
the bottom row in (4.1.i) is precisely the sum T (f) + T (g) in DBunTM(TE, TF ). Also,
the zero element of DBunM(E,F ) is the composite qζ ′ : E → F , which is sent by T to
the zero element T (q)T (ζ ′) of DBunTM(TE, TF ).

4.3. Lemma. The forgetful functor DBunM →X /M preserves finite products.

Proof. In view of the proof of 4.1, we know that the forgetful functor DBunM →
CMon(X /M) is additive and hence preserves finite products (by 2.2.1). Hence we may
invoke 2.2.4 to deduce that the composite functor DBunM → CMon(X /M) → X /M
preserves finite products.

4.4. Proposition. Let (Ei)i∈I be a finite family of differential bundles over a fixed object
M in an arbitrary tangent category X , and write Ei = (Ei, qi, σi, ζi, λi). Then a product∏

i∈I Ei in DBunM is equivalently given by a tangential fibre product (E, q) =
∏M

i∈I(Ei, qi)
in X (2.3.6) and, for each n ∈ N, a specified n-th tangential fibre power of q (2.3.6).

Proof. First suppose we are given a tangential fibre product (E, q) =
∏M

i∈I(Ei, qi) in
X that has finite tangential fibre powers in X . By 2.2.3, (E, q) carries the structure of
a product (E, q, σ, ζ) =

∏
i∈I(Ei, qi, σi, ζi) in CMon(X /M). By hypothesis, the product

projections πi : (E, q) → (Ei, qi) in X /M (i ∈ I) are sent by T to a product cone
T (πi) : (TE, T (q)) → (TEi, T (qi)) in X /TM . But in view of 2.4.1(2) we can form
composite morphisms

(E, q0M)
πi−→ (Ei, qi0M)

λi−→ (TEi, T (qi)) (i ∈ I)

in X /TM , which therefore induce a morphism λ : (E, q0M) → (TE, T (q)). It is now
a straightforward exercise to show that the underlying morphism λ : E → TE makes
(E, q, σ, ζ, λ) a differential bundle over M , and indeed a product

∏
i∈I Ei in DBunM ; we

shall not dwell on these calculations here, since this was treated in [4, §5] under slightly
different assumptions.

The converse, however, is completely new, and we now provide a full proof. Suppose we
are given a product

∏
i∈I Ei in DBunM . Let us abuse notation by writing T : DBunM →

DBunTM to denote the additive functor defined in 4.2. For each n ∈ N, we can repeatedly
invoke 4.2 and by composition define an additive functor T n : DBunM → DBunTnM , given
on objects by E 7→ T nE. Moreover we obtain a commutative diagram

DBunM

��

Tn
// DBunTnM

��
X /M

Tn
//X /T nM

(4.4.i)

in which the left and right sides are the forgetful functors and the bottom side is the
evident functor induced by T n : X → X . But since the top side is an additive functor
and hence preserves finite products (2.2.1), we can invoke the preceding lemma (4.3) to
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deduce that the clockwise composite in (4.4.i) preserves finite products. By the same
lemma, the forgetful functor DBunM →X /M preserves finite products and hence sends
the finite product

∏
i∈I Ei to a fibre product (E, q) =

∏M
i∈I(Ei, qi) in X that is preserved

by T n (since the composite in (4.4.i) preserves finite products). But since (E, q) underlies
a differential bundle, namely

∏
i∈I Ei, we know that q has finite tangential fibre powers,

by 2.4.1(1).
Using 2.2.3, it is straightforward to show that the above assignments are mutually

inverse.

4.5. Corollary. Every differential bundle over M has finite powers in DBunM .

4.6. Notation and terminology. Given a finite family of differential bundles (Ei)i∈I
over M with a product in DBunM , we will denote this product by

∏M
i∈I Ei. Such a

product carries the structure of a biproduct in DBunM (4.1), which we shall denote by⊕M
i∈I Ei. We call each biproduct in DBunM a biproduct of differential bundles over

M or a Whitney sum. We also employ the notations E1 ×M E2 ×M ... ×M En and
E1 ⊕M E2 ⊕M ...⊕M En in the case that I = {1, ..., n}.

Given a differential bundle E = (E, q, σ, ζ, λ) over M and a natural number n, we
denote the n-th power of E in DBunM by En/M . The object of X /M underlying En/M is
the n-th fibre power of q in X , which we denote by q(n) : En/M →M (2.1.2).

We shall later make use of the following corollary to 4.4:

4.7. Corollary. Let (Ei)i∈I be a finite, nonempty family of differential bundles over M ,

written as Ei = (Ei, qi, σi, ζi, λi), and suppose that a product
∏M

i∈I Ei exists in DBunM .
Let E be an object of X , and for each i ∈ I, let πi : E → Ei be a morphism in X . Then
the following are equivalent:

1. E underlies a product of differential bundles
∏M

i∈I Ei over M with projections πi
(i ∈ I).

2. There exists a (necessarily unique) morphism q : E → M in X such that the
morphisms πi (i ∈ I) present (E, q) as a fibre product of (qi : Ei →M)i∈I .

Further, a product
∏M

i∈I Ei with underlying object E and projections πi is unique up to
concrete isomorphism (2.4.6) if it exists.

4.8. Definition. Given a set of objects E ⊆ obC in a category C , we say that E has
finite products in C if for any finite set I and any I-indexed family (Ei)i∈I of objects
in E , not necessarily distinct, there is an associated product

∏
i∈I Ei in C . If E is a set

of differential bundles over M , then we say that E has finite products over M if E
has finite products in DBunM .
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4.9. Proposition. For each i ∈ I = {1, ..., n}, let Ei = (Ei, qi, σi, ζi, λi) be a differential
bundle over M . Then the following are equivalent:

1. The set of differential bundles {Ei | i ∈ I} has finite products over M .

2. For all m1,m2, ...,mn ∈ N, there is a tangential fibre product
∏M

i∈I E
mi/M

i of (q
(mi)
i )i∈I

in X (2.3.6), where q
(mi)
i : Emi/M

i →M denotes the mi-th fibre power of qi (2.4.1).

Proof. We know that for each i ∈ I, the finite fibre powers of qi are tangential (2.4.1),
so this follows from 4.4.

4.10. Corollary. A differential bundle E over M satisfies Basic Condition 3.1 if and
only if the set of differential bundles {E, TM} has finite products over M .

5. The partial bundles of a biproduct

5.1. In the present section, we let E =
∏M

i∈I Ei denote a given finite product of differential
bundles Ei = (Ei, qi, σi, ζi, λi) over M in X , and we suppose that the set of differential
bundles {Ei | i ∈ I} has finite products over M (4.8). Let us write E = (E, q, σ, ζ, λ).

We now show that E carries the structure of a differential bundle over Ej, for each

j ∈ I, which we call the j-th partial bundle of the product
∏M

i∈I Ei. As we shall see in 5.6(2)
and 5.7, the fibrewise addition operation in the j-th partial bundle is given by leaving the
j-th coordinate fixed and adding the respective i-th coordinates for each i 6= j.

To this end, if we let j ∈ I then we can form a product of differential bundles∏M
i∈I\{j}Ei whose underlying object of X /M is a fibre product

∏M
i∈I\{j}Ei over M (4.3).

We obtain a pullback square

E =
∏M

i∈I Ei

πj

��

πI\{j} //
∏M

i∈I\{j}Ei

proj

��
Ej qj

//M

(5.1.i)

in which πI\{j} and proj denote the evident projection morphisms. We now show that
this pullback square underlies a pullback of differential bundles, in the sense of 2.4.8:

5.2. Proposition. For each j ∈ I, the differential bundle
∏M

i∈I\{j}Ei has a pullback

q∗j

(∏M

i∈I\{j}
Ei

)
(5.2.i)

along qj : Ej →M whose underlying pullback in X is the square (5.1.i).



ON THE GEOMETRIC NOTION OF CONNECTION 851

Proof. Let F =
∏

M

i∈I′ Ei where I ′ = I\{j}. Hence the object (F, r) of X /M underlying
F is a fibre product F =

∏
M

i∈I′ Ei → M in X (4.3). For each n ∈ N, we deduce by 4.9
that there are tangential fibre products

G =
∏M

i∈I′
En/M

i and H =
∏M

i∈I
Emi/M

i ,

where we define mj = 1 and mi = n for each i ∈ I ′. We can write H as a fibre product
H = Ej ×M G, and we now deduce that the latter (binary) fibre product is tangential
(2.3.6). But the projection G → M is an n-th fibre power r(n) : F n/M → M of (F, r).
Hence the projection π1 : Ej×MG→ Ej is a tangential pullback of r(n) along qj : Ej →M
(2.3.6). Therefore the needed pullback bundle q∗j (F ) exists (2.4.8), and we may take its
underlying pullback in X to be the square (5.1.i).

5.3. Definition. Given data as in 5.1, let j ∈ I. By 5.2, the projection πj : E → Ej
underlies a differential bundle q∗j (

∏M
i∈I\{j}Ei), which we call the j-th partial bundle of

the (bi)product E =
∏M

i∈I Ei = ⊕Mi∈IEi (4.6). More precisely, given an arbitrary differential
bundle P over Ej, we say that P is a j-th partial bundle (of the given product) if there

exists a cartesian arrow α : P →
∏M

i∈I\{j}Ei in DBun whose underlying pullback in X

is the square (5.1.i), cf. 2.4.8. By 5.2, a j-th partial bundle exists, and by 2.4.8 any two
j-th partial bundles are concretely isomorphic in the terminology of 2.4.6. Hence we call
any j-th partial bundle of

∏M
i∈I Ei the j-th partial bundle, with the understanding that this

notion is defined only up to concrete isomorphism.

5.4. Remark. It is immediate from Definition 5.3 that if P = (P, qj, σj, ζj, λj) is a j-th
partial bundle of the product E =

∏M
i∈I Ei, then P = E, and the associated morphism

qj : P → Ej is the projection πj : E → Ej. Further, the cartesian arrow α = (α1, α2)
in 5.3 necessarily consists of the top and bottom sides of the pullback square (5.1.i), i.e.
α1 = πI\{j} and α2 = qj. Since α is thus uniquely determined, we obtain the following
characterization of the j-th partial bundle:

5.5. Proposition. Suppose we are given data as in 5.1, and let j ∈ I. Then a differential
bundle P over Ej is a j-th partial bundle of E =

∏M
i∈I Ei if and only if the following

conditions hold: (1) The object of X /Ej underlying P is the projection πj : E → Ej,
and (2) the commutative square (5.1.i) underlies a linear morphism of differential bundles
(πI\{j}, qj) : P →

∏M
i∈I\{j}Ei.

Proof. By 5.4, if P is a j-th partial bundle then the given conditions hold. Conversely, if
the given conditions hold, then since the commutative square underlying α = (πI\{j}, qj) :

P →
∏M

i∈I\{j}Ei is a pullback in X , it follows that α is a cartesian arrow in DBun, by

2.4.8 (and 5.2), so P is a j-th partial bundle of the given product.

This leads us to the following concrete characterization of the j-th partial bundle:
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5.6. Proposition. Suppose that we are given data as in 5.1, and let j ∈ I.

1. The j-th partial bundle of the product E =
∏M

i∈I Ei is a differential bundle P over
Ej that is uniquely characterized, up to concrete isomorphism (5.3), by the following
statements:

(a) the object of X /Ej underlying P is the projection πj : E → Ei, and

(b) (πi, qj) : P → Ei is a linear morphism of differential bundles, for each i ∈
I\{j}.

2. Letting P = (E, πj, σ
j, ζj, λj) be the j-th partial bundle of E =

∏M
i∈I Ei, the following

diagrams commute, where proj denotes the projection morphism. For a given choice
of fibre product E×Ej

E, the commutativity of these diagrams uniquely characterizes
σj, ζj, and λj.

E

πi

��

λj // TE

T (πi)

��

E ×Ej
E

πi×πi
��

σj
// E

πi

��

Ej

qj

��

ζj // E

πi

��
(i ∈ I\{j})

Ei λi
// TEi Ei ×M Ei σi

// Ei M
ζi
// Ei

(5.6.i)

E

πj

��

λj // TE

T (πj)

��

E ×Ej
E

proj
$$

σj
// E

πj

��

Ej

1 ��

ζj // E

πj

��
Ej 0Ej

// TEj Ej Ej

(5.6.ii)

3. The zero section ζj : Ej → E carried by the j-th partial bundle P is precisely the
injection ιj : Ej → E associated to the biproduct E = ⊕Mi∈IEi.

Proof. Let us first show that any j-th partial bundle P satisfies conditions 1(a,b). By
5.5 we know that (a) holds. For each i ∈ I\{j}, we can apply 5.5 in order to obtain a
composite morphism

P
(πI\{j},qj)−−−−−−→

∏M

i∈I\{j}
Ei

(πi,1M )−−−−→ Ei

in DBun, but this composite is precisely (πi, qj) : P → Ei, so (b) holds.
Next note that if an arbitrary differential bundle P = (P, qj, σj, ζj, λj) over Ej satisfies

conditions 1(a,b), then the diagrams (5.6.i) commute since linear morphisms are additive
(2.4.5), and the diagrams (5.6.ii) commute since P is a differential bundle. Since the fibre
product E =

∏M
i∈I Ei is tangential (4.4) and hence is preserved by T , the equations that

assert commutativity of (5.6.i) and (5.6.ii) uniquely characterize λj, σj, and ζj once the
second fibre power E ×Ej

E is chosen.
It follows that any differential bundle P satisfying conditions 1(a,b) is uniquely char-

acterized up to concrete isomorphism by 1(a) together with the commutativity of the



ON THE GEOMETRIC NOTION OF CONNECTION 853

diagrams (5.6.i) and (5.6.ii). Hence any two differential bundles over Ej that satisfy
1(a,b) are concretely isomorphic.

Thus 1 and 2 are proved. For 3, recall from 2.2.1 that the morphism ιj : Ej →
E = ⊕Mi∈IEi in DBunM is uniquely defined by the equations ιjπj = 1Ej

and ιjπi = 0 (i ∈
I\{j}), where we write 0 for the zero element of the commutative monoid DBunM(Ej, Ei).

Explicitly, this zero element is the composite qjζi that appears in (5.6.i). Hence if we
substitute the morphism ιj : Ej → E in place of ζj within the rightmost diagrams in
(5.6.i) and (5.6.ii), respectively, then the resulting two diagrams commute. But by 2, the
commutativity of these diagrams uniquely characterizes ζj, so ιj = ζj.

5.7. Addition in the j-th partial bundle. By forming the j-th partial bundle
of a product E =

∏M
i∈I Ei, we equip E with the structure of a commutative monoid

(E, πj, σ
j, ζj) in X /Ej (5.6). Hence for each object (X, x) of X /Ej, the hom-set

(X /Ej)((X, x), (E, πj))

acquires the structure of a commutative monoid, whose addition operation we shall write
as +j. We call +j the operation of addition with respect to the j-th partial bundle
of the given product.

In order to characterize this addition operation +j, first recall that for any object X
of X , a morphism f : X → E =

∏M
i∈I Ei is equivalently given by a family of morphisms

fi = fπi : X → Ei such that fiqi = fkqk : X → M for all i, k ∈ I (2.1.2). Given
morphisms f, g : X → E induced by fi, gi : X → Ei (i ∈ I), respectively, if we assume
that fj = gj then upon setting x = fj = gj we find that f, g : (X, x)→ (E, πj) in X /Ej,
so we can consider the sum

f +j g : X → E =
∏M

i∈I
Ei .

In order to characterize this sum, first note that for each i ∈ I we can construe fi and gi
as morphisms fi, gi : (X, xM)→ (Ei, qi) in X /M , where xM = xqj : X → M . With this
notation, we obtain the following:

5.8. Proposition. Given morphisms f, g : X → E =
∏M

i∈I Ei in X such that fj = gj,
the sum f +j g : X → E is uniquely characterized by the following equations

(f +j g)πi =

{
fi + gi : X → Ei (i 6= j)

fj = gj : X → Ej (i = j)

(i ∈ I), where we write + to denote the addition operation that is carried by the hom-set
(X /M)((X, xM), (Ei, qi)) and is induced by the commutative monoid (E, qi, σi, ζi) in X /
M underlying Ei.

Proof. It is straightforward to employ 5.6(2) to show that the given equations hold.
The needed uniqueness follows from the fact that the projections πi : E → Ei (i ∈ I) are
jointly monic in X , since I 6= ∅ (2.1.2).
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6. The biproduct decomposition determined by a connection

Let E = (E, q, σ, ζ, λ) be a differential bundle over M , and assume that E satisfies Ba-
sic Condition 3.1. Let us begin by recalling the following proposition of Cockett and
Cruttwell:

6.1. Proposition ([3, Prop. 5.8]). If (K,H) is a connection on E, then the following
is a fibre product diagram in X :

TE
pE

}}
T (q)
��

K

""
E

q ""

TM

pM
��

E

q}}
M

(6.1.i)

We shall now show that this diagram underlies a biproduct of differential bundles
E ⊕M TM ⊕M E whose first and second partial bundles are TE and TE, respectively.
In section 8 we show that this leads to a useful equivalent formulation of connections in
terms of just K, rather than both K and H.

6.2. Lemma. Let K : TE → E be a morphism in X . Then the following are equivalent:

1. The diagram (6.1.i) is a fibre product diagram.

2. TE underlies a biproduct of differential bundles

E ⊕M TM ⊕M E (6.2.i)

over M with the following projections:

π1 = pE : TE → E, π2 = T (q) : TE → TM, π3 = K : TE → E (6.2.ii)

Proof. By 4.10, the set of differential bundles {E, TM} has finite products over M .
Therefore a product E×M TM ×M E exists in DBunM , so this follows from 4.7 and 4.1.

6.3. Remark. Condition 2 in Lemma 6.2 asserts the existence of a biproduct with certain
further properties. However, by 4.7, a biproduct (6.2.i) with projections as in (6.2.ii) is
unique up to concrete isomorphism (2.4.6), if it exists. Explicitly, if both F and G
are biproducts of the form (6.2.i) and satisfy (6.2.ii), then the objects (F, r) and (G, s)
of X /M underlying F and G are identical, and the identity morphism on F = G is
an isomorphism F ∼= G in DBunM ; further, the biproduct projections and injections
associated to these biproducts F ,G are identical.
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6.4. Lemma. Let K : TE → E be a retraction of the lift morphism λ in X , and suppose
that TE underlies a given biproduct of differential bundles E⊕MTM⊕ME with projections
as given in (6.2.ii).

1. K is a vertical connection on E if and only if the first and second partial bundles
of the given biproduct E ⊕M TM ⊕M E are TE and TE, respectively.

2. If the equivalent conditions in 1 hold, then the injections of the given biproduct
E ⊕M TM ⊕M E are as follows:

ι1 = 0E : E → TE, ι2 = T (ζ) : TM → TE, ι3 = λ : E → TE .

Proof. In order to prove 1, first recall that TE = (TE, pE,+E, 0E, `E) is a differential
bundle over E whose underlying object of X /E is (TE, pE). Hence we deduce by 5.6 that
TE is the first partial bundle of the given biproduct (6.2.i) if and only if the following
conditions hold:

(a) (T (q), q) : TE → TM is a linear morphism of differential bundles;

(b) (K, q) : TE → E is a linear morphism of differential bundles.

Similarly, we deduce by 5.6 that TE = (TE, T (q), T (σ), T (ζ), T (λ)) is the second partial
bundle of the biproduct (6.2.i) if and only if the following conditions hold:

(c) (pE, pM) : TE → E is a linear morphism of differential bundles;

(d) (K, pM) : TE → E is a linear morphism of differential bundles.

By definition, K is a vertical connection if and only if (b) and (d) hold (3.3). Hence in
order to prove 1 it suffices to show that (a) and (c) always hold. Indeed, (a) holds as a
consequence of the naturality of p and of `. Also, (c) holds, by the naturality of p and
the fact that

TE

pE
��

T (λ) // T 2E
cE //

pTE

��

T 2E

T (pE)
��

E
λ
// TE TE

commutes, by 2.3.3(1,2) and the naturality of p.
Suppose that the equivalent conditions in 1 hold. We deduce by 5.6 that the injections

ι1 and ι2 of the biproduct (6.2.i) are the zero sections of the first and second partial bundles
TE and TE, respectively, i.e. ι1 = 0E and ι2 = T (ζ). The morphism ι3 : E → E ⊕M
TM ⊕M E is uniquely characterized by the equations ι3π1 = 0, ι3π2 = 0, and ι3π3 = 1E,
where we write 0 to denote the zero morphisms 0 : E → E and 0 : E → TM in the additive
category DBunM . Hence, using explicit formulae for these zero morphisms, we find that
the underlying morphism ι3 : E → TE in X satisfies the equations ι3pE = qζ : E → E,
ι3T (q) = q0M : E → TM , and ι3K = 1E : E → E. But by 2.4.1(2,3) and the fact that K
is a retraction of λ, we know that λ : E → TE satisfies the analogous equations λpE = qζ,
λT (q) = q0M , and λK = 1E. Hence, since the projections π1 = pE, π2 = T (q), π3 = K
are jointly monic in X (by 2.1.2), we deduce that ι3 = λ.
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In view of 6.1, the following is an immediate corollary to Lemmas 6.2 and 6.4.

6.5. Theorem. Let (K,H) be a connection on E.

1. TE underlies a biproduct of differential bundles E ⊕M TM ⊕M E over M whose
projections and injections πi, ιi (i = 1, 2, 3) are as follows (in ascending order8 by
the index i, from left to right):

TE
pE

ww
T (q) ��

K

''
E

0E

77

TM

T (ζ)

OO

E.
λ

gg

2. The first and second partial bundles of the biproduct E ⊕M TM ⊕M E in 1 are

TE = (TE, pE,+E, 0E, `E) and TE = (TE, T (q), T (σ), T (ζ), T (λ)),

respectively.

Note that the conclusions of this theorem make no reference to the horizontal connec-
tion H and, by Lemmas 6.2 and 6.4, they hold for any vertical connection K having a
certain additional property. We now make this explicit.

6.6. Definition. An effective vertical connection on E is a vertical connection
K : TE → E on E such that (6.1.i) is a fibre product diagram in X .

6.7. Theorem. If K : TE → E is an effective vertical connection on E, then statements
1 and 2 of Theorem 6.5 hold.

6.8. Definition. We call the differential bundle

E ⊕M TM ⊕M E = (TE, q̂, σ̂, ζ̂, λ̂)

in Theorem 6.5 the total bundle for the given connection. Unlike TE and TE, the total
bundle is a differential bundle over M , and its underlying object of X /M is the composite

q̂ = pEq : TE →M . We call σ̂ the total addition on TE, and we call ζ̂ and λ̂ the total
zero and total lift on TE, respectively.

By 6.5, an affine connection on M induces a ‘coordinatization’ of the second tangent
bundle T 2M as a three-fold biproduct TM ⊕M TM ⊕M TM over M . The following
example illustrates how this coordinatization generalizes the usual coordinate description
of the second tangent bundle of a finite-dimensional vector space (2.3.4):

8Note that here we have chosen a specific order in which to enumerate the three projections pE , T (q),K.
The reasons for our choice are elaborated in Footnote 9 with reference to Example 6.9.
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6.9. Example (The total bundle for the canonical connection). In Example
3.6, we considered the case where X = Mf, M = V = Rn, and E = TV , and we
examined a connection (K,H) on TV = (TV, pV ,+V , 0V , `V ), namely the canonical affine
connection on V . Here TV = V 2, and pV = π1 : V 2 → V (2.3.4). By 6.5, the connection
(K,H) equips T 2V = V 4 with the structure of a biproduct of differential bundles

TV ⊕V TV ⊕V TV = (T 2V, p̂V , +̂V , 0̂V , ̂̀V ) (6.9.i)

over V with projection morphisms9

π1 = pTV = 〈π1, π2〉 : T 2V = V 4 −→ V 2 = TV
π2 = T (pV ) = 〈π1, π3〉 : T 2V = V 4 −→ V 2 = TV

π3 = K = 〈π1, π4〉 : T 2V = V 4 −→ V 2 = TV,
(6.9.ii)

for which the given explicit formulae were developed in 2.3.4 and 3.6. The total addition
is the map

+̂V : V 4 ×V V 4 → V 4

that sends a pair of 4-tuples of the form (x, t1, u1, v1), (x, t2, u2, v2) to the 4-tuple (x, t1 +

t2, u1 + u2, v1 + v2). The total zero 0̂V : V → V 4 is given by x 7→ (x, 0, 0, 0).

In order to characterize the total lift ̂̀V , let us first describe the maps

T (pTV ), T 2(pV ), T (K) : T 3V → T 2V

obtained by applying T to the projections in (6.9.ii). Concretely, we can form the tangent
bundle T 3V = T (V 4) of T 2V = V 4 as the binary product T 3V = V 4 × V 4, with its first
projection to V 4 as pT 2V . Since T 2V = V 4 and TV = V 2 are finite dimensional R-vector
spaces, and the maps in (6.9.ii) are R-linear, it follows that

T (pTV ) = 〈π1, π2〉 × 〈π1, π2〉 : V 4 × V 4 −→ V 2 × V 2 = V 4

T 2(pV ) = 〈π1, π3〉 × 〈π1, π3〉 : V 4 × V 4 −→ V 2 × V 2 = V 4

T (K) = 〈π1, π4〉 × 〈π1, π4〉 : V 4 × V 4 −→ V 2 × V 2 = V 4.

Further, since the projections

pTV , T (pV ), K : (T 2V, p̂V , +̂V , 0̂V , ̂̀V ) −→ (TV, pV ,+V , 0V , `V )

are linear morphisms of differential bundles, we know that the diagrams

V 4

pTV

��

̂̀
V // V 4 × V 4

T (pTV )
��

V 4

T (pV )
��

̂̀
V // V 4 × V 4

T 2(pV )
��

V 4

K
��

̂̀
V // V 4 × V 4

T (K)
��

V 2
`V

// V 4 V 2
`V

// V 4 V 2
`V

// V 4

9Recall that in 6.5 we chose a specific order for the three projections in question (Footnote 8). In
fact, we chose this order so that in the present example the successive projections capture the top-three
coordinates π2, π3, π4 of T 2V = V 4 in ascending order. Per our convention in 2.3.4, the highest-order
component of T 2V = V 4 appears in the rightmost factor, and so we have adopted a similar convention
for the biproduct (6.9.i).
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commute. Using these facts, it is now straightforward to show that the total lift is given
by ̂̀

V : V 4 → V 4 × V 4, (x, t, u, v) 7→ ((x, 0, 0, 0), (0, t, u, v)) .

7. The induced horizontal connection

In the present section, we show that for any effective vertical connection K there is
a unique horizontal connection H such that (K,H) is a connection. Again let E be a
differential bundle over M , satisfying Basic Condition 3.1. By Theorem 6.7, we know that
any effective vertical connection K on E endows TE with the structure of a biproduct of
differential bundles

E ⊕M TM ⊕M E, (7.0.i)

and we will now show that the canonical injection of E⊕M TM into the latter biproduct is
a horizontal connection H on E. To this end, we will employ the biproduct decomposition
(7.0.i) in order to re-interpret the axioms for a horizontal connection H (3.3(2)), and also
the compatibility axioms between K and H (3.3(3)).

Our analysis will be rendered more tractable by working with three arbitrary differ-
ential bundles F1, F2, F3 over M , but the reader is urged to keep in mind the case where
these bundles are E, TM , E, respectively.

7.1. Notation. Let F1, F2, F3 be differential bundles over M , and write Fi =
(Fi, ri, σi, ζi, λi), i = 1, 2, 3. Assume that the set of differential bundles {F1, F2, F3} has
finite products over M (4.8). Let

F = F1 ⊕M F2 ⊕M F3

be a biproduct of differential bundles over M , and let (F, r) denote the object of X /M
underlying F , so that F is a fibre product F1 ×M F2 ×M F3 in X (4.3). Given any
enumeration i, j, k of all the elements of {1, 2, 3}, we write

ιij : Fi ⊕M Fj −→ F1 ⊕M F2 ⊕M F3

to denote the canonical injection, defined by the equations ιijπi = π1, ιijπj = π2, and
ιijπk = 0, where 0 denotes the relevant zero morphism in the additive category DBunM .
Also, let us write

πij = 〈πi, πj〉 : F1 ⊕M F2 ⊕M F3 −→ Fi ⊕M Fj

to denote the canonical projection.
Whereas the object F of X underlies the differential bundle F over M , we deduce by

5.3 that F also carries the structure of a differential bundle over Fj for each j = 1, 2, 3,
namely the j-th partial bundle of the biproduct F = F1 ⊕M F2 ⊕M F3. Writing the
elements of the complement {1, 2, 3}\{j} as i, k, we can express the j-th partial bundle
of the latter biproduct as

r∗j (Fi ⊕M Fk) = (F, πj, σ
j, ζj, λj),

thus employing the notational conventions of §5.
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7.2. Lemma. Suppose we are given data as in 7.1. Then the injection

ι12 : F1 ⊕M F2 −→ F1 ⊕M F2 ⊕M F3

is the unique morphism H : F1 ×M F2 → F in X satisfying the following conditions:

1. H : r∗1(F2) → r∗1(F2 ⊕M F3) is a linear morphism of differential bundles over F1,
where r∗1(F2) and r∗1(F2 ⊕M F3) denote the first partial bundles of the biproducts
F1 ⊕M F2 and F = F1 ⊕M F2 ⊕M F3, respectively.

2. H : r∗2(F1) → r∗2(F1 ⊕M F3) is a linear morphism of differential bundles over F2,
where r∗2(F1) and r∗2(F1 ⊕M F3) denote the second partial bundles of the biproducts
F1 ⊕M F2 and F = F1 ⊕M F2 ⊕M F3, respectively.

3. The following diagram commutes

F1 ×M F2

proj
��

H // F

π3
��

M
ζ3

// F3

(7.2.i)

where proj denotes the projection.

Proof. For the needed uniqueness, suppose that H satisfies the given conditions. Then
conditions 1 and 2 entail that the diagram

F1 ×M F2

πi
$$

H // F

πi
��
Fi

commutes for i = 1, 2. Also, the counterclockwise composite in (7.2.i) is the zero morphism
0 : F1 ⊕M F2 → F3 in DBunM , so since the projections π1, π2, π3 are jointly monic in X
(2.1.2) we deduce that H = ι12.

Next, letting H = ι12, we show that H satisfies the given conditions. Let

κ = 〈1, 0〉 : F2 → F2 ⊕M F3

denote the injection morphism in DBunM . By 2.4.7, there are cartesian arrows

r∗1(F2) −→ F2, r∗1(F2 ⊕M F3) −→ F2 ⊕M F3

over r1 : F1 →M in DBun, so the injection κ induces a morphism

r∗1(κ) : r∗1(F2) −→ r∗1(F2 ⊕M F3)

in DBunF1 . Explicitly, the morphism in X underlying r∗1(κ) is

F1 ×M κ : F1 ×M F2 → F1 ×M F2 ×M F3 .

Hence r∗1(κ) = H, so 1 holds. A similar argument shows that 2 holds. Further, 3 clearly
holds.
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7.3. Theorem. Let K : TE → E be an effective vertical connection on E = (E, q, σ, ζ, λ).
Then TE underlies a biproduct E ⊕M TM ⊕M E whose associated injection

ι12 : E ⊕M TM −→ E ⊕M TM ⊕M E

is a horizontal connection
H : E ×M TM −→ TE

on E. Further, H is the unique horizontal connection on E such that (K,H) satisfies
axiom 3.3(C.5).

Proof. By 6.7 we know that TE underlies a biproduct E ⊕M TM ⊕M E whose first and
second partial bundles are TE and TE, respectively, and whose projections are π1 = pE,
π2 = T (q), π3 = K. Letting F1 = E, F2 = TM , F3 = E, and employing the notation of
7.1 and 7.2, we find that the partial bundles appearing in Lemma 7.2 are

r∗1(F2) = q∗(TM), r∗1(F2 ⊕M F3) = TE

r∗2(F1) = p∗M(E), r∗2(F1 ⊕M F3) = TE .

Therefore, given an arbitrary morphism H : E ×M TM → TE in X , we find that
conditions 1, 2, 3 in 7.2 are equivalent to axioms C.3, C.4, C.5 of 3.3, respectively. Hence
we deduce by 7.2 that the injection ι12 is the unique morphism H satisfying axioms
C.3, C.4, C.5. This morphism H = ι12 is clearly a section of the projection morphism
π12 = 〈pE, T (q)〉 : TE → E ×M TM and hence is a horizontal connection on E.

Our next objective is to show that the horizontal connection H that we obtained in
7.3 is compatible with the given effective vertical connection K, in the sense that the pair
(K,H) is a connection. The challenge in this regard will be to address the ‘additive’
axiom 3.3(C.6), and so we now return to the abstract context of 7.1 with the aim of
reinterpreting this axiom.

7.4. Again suppose we are given data as in 7.1. Let j ∈ {1, 2, 3}, and write the elements
of the complement {1, 2, 3}/{j} as i, k. The endomorphisms πiιi, πkιk : F → F associated
to the biproduct F = F1 ⊕M F2 ⊕M F3 satisfy the equations

πiιiπj = 0 = πkιkπj : F → Fj . (7.4.i)

Hence by 5.7 we can consider their sum

πiιi +j πkιk : F → F

under the operation +j of addition with respect to the j-th partial bundle of the above
biproduct. We deduce the following:

7.5. Lemma. In the situation of 7.4, πiιi +j πkιk is precisely the composite

F1 ⊕M F2 ⊕M F3
πik // Fi ⊕M Fk

ιik // F1 ⊕M F2 ⊕M F3

of the projection πik and the injection ιik defined in 7.1.



ON THE GEOMETRIC NOTION OF CONNECTION 861

Proof. Let s = πiιi +j πkιk and t = πikιik, and let sn = sπn and tn = tπn : F → Fn for
each n = 1, 2, 3. By 5.8, we deduce that

si = πiιiπi + πkιkπi = πi + 0 = πi = ti : F → Fi,

where we write +, 0 for the addition operations and zero morphisms carried by the additive
category DBunM . Similarly we deduce that sk = πk = tk. By 5.8 and (7.4.i) we deduce
also that sj = 0 = tj. Since π1, π2, π3 are jointly monic in X (2.1.2), the result is proved.

7.6. Again suppose we are given data as in 7.1, and let i, j, k be some enumeration of all
the elements of {1, 2, 3}. Employing the notation of 7.1, the endomorphisms πikιik, πijιij :
F → F of the biproduct F = F1 ⊕M F2 ⊕M F3 satisfy the equations

πikιikπi = πi = πijιijπi : F → Fi. (7.6.i)

Hence by 5.7 we can consider their sum

πikιik +i πijιij : F → F

under the operation of addition with respect to the i-th partial bundle of the given biprod-
uct. We deduce the following:

7.7. Lemma. In the situation of 7.6,

πikιik +i πijιij = 1F .

Proof. Let s = πikιik +i πijιij, and let sn = sπn for each n ∈ {1, 2, 3}. By 5.8 and (7.6.i),
we deduce that

si = πi : F → Fi

sj = πikιikπj + πijιijπj = 0 + πj = πj : F → Fj

sk = πikιikπk + πijιijπk = πk + 0 = πk : F → Fk

where we write +, 0 for the addition operations and zero morphisms carried by the additive
category DBunM .

7.8. Theorem. Let K : TE → E be an effective vertical connection on E = (E, q, σ, ζ, λ).

1. There is a unique horizontal connection H : E ×M TM → TE on E such that
(K,H) is a connection on E. Explicitly, H is the injection

ι12 : E ⊕M TM −→ E ⊕M TM ⊕M E

considered in 7.3.

2. Moreover, given any H : E ×M TM → TE in X , the following are equivalent: (a)
(K,H) is a connection on E, (b) H is a horizontal connection on E and axiom
3.3(C.5) holds, (c) H is the morphism ι12 considered in 7.3.
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Proof. It suffices to prove 2. Clearly (a) implies (b). By Theorem 7.3, we know that (b)
is equivalent to (c). Hence it suffices to let H = ι12 and prove that (K,H) is a connection
on E. Since (c) implies (b) it suffices to show that (K,H) satisfies axiom 3.3(C.6). Letting
F1 = E, F2 = TM , F3 = E, and F = TE, we know by 6.7 that F underlies a biproduct
F = F1⊕M F2⊕M F3 with first and second partial bundles TE and TE, respectively, and
with projections π1 = pE, π2 = T (q), π3 = K and injections ι1 = 0E, ι2 = T (ζ), ι3 = λ.
Taking i = 1, j = 2, k = 3, we find ourselves in the situation of 7.6, so by Lemma 7.7 we
deduce that

π13ι13 +1 π12ι12 = 1F : F → F,

but by Lemma 7.5 we also know that π13ι13 = π1ι1 +2 π3ι3 : F → F , so

(π1ι1 +2 π3ι3) +1 π12ι12 = 1F : F → F. (7.8.i)

We claim that the latter equation is precisely axiom 3.3(C.6). To see this, first note that

π1ι1 = pE0E : TE → TE, π3ι3 = Kλ : TE → TE, ι12 = H,

and π12 = 〈π1, π2〉 = 〈pE, T (q)〉 = U : TE → E ×M TM in the notation of 3.3, so our
equation (7.8.i) can be rewritten as

(Kλ+2 pE0E) +1 UH = 1TE : TE → TE

since +2 is commutative. In the terminology of 5.7, +1 and +2 denote the operations of
addition with respect to the first and second partial bundles TE and TE, respectively, of
the biproduct F = E ⊕M TM ⊕M E. Hence, since the addition carried by TE is T (σ) we
can express Kλ+2 pE0E as a composite

Kλ+2 pE0E =
(
TE

〈Kλ,pE0E〉−−−−−−→ TE ×TM TE = T (E ×M E)
T (σ)−−→ TE

)
.

We can rewrite the latter composite in terms of the morphism µ defined in 2.4.1(4), thus
obtaining the following equation

Kλ+2 pE0E =
(
TE

〈K,pE〉−−−−→ E ×M E
µ−→ TE

)
,

noting that 〈K, pE〉 is well-defined since Kq = T (q)pM = pEq by 3.3(C.1) and the natu-
rality of p. Therefore our equation (7.8.i) can be rewritten as

〈K, pE〉µ +1 UH = 1TE : TE → TE .

Since +1 is induced by the addition +E carried by the first partial bundle TE, this
equation is precisely axiom 3.3(C.6).



ON THE GEOMETRIC NOTION OF CONNECTION 863

7.9. Remark. Given a vertical connection K and a horizontal connection H, on E, recall
that (K,H) is a connection if and only if the compatibility axioms (C.5) and (C.6) of 3.3
hold. But by 7.8(2) and 6.1, (K,H) is a connection if and only if (C.5) holds and K is
effective. Thus one obtains an equivalent definition of the notion of connection, in which
the compatibility axiom (C.6) is replaced by a condition that does not make reference to
H.

8. Connections: Equivalent formulations

Let E = (E, q, σ, ζ, λ) be a differential bundle over M , satisfying Basic Condition 3.1. In
the present section, we establish certain equivalent formulations of the notion of connection
in terms of a single morphism K : TE → E.

8.1. Theorem. Let K : TE → E be a morphism in X . Then the following conditions
are equivalent:

1. There exists a (necessarily unique) morphism H : E×M TM → TE in X such that
(K,H) is a connection on E.

2. K is an effective vertical connection on E.

3. TE underlies a biproduct of differential bundles E ⊕M TM ⊕M E whose third pro-
jection is K, whose third injection is λ, and whose first and second partial bundles
are TE and TE, respectively.

4. K is a retraction of λ, and TE underlies a product of differential bundles
E ×M TM ×M E whose third projection is K and whose first and second partial
bundles are TE and TE, respectively.

Proof. A morphism H as in 1 is unique if it exists, by 3.4 (or, alternatively, by 7.8 and
6.1, which were proved without recourse to 3.4).

By 6.1, 1 implies 2. By Theorem 6.7, 2 implies 3. Also, 3 clearly implies 4. Further,
2 implies 1, by Theorem 7.8. Hence it suffices to prove that 4 implies 2.

Suppose that 4 holds. Since the first and second partial bundles of the product E×M
TM×M E are TE and TE, respectively, this product necessarily has projections π1 = pE,
π2 = T (q), and π3 = K. Hence, since K is a retraction of λ and finite products in DBunM
are biproducts (4.1), we deduce by Lemma 6.4 that K is a vertical connection on E. By
6.2 we therefore deduce that 2 holds.

We now deduce that a connection is equivalently given by a morphism K satisfying
the equivalent conditions in 8.1, with no further specified structure:



864 RORY B. B. LUCYSHYN-WRIGHT

8.2. Theorem. Let E = (E, q, σ, ζ, λ) be a differential bundle over an object M in an
arbitrary tangent category X , and assume that E satisfies Basic Condition 3.1.

1. A connection on E is equivalently given by a morphism K : TE → E such that TE
underlies a biproduct of differential bundles E⊕M TM ⊕M E whose third projection
is K, whose third injection is λ, and whose first and second partial bundles are TE
and TE, respectively.

2. A connection on E is equivalently given by a retraction K : TE → E of λ such that
TE underlies a product of differential bundles E×MTM×ME whose third projection
is K and whose first and second partial bundles are TE and TE, respectively.

3. A connection on E is equivalently given by an effective vertical connection K on E,
i.e., a vertical connection K : TE → E such that the following is a fibre product
diagram in X :

TE
pE

}}
T (q)
��

K

""
E

q ""

TM

pM
��

E

q}}
M

Proof. By Theorem 8.1, the assignment (K,H) 7→ K defines a bijective correspondence
between connections (K,H) on E and morphisms K : TE → E satisfying the equivalent
conditions of Theorem 8.1.

8.3. Remark. Although Theorem 8.2(1) demands the existence of a biproduct with
certain further properties, such a biproduct is in fact unique up to concrete isomorphism
(2.4.6, 6.3), so its underlying object of X /M , its zero section, and its lift, as well as its
projections and injections, are uniquely determined (2.4.6, 6.3). Indeed, if F = E ⊕M
TM ⊕M E is a biproduct with the given properties, then its projection morphisms must
be π1 = pE, π2 = T (q), π3 = K, so its underlying object of X /M must be q̂ = pEq :
TE →M and its injection morphisms must be ι1 = 0E, ι2 = T (ζ), ι3 = λ, by 5.6(3).

Theorem 8.2 entails the following characterizations of affine connections, recalling from
3.2 that the tangent bundle TM always satisfies Basic Condition 3.1:

8.4. Theorem. Let M be an object of an arbitrary tangent category X .

1. An affine connection on M is equivalently given by a morphism K : T 2M → TM
such that T 2M underlies a biproduct of differential bundles TM ⊕M TM ⊕M TM
whose third projection is K, whose third injection is `M : TM → T 2M , and whose
first and second partial bundles are T (TM) and T (TM), respectively.

2. An affine connection on M is equivalently given by a retraction K : T 2M → TM
of `M : TM → T 2M such that T 2M underlies a product of differential bundles
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TM ×M TM ×M TM whose third projection is K and whose first and second partial
bundles are T (TM) and T (TM), respectively.

3. An affine connection on M is equivalently given by an effective vertical connection K
on TM , i.e., a vertical connection K : T 2M → TM on TM such that the following
is a fibre product diagram in X :

T 2M
pTM

{{
T (pM )
��

K

##
TM

pM $$

TM

pM
��

TM

pMzz
M
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