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CATEGORY THEORY FOR GENETICS I:
MUTATIONS AND SEQUENCE ALIGNMENTS

RÉMY TUYÉRAS

Abstract. The present article is the first of a series whose goal is to define a logical
formalism in which it is possible to reason about genetics. In this paper, we introduce
the main concepts of our language whose domain of discourse consists of a class of
limit-sketches and their associated models. While our program will aim to show that
different phenomena of genetics can be modeled by changing the category in which the
models take their values, in this paper, we study models in the category of sets to
capture mutation mechanisms such as insertions, deletions, substitutions, duplications
and inversions. We show how the proposed formalism can be used for constructing
multiple sequence alignments with an emphasis on mutation mechanisms.

1. Introduction

1.1. Short presentation. The goal of the present article is to define a type of algebraic
structures in which it is possible to do genetics. The main operation provided by these
structures is a formal way of ‘gluing’ different pieces of information together. To motivate
the various notions introduced in this paper, we focus on a particular example, namely the
construction of multiple sequence alignments, which are often used in phylogenetics. The
proposed formalism can be applied to many other situations that would more generally
look at sequential polymer comparisons and/or interactions.

1.2. Motivations. Our objective is to construct a bridge between two completely dis-
connected domains of science, specifically genetics and category theory, through a series
of papers. While genetics is well-known for its complexity, category theory is recognized
for its clarity and expressive power [27, 2, 12]. The goal of the present program would be
to reach a level of abstraction that would allow one to tackle questions whose formulation
are too complicated to be addressed with the current tools.

The language of the present paper is rather mathematical, but the results and defini-
tions that it contains always try to capture the biological reality. Throughout the paper,
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some terms might be used in a biological sense while others might be used in a mathemat-
ical one – this will usually be specified. For instance, the sentence “a structure in which
it is possible to do genetics” means that we want to define a formal language rather than
a model of some particular living body. The need for such an abstraction, in biology, has,
for example, been recognized in [10, 24].

Attempts at linking genetics (or in fact molecular biology) to categorical thinking are
not new. A first example is [22], in which a category-like formalism is used to discuss
the algebraic properties of “DNA wallpapers”. Another work is [3], in which Carbone
& Gromov model DNA, RNA and proteins by using topological and geometrical objects
such as surfaces and moduli spaces. The program proposed herein tries to understand
the mechanisms of genetics in themselves by forgetting the spacial aspect and focusing on
the biological operations occurring in the body. Such an algebraic approach to biology
has already been discussed, from the point of view of neuroscience, in several unpublished
works by Ehresmann (for example, see [6]) using the concepts of limit and cone. The
present paper takes a step further, in the context of genetics, by providing a precise ‘limit
theory’ (in fact, a limit sketch) that can be used to formalize precise concepts of genetics.
In this respect, our structures will define formal environments in which one wants to
express a problem and say things about its solution.

In addition to offering a formalism, the proposed program aims to tackle technical
and/or conceptual problems of various sub-fields of genetics. While the next article [28]
will focus on questions related to genotypes, phenotypes, haplotypes, homologous re-
combination, and genetic linkage, the present article focuses on questions related to the
construction of multiple sequence alignments [19, 15, 5] from a mechanistic point of view
(see section 2.1 for an introduction).

Specifically, the present work is an attempt to give a categorical answer to the program
proposed in [14, 13] regarding the construction of multiple sequence alignments by trying
to “[recognize] mechanisms rather than assuming that all the variation occurs at random
[at every position in the DNA strand]” [14, page 156, right col., l. 5]. More precisely, our
goal is to show that the language of category theory can be used to put more emphasis on
evolutionary mechanisms so that “[mutation] events [can] be identified as the alignment
proceeds rather than being identified after the alignment is completed”[14, page 156, right
col., l. 9].

Finally, the reader can find a Python library that aims to implement the content of
the whole program at the web address:

https://github.com/remytuyeras/pedigrad-library.

The library will be updated as the program evolves towards more tools.

1.3. Road map and results. The goal of the present paper is to define a class of
theories, called chromologies, whose models, called pedigrads, will be shown (through the
program) to recover various aspects of genetics by changing the associated categories of
values.

We begin by defining chromologies in sections 2.2 through section 2.36, while the pedi-
grads for these theories will be defined in sections 2.38 & 2.40. Intuitively, chromologies

https://github.com/remytuyeras/pedigrad-library
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allow us to do all sorts of basic DNA manipulations such as sequence alignments, CRISPR
[17] and homologous recombination, whereas the pedigrads allow us to give a context to
these operations (which can be handled differently depending on the environment in which
they are processed).

In section 3, we define a class of functors (Definition 3.13) that model the environments
of DNA sequences (Example 3.15). We show that these functors can be endowed with
two types of pedigrad structures in the category of sets (Theorems 3.47 & 3.49): the
first type detects the exact consistency of the data while the second type detects the
consistency of the data up to uncertainty (see Example 3.37). These functors are then
used to formalize the concept of sequence alignment in terms of a functor (Definition 3.23).
We will see that taking the right Kan extension of a sequence alignment functor can be
viewed as constructing multiple sequence alignments (Remark 3.34). In Example 3.38, we
will see that the right Kan extension of a sequence alignment functor contains both local
and global pieces of information that inform us of the presence of uncertainties in the
integrated data. At the end of the section, we will see in this uncertainty a justification
for the concepts of chromology and pedigrad, which will give us ways to locate, specify
or isolate the existing uncertainties (see Example 3.50).

In section 4, we will introduce the concept of a slice of a sequence alignment functor
(Definition 4.9), which will allow us to resolve the mentioned uncertainties and select mul-
tiple sequence alignments that are consistent with the overall data. First, in section 4.6,
we will discuss the selection of consistent sequence alignments through the use of chro-
mologies. Then, in Remark 4.14, we will suggest an algorithm for constructing multiple
sequence alignments via the use of slices. Finally, in Section 4.15, we will show that the
presence of uncertainties in the right Kan extension of a sequence alignment functor can
be due to mutation mechanisms. We will show that the resolution of these uncertainties,
permitted by slices, gives us a way to recognize mutation mechanisms (Examples 4.16 &
4.18).

1.4. Acknowledgments. I would like to thank the referee for their very useful com-
ments and remarks, which led to a significant improvement of an earlier version of this
paper. I would also like to thank Brendan Fong, David Spivak and Eric Neumann for
useful discussions. Finally, I would like to thank Andres Saez and Anjanet Loon for their
careful reading of this manuscript.

2. Chromologies and Pedigrads

The goal of this section is to introduce a set of theories whose logical models try to capture
the logic of genetics. To justify why our theories look the way they do, we need to recall
a few facts regarding the construction of theories in general. First, recall that, classically,
models for theories are defined as sets equipped with some operations. For instance, a
ring is a set R equipped with two operations · : R×R→ R and + : R×R→ R making
certain diagrams commute.
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More categorically, rings are also product-preserving functors from a certain product
sketch1 Ring (the theory) to the category Set of sets and functions [7]. This functorial
point of view was introduced by Lawvere [9] in 1963 via the concept of what is now called
a Lawvere theory – the theory Ring being an example. The advantage of functors over
sets equipped with functions is that functors allow us to clearly distinguish between what
is intrinsically true in a model (via the theory) and what can occasionally be true in the
model (via the images of the functor). Then, the formalism accompanying the language
of functors allows us to more carefully think about the mechanisms governing the models.

Since Lawvere theories were meant to capture the logic of algebraic structures equipped
with multivariate functions, their objects were taken to be the set of natural numbers in
order to specify the arities of the functions. Along those lines, since the goal of the present
section is to define a theory that captures the logic of genetics and whose operations take
DNA segments as inputs, the objects of our theory will look like DNA segments. Note
that, while, in rings, one adds and multiplies terms together, in genetics, one cuts, aligns
and recombines DNA strands together. Therefore, our theory will be based on these
operations.

More specifically, recall that an integer object in a Lawvere theory can be represented
as a finite sequence of atoms; e.g the object 6 would be represented by six atoms as follows.

6 = (••••••) (1)

These atoms can make it easier to see how the models defined on the Lawvere theory send
the integer objects to the product objects in the category of values; e.g. for a given functor
R, the image R(6) would be sent to a product of the following form where R(•) = R(1).

R(•)×R(•)×R(•)×R(•)×R(•)×R(•)

In the case of DNA, the idea is to copy the previous picture, but by adding enough
information to be able to model genetic mechanisms. If one looks at the type of pictures
drawn by biologists to explain homologous recombination, alignment methods or even
genetic linkage, one can often see pictures of chromosomal patches subdivided in terms of
selected and masked regions, as shown below.

1A small category equipped with a subset of its wide spans (see Definition 2.34).
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These colored regions are obviously reminiscent of the term chromo-some2 itself. The
regional separations are also reminiscent of some sort of topology – or metric. If one tries
to merge these topological and colored components with the type of atomic representation
given in (1), we are likely to end up with the following type of pictures.

(•••)(◦◦)(••••)(•••••)(◦◦◦)(◦) (2)

In picture (2), the black nodes could indicate the regions of the chromosome that one
wants to use while the white nodes could indicate the parts of the chromosome that one
wants to ignore (mask). Note that a black-and-white paper does not give more than two
colors to color the previous type of objects. Therefore, we will not hesitate to use labels
to represent new colors. Formally, our sets of colors will be encoded by pre-ordered sets,
whose semantics will allow us, among other operations, to select and cut.

2.1. Main example. To help the exposition of the present paper, most of our examples
will focus on a single problem, which will give a story to our demonstration. Each example
will illustrate how the mathematical definitions given in this paper can be used to clarify,
explain or solve precise aspects of our problem.

Without any further introduction, our problem will look at the alleles of four different
individuals for the same gene. Our goal will be to show how one can use chromologies
and their pedigrads to help us relate these four individuals. In general, the first step to
establishing the genealogy of a set of individuals is to align their genetic data according
to an evolution model (e.g. using substitution, insertion and deletion mutations) in order
to determine how one individual evolved from another one (see [19, 15, 5]).

In our case, we will consider the set of individuals given in the following table with
respect to the corresponding genetic data shown on the right.

Individuals Alleles
Anne ACCGACTG

Bob ACATCTG

Craig ACCGTCA

Doug ACTACTG

Recall that, in bioinformatics, the only analytic method that can compare and align a
set of DNA sequences is the dynamic programming algorithm (see [25] or [15, Chapter 3
and page 71]). Other methods obviously exist, but these require heuristics that generally
only produce an approximation of the best alignment [5, 8, 4, 11]. A common aspect
between these methods is that they all compare DNA sequences two by two. Many of
them even rely on the pairwise dynamic programming algorithm, which can compare
any given pair of sequences together. For instance, to compare the genetic data of two
individuals, say Anne and Bob, via the dynamic programming algorithm [15, page 71], we
would first draw a table as given below, on the left-hand side, where second topmost row
and second leftmost column are initialized with canonical scores (called gap penalties).

2meaning color-body
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ε A C C G A C T G

ε 0 1 2 3 4 5 6 7 8
A 1
C 2
A 3
T 4
C 5
T 6
G 7

⇒

ε A C C G A C T G

ε 0 1 2 3 4 5 6 7 8
A 1 0 1 2 3 4 5 6 7
C 2 1 0 1 2 3 4 5 6
A 3 2 1 1 2 2 3 4 5
T 4 3 2 2 2 3 3 3 4
C 5 4 3 2 3 3 3 4 4
T 6 5 4 3 3 4 4 3 4
G 7 6 5 4 3 4 5 4 3

Then, we would produce the table given on the right-hand side by following two types of
scoring rules, one taking care of matches and the other one taking care of mismatches.
Usually, these rules tell us how to fill out a box in the case where we have a two-by-two
matrix whose bottom-right corner is empty and whose remaining boxes are already filled
with scores, as shown below.

p q
r

In our case, the scoring table was filled with the following rules:

1) if the nucleotides labeling the column and the row of the empty box are equal, then
the empty box should be filled with the score p;

2) if the nucleotides labeling the column and the row of the empty box are different,
then the empty box should be filled with the score min(p, q, r) + 1;

The best alignments for Anne and Bob are then obtained by tracing back the previous
rules from the bottom-right corner of the table to its top-left corner. All the paths of
moves (from right to left) that would make the earlier rules hold describe the nucleotide
comparisons that give rise to the best alignments. In the present case, there are more
than one paths. One of them is shown in the table given below, on the left (starting from
the bottom-right corner). The associated alignment, given on the right, is read from the
left-top corner to right-bottom one, where every symbol ε represents a stationary move
from the point of view of the sequences.

ε A C C G A C T G

ε 0 1 2 3 4 5 6 7 8
A 1 0 1 2 3 4 5 6 7
C 2 1 0 1 2 3 4 5 6
A 3 2 1 1 2 2 3 4 5
T 4 3 2 2 2 3 3 3 4
C 5 4 3 2 3 3 3 4 4
T 6 5 4 3 3 4 4 3 4
G 7 6 5 4 3 4 5 4 3

⇒ ACCGAεCTG Anne

AεCεATCTG Bob
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Of course, constructing a sequence alignment for a set of four individuals by only using
pairwise comparisons is likely to miss certain optimal alignments. In fact, computing an
optimal alignment for our set of individuals would require a generalization of the previous
algorithm in a hypercube. The problem with an algorithm based on such a structure is
that it can rapidly become computationally expensive. As a result, biologists prefer to
use heuristics such as the so-called progressive method [15, 5, 8, 4, 11].

The need for these heuristics show that passing from a two-dimensional point of view
to a higher dimensional one, by trying to “glue” the previous tables together (in order to
reconstruct the hypercube) contains a lot of subtleties.

In this article, we will show how category theory can help formalize, clarify and reason
about this passage by defining formal “gluing methods” of two-dimensional tables as used
above. These “gluings algorithms” will take the form of limit-preserving functors, our
so-called pedigrads, and the associated gluing instructions will be specified by collections
of limit-cones, our so-called chromologies.

2.2. Pre-ordered sets. Throughout the paper, the most basic notions of ordered sets
are expected to be known by the reader (e.g. partially ordered sets; totally (or linearly)
ordered sets; pre-ordered sets; see [12, Page 11]). However, because pre-orders will play
an important role, it was felt appropriate to recall their definition and give some examples
of interest in a separate section. We also recall the definition of order-preserving functions
and define a category of pre-ordered sets.

2.3. Definition. [Pre-ordered sets] A pre-ordered set consists of a set Ω and a binary
relation ≤ on Ω satisfying the following logical implications.

1) (reflexivity) for every x ∈ Ω, the relation x ≤ x holds;

2) (transitivity) for every x, y, z ∈ Ω, if x ≤ y and y ≤ z hold, then so does x ≤ z.

2.4. Example. The set {0, 1} is a pre-ordered set when equipped with the relations
0 ≤ 1; 0 ≤ 0 and 1 ≤ 1. The resulting pre-ordered set is usually known as the Boolean
pre-ordered set.

2.5. Remark. [Representation] Pre-ordered sets may happen to be sets of labels (or even
sets of structures) instead of being sets of integers. In the case of the Boolean pre-ordered
set given in Example 2.4, the labels false and true will sometimes be used instead of
the integers 0 and 1, mainly for the sake of clarity when integers are used for another
purpose.

2.6. Example. The set {0, 1} could also be equipped with the discrete pre-order made
of the reflexive relations 0 ≤ 0 and 1 ≤ 1 only.

2.7. Example. For every positive integer n, the n-fold Cartesian product {0, 1}×n of the
pre-ordered set given in Example 2.4 is equipped with a pre-order relation ≤ that relates
two tuples in {0, 1}×n, say (x1, . . . , xn) ≤ (y1, . . . , yn), if, and only if, the relation xi ≤ yi
holds for every index i between 1 and n.
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2.8. Example. The interval [0, 1] is a pre-ordered set for the usual pre-order “being less
than or equal to” defined on the set R of real numbers.

2.9. Remark. [Pre-order categories] Recall that a pre-ordered set is also a category in
which there exists at most one arrow between every pair of objects. In the sequel, a
pre-ordered set will sometimes be called a pre-order category to emphasize its categorical
nature.

2.10. Definition. [Order-preserving functions] Let (Ω1,≤1) and (Ω2,≤2) be two pre-
ordered sets. We shall speak of an order-preserving function from (Ω1,≤1) to (Ω2,≤2)
to refer to a function f : Ω1 → Ω2 for which every relation x ≤1 y in Ω1 gives rise to a
relation f(x) ≤2 f(y) in Ω2.

2.11. Convention. [Notation] We shall denote by pOrd the category whose objects are
pre-ordered sets and whose morphisms are order-preserving functions.

2.12. Example. [Projection] For every positive integer n, the n-fold Cartesian prod-
uct {0, 1}×n of Example 2.7 is equipped with a canonical collection of n functions πi :
{0, 1}×n → {0, 1}, for each i ∈ {1, . . . , n}, where a function πi sends a tuple (x1, . . . , xn)
in {0, 1}×n to its i-th component xi in {0, 1}. These functions obviously preserve the
order relations of {0, 1}×n in {0, 1} and thus define morphisms in pOrd.

2.13. Finite sets of integers. For every positive integer n, we will denote by [n] the
finite set of integers {1, 2, . . . , n}. We will also let [0] denote the empty set. In the sequel,
for every non-negative integer n, the set [n] will implicitly be equipped with the order
associated with the set of integers (note that the order associated with [0] is the empty
order).

2.14. Segments. Let (Ω,�) denote a pre-ordered set. A segment over Ω consists of a
pair of non-negative integers (n1, n0), an order-preserving surjection3 t : [n1] → [n0] and
a function c : [n0]→ Ω.

2.15. Remark. [Representation] Segments have all the necessary data to encode the type
of pictures given in (2). For a segment (t, c) as defined above, the finite set [n1] represents
the range of elements composing the segment

n1 = •• · · · •

while the fibers t−1(1), . . . , t−1(n0) of the surjection t : [n1] → [n0] gather these elements
into patches (see the brackets below).

t = (•••)(••••)(•• · · · •)(••)

Finally, the different colors associated with the patches of the segment are specified by
the map c : [n0] → Ω. For instance, if we take Ω to be the Boolean pre-ordered set

3i.e. an order-preserving function that is a surjection.
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{false ≤ true} of Example 2.4 (see Remark 2.5) and we choose to associate the white
color with the false value and the black color with the true value, then a set of relations
of the form c(1) = false, c(2) = true, . . ., c(n0 − 1) = true, and c(n0) = true will
be represented by coloring all the elements of [n1] living in the fibers t−1(1), t−1(2), . . .,
t−1(n0 − 1), and t−1(n0) in white and then in black up to the last one, as shown below.

(t, c) = (◦◦◦)(••••)(•• · · · •)(••)

Note that if Ω contains more elements, then we need to use more colors (which can also
be represented by numbers). These colors could also mean all sorts of things, including
actions such as ignore, read, start reading, stop reading, misread (or mutate). The
pre-order on the colors would then specify semantic priorities between the different tasks
or functions associated with the colors (see the table of pictures below). All these features
will be illustrated throughout the examples and remarks of section 3.

2 colors 4 colors 5 colors
{0, 1} {0, 1, 2, 3} {0, 1, 2, 3, 4}
read

ignore

OO
read

start

77

finish

gg

ignore

77ff

read

start

77

misread

OO

stop

ff

ignore

OO 88ff

2.16. Remark. [Notations] Note that the specification of the data n1 and n0 is redundant
with the data of the function t and c. Later on, a segment will often be denoted as a pair
(t, c) and, every so often, as an arrow (t, c) : [n1] ( [n0].

2.17. Convention. [Domains, topologies & types] For every segment (t, c) : [n1] ( [n0],
the data [n1] will be called the domain of (t, c), the data t will be called the topology of
(t, c) and the data (n1, n0) will be called the type of (t, c). The type of a segment will
always be specified as an arrow of the form [n1] ( [n0].

2.18. Definition. [Homologous segments] Two segments (t, c) and (t′, c′) over Ω will be
said to be homologous if their topologies t and t′ are equal.

2.19. Definition. [Quasi-homologous segments] Two segments (t, c) : [n1] ( [n0] and
(t′, c′) : [n′1] ( [n′0] over Ω will be said to be quasi-homologous if their domains [n1] and
[n′1] are equal.

2.20. Morphisms of segments. Let (Ω,�) be a pre-ordered set and (t, c) : [n1] ( [n0]
and (t′, c′) : [n′1] ( [n′0] be two segments over Ω. A morphism of segments from (t, c) to
(t′, c′) consists of

1) an order-preserving injection f1 : [n1]→ [n′1];
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2) an order-preserving function f0 : [n0]→ [n′0];

such that the inequality c′ ◦f0(i) � c(i) holds for every i ∈ [n0] and the following diagram
commutes.

[n1]
t // //

?�

f1
��

[n0]

f0
��

[n′1]
t′ // // [n′0]

It is easy to check that the class of morphisms of segments over Ω is stable under
component-wise compositions and admits identities on every segment. We will denote
by Seg(Ω) the resulting category whose objects are segments over Ω and whose arrows
are morphisms between these.

From now on, we will regard the notations f1 and f0 given above as a conventional
notation for morphisms in Seg(Ω). Below, we give several examples of typical morphisms
in Seg(Ω) where Ω is taken to be the Boolean pre-ordered set of Example 2.4.

2.21. Example. [Locality] If both components f1 and f0 are identities, then the inequal-
ity c′ ◦ f0 � c ‘decreases’ the colors of the segment as illustrated below, on the left.

(•••)(••)(••••)(•••••)(◦◦◦)(•)−→

(◦◦◦)(◦◦)(••••)(•••••)(◦◦◦)(◦)

(. . .)(◦◦
��HH
��

◦)(. . .)

(. . .)(•••)(. . .)

Interpretation: This type of morphisms tells us that one is able to select/cut local patches
from a segment. This is, for instance, the type of morphisms that one may want to use to
model CRISPR, namely separating a patch from a segment. Note that, because reading a
segment (in black) has a higher semantic priority than ignoring it (in white), turning white
regions into black ones, as shown above, on the right, is forbidden. The order relation
on the colors can therefore be a way of encoding forgetful operations (e.g. irreversible or
energy-releasing events).

2.22. Example. [Relativity] If only the component f1 is an identity morphism, then the
component f0 can merge the regions defining the topology.

(•••)(◦◦)(••••)(•••••)(◦◦◦)(◦)−→

(◦◦◦◦◦)(•••••••••)(◦◦◦◦)

Interpretation: This type of morphisms implies that the way one parses the patches of
a segment influences the way one parses the whole segment (e.g. from codons to genes).
However, because there is no arrow that increases the number of brackets from its domain
to its codomain, the way one parses a segment might not necessarily reflect the way the
patches are parsed (e.g. from gene to codons).
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2.23. Example. [Flexibility] If the component f1 is not an identity morphism, then the
range of the segment increases. Below, we suppose that the identity c′ ◦ f0 = c holds.

(•••)(◦◦)(••••)(•••••)(◦◦◦)(◦)−→

(••••)(•)(◦◦◦◦)(••••)(•••••)(◦◦◦)(◦)

Interpretation: This type of morphisms allows one to insert particular nucleotides or
spaces in the parsing of a segment. For instance, spaces become necessary if one wants to
align segments that are not necessarily (quasi-)homologous (this was shown in section 2.1).
A morphism inserting a space would then correspond to a choice of ‘sequence alignment’
in bioinformatics (see Example 3.16, Example 3.38 and section 4.15).

2.24. Remark. [Initial object] For every pre-ordered set (Ω,�), the segment (over Ω) of
type [0] ( [0] that is given by the obvious order-preserving surjection ! : ∅ → ∅ and the
canonical function ! : ∅ → Ω is an initial object in Seg(Ω). Note that such an object is
formal and does not really possess any biological interpretation other than giving a way
to express the idea of ‘absence’.

2.25. Relating categories of segments. So far, our examples have only considered
categories of segments over the Boolean pre-ordered set {0 ≤ 1}. In practice, Boolean
segments are convenient and easy to think about. Thus, it can be useful to have ways to
go from a category of segments whose pre-ordered set is not {0 ≤ 1} to the category of
segments whose pre-ordered is {0 ≤ 1}. The goal of Proposition 2.26 is to show that this
type of transfer is possible.

2.26. Proposition. [Functor] Let f : (Ω1,�1)→ (Ω2,�2) be a morphism in pOrd. The
mapping rule (t, c) 7→ (t, f ◦ c) extends to a faithful functor Seg(f) : Seg(Ω1)→ Seg(Ω2)
sending a morphism (f1, f0) to the same pair (f1, f0).

Proof. Let (f1, f0) : (t, c) → (t′, c′) be an arrow in Seg(Ω1) and let [n1] denote the
domain of (t, c). Because f is an order-preserving function, the relation c′ ◦ f0(i) �1 c(i),
satisfied for every element i ∈ [n1], gives rise to a relation f ◦ c′ ◦ f0(i) �2 f ◦ c(i), for
every element i ∈ [n1]. Since the domain of the segment (t, f ◦ c) is also [n1], the previous
relation shows that the pair (f1, f0) defines a representative for an arrow of the form
(t, f ◦ c) → (t′, f ◦ c′) in Seg(Ω2). The faithfulness property as well as the composition
and identity axioms follow easily.

In fact, Proposition 2.26 hides a functor structure on the category of pre-ordered sets,
but this structure will not be needed in this paper.

2.27. Example. [Preparation example] The present example is the first of a series that
address the goals presented in section 2.1. Let (Ω,�) denote the Boolean pre-ordered
set {0 ≤ 1}. We follow the notation of Definition 2.7 and denote the pre-ordered set
{0, 1}×4 as Ω×4. Since Ω×4 is the 4-fold Cartesian product of Ω, it is equipped with four
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order-preserving functions πi : Ω×4 → Ω (see Example 2.12), which we purposely index
with i ∈ {a, b, c, d}. Later, each of these indices will be used to represent one of the four
individuals of section 2.1. Now, by Proposition 2.26, a morphism πi : Ω×4 → Ω induces a
functor as follows.

Seg(πi) : Seg(Ω×4)→ Seg(Ω)

If we represent an element (xa, xb, xc, xd) in Ω×4 as a word [xaxbxcxd], then the functor
Seg(πi) satisfies the following mapping rules for the various values of i shown in the
rightmost column.

Seg(Ω×4) −→ Seg(Ω) i

([1010][1010])([0110][0110][0110])([1111][1111]) 7→ (••)(◦◦◦)(••) i = a

([1010][1010])([0110][0110][0110])([1111][1111]) 7→ (◦◦)(•••)(••) i = b

([1010][1010])([0110][0110][0110])([1111][1111]) 7→ (••)(•••)(••) i = c

([1010][1010])([0110][0110][0110])([1111][1111]) 7→ (◦◦)(◦◦◦)(••) i = d

In the sequel, the category of segments Seg(Ω×4) will be used as a logic to reason about
our main example presented in section 2.1.

2.28. Pre-orders on homologous segments. Let (Ω,�) be a pre-ordered set and
let t : [n1] → [n0] be an order-preserving surjection. The subcategory of Seg(Ω) whose
objects are the homologous segments of topology t and whose arrows are the morphisms of
segments for which the components f0 and f1 are identities will be denoted by Seg(Ω : t)
and referred to as the category of homologous segments (over Ω) of topology t.

2.29. Proposition. [Pre-order category] For every order-preserving surjection t : [n1]→
[n0], the category Seg(Ω : t) is a pre-order category.

Proof. According to section 2.20 and the definition of Seg(Ω : t), giving an arrow
(t, c) → (t, c′) in Seg(Ω : t) amounts to giving a pre-order relation c′(i) � c(i) in (Ω,�)
for every i ∈ [n0]. It is straightforward to see that this defines a reflexive and transitive
binary relation.

2.30. Pre-orders on quasi-homologous segments. Let (Ω,�) be a pre-ordered
set and let n1 be a non-negative integer. The subcategory of Seg(Ω) whose objects are
the quasi-homologous segments of domain [n1] and whose arrows are the morphisms of
segments for which the component f1 is an identity will be denoted by Seg(Ω |n1) and
called the category of quasi-homologous segments (over Ω) of domain n1.

2.31. Proposition. [Pre-order category] For every non-negative integer n1, the category
of quasi-homologous segments Seg(Ω |n1) is a pre-order category.

Proof. Let (id, f0) : (t, c) → (t′, c′) and (id, g0) : (t, c) → (t′, c′) be two morphisms in
Seg(Ω |n1). We want to show that these morphisms are equal. According section 2.20
and the definition of Seg(Ω |n1), the two identities f0 ◦ t = t′ and g0 ◦ t = t′ hold, which
implies that the identity g0 ◦ t = f0 ◦ t holds. Because t is an epimorphism, the identity
g0 = f0 must hold.
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2.32. Remark. [Zero domain] The category Seg(Ω | 0) of quasi-homologous segments
with empty domain [0] is a terminal category whose only object is the initial object of
Seg(Ω).

2.33. Cones. Recall that a cone in a category C consists of an object X in C, a small
category A, a functor F : A→ C and a natural transformation ∆A(X)⇒ F where ∆A(X)
denotes the constant functor A → 1 → C mapping every object in A to the object X in
C.

2.34. Definition. [Wide spans] In the sequel, we shall speak of a wide span to refer
to a cone ∆A(X) ⇒ F defined over a finite discrete small category A whose objects are
ordered with respect to a total order (this will allow us to have canonical choices of limit
constructions).

2.35. Example. [Wide spans] Giving a wide span in a category C amounts to giving a
finite collection of arrows S := {fi : X → Fi}i∈[n] in C. When the category C has products,
the implicit order of the set [n] = {1, . . . , n} can be used to give a specific representative
to the product of the collection {Fi}i∈[n] in C.

2.36. Chromologies. A chromology is a pre-ordered set (Ω,�) that is equipped, for
every non-negative integer n, with a set D[n] of cones in the category Seg(Ω |n). Such a
chromology will later be denoted as a pair (Ω, D).

2.37. Remark. [Future examples] In section 3.39, we will see several examples of chro-
mologies, which will be used throughout this article.

2.38. Logical systems. By a logical system, we mean a category C that is equipped
with a subclass of its cones W (see section 2.33).

2.39. Remark. [Size matters] The only difference between a logical system and a limit
sketch is the sizes of their collections of objects: that of the latter is a set while that of
the former is a class. This does make a difference in the type of properties that the two
definitions satisfy. Because of their sizes, logical systems will only be used as codomains
of functors. On the other hand, a chromology, which is a limit sketch, will often turn out
to be the domain of a functor.

2.40. Pedigrads. Pedigrads are algebraic structures that model the logical rules of
chromologies. Their name refers to the concept of ‘pedigree’ used in genetics to draw the
genealogy of a set of taxa. Let (Ω, D) be a chromology and (C,W) be a logical system.
A pedigrad in (C,W) for (Ω, D) is a functor Seg(Ω)→ C sending, for every non-negative
integer n, the cones in D[n] to cones in W .

2.41. Convention. [W-pedigrads] Because we will often consider the same category C
for different classes of cones W, we will often refer to a pedigrad in (C,W) as a W-
pedigrad.
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3. Examples of pedigrads in sets

The goal of the present section is to formalize the concept of sequence alignment in terms
of a functor on a subcategory of segments and to show that the right Kan extension of
this functor on the whole category of segments computes what can be seen as multiple
sequence alignments. The consistency of the integrated data is then studied by using the
concepts of pedigrad and chromology.

3.1. Truncation functors. In this section, we define a truncation operation (Defi-
nition 3.2) and show that this operation is a functor on a category of quasi-homologous
segments (Proposition 3.7). Extending this functoriality property to the whole category
of segments is not straightforward and requires a few more steps (see Proposition 3.8). In
section 3.11, we use the resulting functor to construct pedigrads.

3.2. Definition. [Truncation] For every segment (t, c) : [n1] ( [n0] over Ω and element
b ∈ Ω, we will denote by Trb(t, c) the subset {i ∈ [n1] | b � c ◦ t(i)} of [n1]. This is the set
of all elements in [n1] whose images via c ◦ t are greater than or equal to b in Ω.

3.3. Example. [Truncation] Let (Ω,�) be the Boolean pre-ordered set {0 ≤ 1}. If we
consider the segment (t, c) of Seg(Ω) given below on the left, then the operation Trb for
which b is taken to be equal to 1 will only select the integers in the domain of (t, c) that
are associated with black nodes. On the other hand, the operation Trb for which b is taken
to be equal to 0 will select all the integers in the domain of (t, c).

(t, c) = (•••)(◦◦)(••••)(◦◦◦◦◦)(•••)(◦) Tr1(t, c) = {1, 2, 3, 6, 7, 8, 9, 15, 16, 17}
Tr0(t, c) = [18]

Similarly, if we let (Ω,�) denote the pre-ordered set {0 ≤ 1 ≤ 2} (used in Remark
3.26), then we obtain the following truncations for the segment (t, c) given below, on the
left.

(t, c) = (111)(00)(2222)(00000)(111)(0)
Tr2(t, c) = {6, 7, 8, 9}
Tr1(t, c) = {1, 2, 3, 6, 7, 8, 9, 15, 16, 17}
Tr0(t, c) = [18]

Here, the reader may have noticed that any relation of the form b � b′ will lead to an
inclusion of the form Trb′(t, c) ⊆ Trb(t, c). This property, even though interesting, is not
used in this paper.

3.4. Definition. [Sub-objects] For every non-negative integer n, we will speak of a sub-
object of [n] to refer to a subset of [n]. A morphism of sub-objects of [n] is an inclusion
of sets between the two sub-objects.
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3.5. Example. [Truncation operations and sub-objects] Let (Ω,�) be the Boolean pre-
ordered set {0 ≤ 1}. If we consider the morphism of segments that is given in Example
2.22, which we recall below, on the left-hand side, we can see that the truncation operation
Tr1 gives, on the right, two sub-objects of the domain [18] that can be related via a
morphism of sub-objects.

(t, c) = (•••)(◦◦)(••••)(•••••)(◦◦◦)(◦) Tr1(t, c) = {1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14}−→ ⊇

(t′, c′) = (◦◦◦◦◦)(•••••••••)(◦◦◦◦) Tr1(t
′, c′) = {6, 7, 8, 9, 10, 11, 12, 13, 14}

The fact that a morphism of segments of the form (t, c)→ (t′, c′) gives rise to an inclusion
Tr1(t

′, c′) ⊆ Tr1(t, c) is explained by Lemma 3.6.

3.6. Lemma. Let (f1, f0) : (t, c) → (t′, c′) be a morphism in Seg(Ω). If the relation
f1(i) ∈ Trb(t

′, c′) holds, then so does the relation i ∈ Trb(t, c).

Proof. Recall that, by definition of a morphism in Seg(Ω), the inequality c′ ◦ f0 � c
holds. Now, if the relation f1(i) ∈ Trb(t

′, c′) holds, then so do the following pre-order
relations.

b � c′ ◦ t′ ◦ f1(i) = c′ ◦ f0 ◦ t(i) � c ◦ t(i)

By transitivity, we obtain the inequality b � c ◦ t(i), which implies that i must be in
Trb(t, c).

The following proposition only shows one side of the functorial properties satisfied by
the truncation operation. Proposition 3.8 will give a different functor construction, which
is related to that given in Proposition 3.7 via the statement of Proposition 3.10. While
Proposition 3.8 will later be used to construct pedigrads, Proposition 3.7 will be used to
deduce properties related to them.

3.7. Proposition. For every element b ∈ Ω and non-negative integer n1, the mapping
(t, c) 7→ Trb(t, c) extends to a functor Trb : Seg(Ω |n1)→ Setop, which factorizes through
the opposite category of sub-objects of [n1].

Proof. By definition, for every segment (t, c) in Seg(Ω |n1), the set Trb(t, c) is a subset
of [n1]. For every morphism (id, f0) : (t, c)→ (t, c′) in Seg(Ω |n1), Lemma 3.6 shows that
there is an inclusion Trb(t, c

′) ⊆ Trb(t, c). Since the opposite category of sub-objects of
[n1] is a pre-order category, the functor structure is obvious and the statement follows.

The extension of the functorial property given in Proposition 3.7 to the whole category
of segments requires to change the codomain category Set to the category Set∗ of pointed
sets and point-preserving maps (see Example 3.9). In this respect, recall that there is an
adjunction

Set
F //
⊥
oo

U
Set∗
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whose right adjoint U : Set∗ → Set forgets the pointed structure (i.e. U : (X, p) 7→ X)
and whose left adjoint F : Set→ Set∗ maps a set X to the obvious pointed set (X+{∗}, ∗)
and maps a function f : X → Y to the coproduct map f + {∗} : X + {∗} → Y + {∗}.

3.8. Proposition. For every element b ∈ Ω, the mapping (t, c) 7→ FTrb(t, c) extends to a
functor Tr∗b : Seg(Ω)→ Setop∗ mapping every function (f1, f0) : (t, c)→ (t′, c′) in Seg(Ω)
to the following map of pointed sets.

Tr∗b(f1, f0) : FTrb(t′, c′) → FTrb(t, c)
j 7→ i if ∃i ∈ Trb(t, c) : j = f1(i);
j 7→ ∗ otherwise.

Proof. The well-definedness of the point-preserving map Tr∗b(f1, f0) follows from Lemma
3.6. The mapping Tr∗b obviously satisfies the identity axiom associated with the concept
of a functor. The composition axiom is shown as follows. Take two morphisms (f1, f0) :
(t, c) → (t′, c′) and (f ′1, f

′
0) : (t′, c′) → (t′′, c′′) in Seg(Ω). The image of the composition

(f ′1, f
′
0) ◦ (f1, f0) via the operation Tr∗b takes the following form.

j 7→ (f ′1 ◦ f1)−1(j) if (f ′1 ◦ f1)−1(j) 6= ∅
j 7→ ∗ otherwise.

Since the identity (f ′1◦f1)−1(j) = (f1)
−1((f ′1)

−1(j)) holds whenever the inequality (f ′1)
−1(j)

6= ∅ is satisfied, we deduce that the following equation holds.

Tr∗b((f
′
1, f

′
0) ◦ (f1, f0)) = Tr∗b(f1, f0) ◦ Tr∗b(f ′1, f ′0)

This last equation shows that Tr∗b is a functor going to the opposite category of Set∗.

3.9. Example. [Truncation operations and pointed sets] Let (Ω,�) be the Boolean pre-
ordered set {0 ≤ 1}. Consider the morphism of segments of Example 2.23, given below,
on the left. Its mapping has further been detailed by using adequate labeling to show
how the first segment is mapped to the second one. On the right, we can see its image
via the truncation operation Tr1 where we see that the indices 4 and 5, in the truncated
codomain, do not have corresponding indices in the truncated domain.

(
1•2•3•)(4◦5◦)(6•7•8•9•)(•••••)(◦◦◦)(◦) {1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14} ?−→

−→ −→

(
1•2•3•∗•)(∗•)(4◦5◦∗◦∗◦)(6•7•8•9•)(•••••)(◦◦◦)(◦) {1, 2, 3, 10, 11, 12, . . . , 16, 17, 18} ∪ {4, 5}

A way to associate the indices 4 and 5 with an element in the truncated domain is to
formally add one, thus explaining the pointed structure used in Proposition 3.8.
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3.10. Proposition. For every element b ∈ Ω and non-negative integer n1, the following
diagram commutes.

Seg(Ω |n1)

Trb
��

⊆
// Seg(Ω)

Tr∗b
��

Setop
Fop

// Setop∗

Proof. By definition, if we restrict the functor Tr∗b : Seg(Ω)→ Setop∗ to the subcategory
Seg(Ω |n1) ↪→ Seg(Ω), then every morphism (t, c) → (t, c′) in the pre-order category
Seg(Ω |n1) is sent to the following map in Set∗ (see Proposition 3.8).

Tr∗b(f1, f0) : FTrb(t, c′) → FTrb(t, c)
j 7→ j j ∈ Trb(t, c

′)
∗ 7→ ∗ otherwise.

This means that the restriction of Tr∗b on Seg(Ω |n1) can be retrieved from the application
of the functor F on the images of Trb.

3.11. Examples of pedigrads in sets. In this section, we construct a collection of
functors Seg(Ω) → Set for any pointed set (E, ε) and parameter b in Ω (see Definition
3.13). Later on, we will define various classes of cones W in Set for which these functors
are W-pedigrad (see Theorem 3.47 and Theorem 3.49).

3.12. Convention. [Notation] In the sequel, the hom-set of a category C from an object
X to an object Y will be denoted as C(X, Y ). For instance, the set of functions from a
set X to a set Y will be denoted by Set(X, Y ). Also, recall that, for any category C, the
hom-sets give rise to a functor C( , ) : Cop × C → Set called the hom-functor [12, page
27].

3.13. Definition. [Environment functors] For every element b ∈ Ω, we will denote by
Eε
b the functor Seg(Ω)→ Set defined as the composition of the following pair of functors.

Seg(Ω)
Tr∗b // Setop∗

Set∗( ,(E,ε))
// Set

3.14. Remark. For every object (t, c) in Seg(Ω), an element in Eε
b (t, c) can be seen as

a function of the form Trb(t, c)→ E according to the following series of bijections.

Eε
b (t, c) = Set∗(Tr

∗
b(t, c), (E, ε))

= Set∗(FTrb(t, c), (E, ε)) (Definition of Tr∗b)
∼= Set(Trb(t, c),U(E, ε)) (F a U)
= Set(Trb(t, c), E) (Definition of U)

Because the set Trb(t, c) is equipped with the usual order of natural numbers, we will
represent an element in Eε

b (t, c) as a word of elements in E (see Example 3.15).
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3.15. Example. [Objects] Suppose that (Ω,�) denotes the Boolean pre-ordered set {0 ≤
1} and let (E, ε) be the pointed set {A, C, G, T, ε}. If we consider the segment

(t, c) = (•••)(◦◦)(••••)(•••••)(◦◦◦)(◦)

then the set Eε
1(t, c) (where b = 1) will contain the following words (which have been

parenthesized for clarity), among many others.

(AGε)(TCAA)(TAGGε);

(GTε)(εεεC)(AGTAC);

(TAA)(GATC)(AGTTT);

etc.

3.16. Example. [Morphisms] Suppose that Ω denotes the Boolean pre-ordered set {0 ≤
1} and let (E, ε) be the pointed set {A, C, G, T, ε}. If we consider the morphism of segments
given below, in which we use adequate labeling to show how the first segment is included
in the second one,

(
1•2•3•)(4◦5◦)(6•7•8•9•)(10• 11•) → (

1•2•3•∗•∗•)(4◦5◦∗◦)(6•7•8•9•)(∗•)(10◦ 11◦)

then the image of the previous arrow via Eε
1 is a function whose mappings rules look as

follows.
(AGε)(TCAA)(GC) 7→ (AGεεε)(TCAA)(ε);

(GTε)(εεεC)(TA) 7→ (GTεεε)(εεεC)(ε);

(TAA)(GATC)(AA) 7→ (TAAεε)(GATC)(ε);

etc.

Note that if one restricts oneself to morphisms in Seg(Ω) that only insert new nodes and
do not turn any black node into white ones, then the mappings associated with the images
of such morphisms can be seen as gap insertion operations. As seen in section 2.1, these
operations are used in sequence alignment algorithms to compare sequences of different
lengths together.

(
1•2•3•)(4◦5◦)(6•7•8•9•)(10• 11•) → (

1•2•3•)(4◦5◦∗◦)(6•7•∗•∗•8•9•)(∗•10• 11•)

(GAC)(ATTC)(CT) 7→ (GAC)(ATεεTC)(εCT);

etc.

3.17. Proposition. For every domain [n1], the restriction of the functor Eε
b : Seg(Ω)→

Set on Seg(Ω |n1) is isomorphic to the functor Set(Trb( ), E) : Seg(Ω |n1) → Set. In
other words, the following diagram commutes up to an isomorphism of functors.

Seg(Ω |n1)
⊆

//

Trb
��

Seg(Ω)

Eεb
��

Setop
Set( ,E)

// Set
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Proof. Note that the following series of isomorphisms hold on Seg(Ω |n1).

Eε
b ( ) = Set∗

(
Tr∗b( ), (E, ε)

)
= Set∗

(
FTrb( ), (E, ε)

)
(Proposition 3.10)

∼= Set
(
Trb( ),U(E, ε)

)
(F a U)

= Set
(
Trb( ), E

)
(Definition of U)

Since these isomorphisms are natural on Seg(Ω |n1), the statement follows.

3.18. Sequence alignments. In this section, we use the functors defined in section
3.11 to formalize the concept of sequence alignment. The examples given in this section
mainly focus on addressing our main example presented in section 2.1.

3.19. Definition. [Alignment specification] We shall speak of an alignment specification
to refer to a wide span (Definition 2.34) in the category pOrd of pre-ordered sets.

3.20. Example. [Alignment specification] Let (Ω,�) be the Boolean pre-ordered set
{0 ≤ 1}. If we use the notations of Example 2.27, then the following collection of mor-
phisms in pOrd defines an alignment specification.

{πi : Ω×4 → Ω}i∈{a,b,c,d} (3)

Here, the discrete category {a, b, c, d} is implicitly ordered with respect to the alphabetic
order and hence makes (3) a wide span as defined in Definition 2.34.

In general, alignment specifications do not necessarily need to be universal cones and
the codomains of the arrows do not need be equal either. For instance, the following pair
of wide spans define two valid alignment specifications.

πa : Ω×4 → Ω,
πc : Ω×4 → Ω,
πd : Ω×4 → Ω




πa × πb : Ω×4 → Ω×2,
πc : Ω×4 → Ω,
πd : Ω×4 → Ω


In the next article [28], we will use alignment specifications made of identity morphisms.

3.21. Definition. [Aligned pedigrads] Let A = {fi : (Ω,�)→ (Ωi,�i)}i∈A be an align-
ment specification and b be an element in Ω. We denote by AEε

b the functor Seg(Ω) →
Set resulting from the composition of the three functors given in (4), where

- the rightmost functor is the obvious Cartesian functor of Set;

- the middle functor is the Cartesian product of the functors Eε
fi(b)

: Seg(Ωi)→ Set;

- and the leftmost functor is the product adjoint of the cone induced by the image of
A via Seg (section 2.25).

Seg(Ω)
(Seg(fi))i∈A

//
∏

i∈A Seg(Ωi)

∏
i∈A E

ε
fi(b) //

∏
i∈A Set

×
// Set (4)

Such a functor will be called the alignment of Eε
b on A.
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3.22. Example. [Aligned pedigrads] Let (Ω,�) denote the Boolean pre-ordered {0 ≤ 1}
and let A denote the alignment specification given in (3). As usual, we shall let (E, ε)
denote the pointed set {A, C, G, T, ε}. For any given segment (t, c) in Seg(Ω×4) and element
b ∈ Ω×4, the set AEε

b (t, c) is equal to the following Cartesian product of sets.

Eε
πa(b)(t, πa ◦ c)× E

ε
πb(b)(t, πb ◦ c)× E

ε
πc(b)(t, πc ◦ c)× E

ε
πd(b)(t, πd ◦ c)

The following table illustrates what the elements of the previous set look like for different
segments (t, c) in Seg(Ω×4) and a fixed value b in Ω×4. As usual, parentheses are added
for clarity and the underscore symbols4 are only used to represent spaces “to be filled
out”.

b (t, c) AEε
b (t, c)

(1,1,1,1)

([1111][1111])([1111][1111][1111])

(AG)(CGT)
(AT)(TCG)
(Cε)(ATG)
(AT)(GGG)

;

(GT)(AAT)
(CG)(GTε)
(AC)(TTG)
(εε)(TGC)

;

(CA)(AAC)
(CC)(εAC)
(CT)(εCA)
(AC)(TTG)

; etc.

([1010][1010])([0110][0110][0110])
(AG)

(TCG)
(Cε)(ATG)

;
(GT)

(GTε)
(AC)(TTG)

;
(CA)

(εAC)
(CT)(εCA)

; etc.

([0011][0011])([0011][0011][0011]) (Cε)(ATG)
(AT)(GGG);

(AC)(TTG)
(εε)(TGC);

(CT)(εCA)
(AC)(TTG); etc.

([1100][1100])([1100][1100][1100]) (AG)(CGT)
(AT)(TCG);

(GT)(AAT)
(CG)(GTε); (CA)(AAC)

(CC)(εAC); etc.

We can see that AEε
b (t, c) contains what we would like to understand as sequence align-

ments. It would therefore be natural to try to model our example, given in section 2.1,
relatively to the functor AEε

b . In what follows, we define the concept of sequence align-
ment relative to alignments of functors Eε

b for some pointed set (E, ε), pre-ordered set Ω
and element b ∈ Ω.

The following definition formalizes the concept of sequence alignment in terms of a
subcategory, a functor and a natural transformation. In Example 3.25, we will see how
one can use this concept to reason about the problem given in section 2.1.

3.23. Definition. [Sequence alignment functors] Let A be an alignment specification
as given in Definition 3.21 and b be an element in Ω. We define a sequence alignment
functor over AEε

b as a triple (ι, T, σ) where ι is an inclusion functor ι : B → Seg(Ω), T
is a functor B → Set and σ is a natural monomorphism T ⇒ AEε

b ◦ ι.

3.24. Convention. [Notations] In the sequel, it will be convenient to have short nota-
tions for the segments of the subcategory B ↪→ Seg(Ω) associated with a sequence align-
ment functor. In the context of the present article, most of our segments will have trivial

4These underscore symbols should not be confused with the dash symbols that is sometimes used in
bioinformatics to denote a substitution. Note that, in our case, the symbol ε already plays the role of
the dash symbols.
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topologies – given by the canonical surjection ![n] : [n] → [1] – and will hence be of the
following form for some color b ∈ Ω.

(bbb. . .bb)

In this respect, we shall denote any segment whose topology t is of the form ![n] : [n]→ [1]
and whose function c : [1]→ Ω picks out an element b ∈ Ω as a pair (![n], b).

3.25. Example. [Sequence alignment functors] The present example is a continuation
of Example 3.22 and aims to illustrate the use of Definition 3.23 in the context of our
problem introduced in section 2.1. We shall therefore use the same notations as those
used in Example 3.22.

As mentioned at the end of Example 3.22, we want to model the example of section
2.1 relative to the functor AEε

b defined in the example. The idea is to pick out, via
the concept of sequence alignment functors introduced in Definition 3.23, the pairwise
sequence alignments living in the images of AEε

b outputted by the dynamic programming
algorithm presented in section 2.1. In this respect, let us compute the sequence alignments
of every pair of individuals given in section 2.1 by following the method described therein.
Doing so, we obtain the following table of pairwise sequence alignments.

Pairs Sequence alignments
Anne

Bob

ACCGACTG

AεCATCTG
ACCGACTG

ACAεTCTG
ACCGAεCTG
AεCεATCTG

ACCGACTG

ACATεCTG
Anne

Craig

ACCGACTG

ACCGTCεA
ACCGACTG

ACCGTCAε
Anne

Doug

ACCGACTG

AεCTACTG
ACCGACTG

ACTεACTG
Bob

Craig

AεCATCTG
ACCGTCεA

ACAεTCTG
ACCGTCεA

AεCATCTG
ACCGTCAε

ACAεTCTG
ACCGTCAε

Bob

Doug

ACATCTG

ACTACTG

ACATεCTG
ACεTACTG

ACεATCTG
ACTAεCTG

ACCGTCA

ACTACTG

ACCGTCεA
AεCTACTG

ACCGTCεA
ACTεACTG

ACCGTεCεA
AεCεTACTG

ACCGTCεA
ACTAεCTG

ACεCGTCA
ACTACTεG

Craig

Doug

ACCεGTCA
ACTACTεG

ACCGεTCA
ACTACTεG

ACεεCGTCA
ACTACεTεG

ACCGTCAε
AεCTACTG

ACCGTCAε
ACTεACTG

ACCGTεCAε
AεCεTACTG

ACCGTCAε
ACTAεCTG

ACεCGTCA
ACTACTGε

ACCεGTCA
ACTACTGε

ACCGεTCA
ACTACTGε

ACεεCGTCA
ACTACεTGε

If we now take b to be equal to the element (1, 1, 1, 1) in Ω×4, the previous table can
reasonably be seen as a ‘part’ of the functor AEε

b by interpreting each pairwise sequence
alignment given above as an element in one of the images of AEε

b (see the table given
in Example 3.22). In this example, we shall implement this ‘part’ by considering the
sequence alignment functor (B, ι, T, σ) whose subcategory B ↪→ Seg(Ω) is the union
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of the full subcategories of Seg(Ω×4 | 7), Seg(Ω×4 | 8) and Seg(Ω×4 | 9) that contain the
following segments:

(![7], [0101]) (![7], [0011]) (![7], [0001]) (![8], [1100]) (![8], [1010])
(![8], [1001]) (![8], [0110]) (![8], [0101]) (![8], [0011]) (![8], [0001])
(![8], [1000]) (![8], [0100]) (![8], [0010]) (![9], [0011]) (![9], [1100])

and whose monomorphism T ⇒ AEε
b ◦ι picks out the pairwise sequence alignments shown

in the previous table. Before making this last statement more precise, let us explain how
the colors and the domains of the segments of B (shown above) will be used to organize the
pairwise sequence alignments contained in the images of T . First, as already suggested
in Example 2.27, we want to use a tuple (xa, xb, xc, xd) in Ω×4 to specify whether an
individual is included in a sequence alignment or not by setting the variable indexed by
the initial of the individual to 1 or 0, respectively. For instance, setting xa to 1 would
mean that Anne is part of the alignment computation. Second, we want to make the
cardinality of the domains of the segments match the length of the pairwise sequence
alignments with which they are associated. Thus, we could decide to encode the row of
the previous table comparing Anne and Bob by taking the following images for T .

T (![8], [1100]) =

{
ACCGACTG

AεCATCTG
,
ACCGACTG

ACAεTCTG
,
ACCGACTG

ACATεCTG

}

T (![9], [1100]) =

{
ACCGAεCTG
AεCεATCTG

}
Similarly, the other images of T on segments containing exactly two symbols 1 could be
taken as follows (the specification of the second last image, of cardinality 12, is left to the
reader).

T

T (![8], [1010]) =

{
ACCGACTG

ACCGTCεA
;
ACCGACTG

ACCGTCAε

}
T (![8], [1001]) =

{
ACCGACTG

AεCTACTG
;
ACCGACTG

ACTεACTG

}
T (![8], [0110]) =

{
AεCATCTG
ACCGTCεA

;
ACAεTCTG
ACCGTCεA

;
AεCATCTG
ACCGTCAε

;
ACAεTCTG
ACCGTCAε

}
T (![7], [0101]) =

{
ACATCTG

ACTACTG

}
T (![8], [0101]) =

{
ACATεCTG
ACεTACTG

;
ACεATCTG
ACTAεCTG

}
T (![7], [0011]) =

{
ACCGTCA

ACTACTG

}
T (![8], [0011]) =

{
ACCGTCεA
AεCTACTG

; . . .

}
T (![9], [0011]) =

{
ACCGTεCεA
AεCεTACTG

;
ACεεCGTCA
ACTACεTεG

;
ACCGTεCAε
AεCεTACTG

;
ACεεCGTCA
ACTACεTGε

}
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In addition to these sets, we also want to include sets that enable us to compare the pre-
vious sequence alignments. For instance, the segments indexing the images T (![8], [1100])
and T (![8], [0110]) both have their coordinates xb set to 1, so they should both be able to
go to the image T (![8], [0100]). An easy choice for such an image is to pick

T (![8], [0100]) := AEε
b (![8], [0100])

so that we have a diagram of functions as shown in (5) by sending the DNA sequences
of Bob – which constitute the bottom rows of the sequence alignments of T (![8], [1100])
and the top rows of the sequence alignments of T (![8], [0110]) – to the corresponding DNA
sequences in AEε

b (![8], [0010]).

T (![8], [1100])

&&

T (![8], [0110])

xx

T (![8], [0100])

(5)

We can proceed similarly for the other images of T . However, we want to be cautious
in doing so as every relation of the form (5) will correspond to a test of compatibility
between the sequence alignments contained in the images of T . Indeed, trying to link too
many images of T together may later lead to a set of empty ‘associations’. For instance,
linking the set T (![8], [0011]) and T (![9], [0011]) through the set AEε

b (![9], [0001]) (as shown
below, in (6)) will label certain alignments of T (![8], [0011]) as ‘inconsistent’ because they
cannot be related to those of T (![9], [0011]). Ultimately, this is the type of conclusion that
we would like to reach, but, in the present situation, the considered sets of alignments
belong to the same pair of individuals and hence should not be able to contradict each
other (see Remark 3.26 for further discussion).

T (![8], [0011]) → AEε
b (![8], [0001]) → AEε

b (![9], [0001]) ← T (![9], [0011])
ACCGTCεA
ACTεACTG

7→ ACTεACTG 7→ AεCTεACTG 7→ ???
(6)

In other words, for this example, we want to take T (![n], c) to be the set AEε
b (![n], c) for

any integer n and element c in Ω×4 satisfying the following relation.

(n, c) ∈ {(8, [1000]), (8, [0100]), (8, [0010]), (8, [0001]), (7, [0001])}

We then link the images of T at segments whose colors contain exactly two symbols 1

to the images of T at segments whose colors contain a single 1 by forgetting either the
top row or the bottom row of each pairwise sequence alignment contained in the domain,
in the same fashion as in diagram (5). The obtained maps are obviously indexed by the
arrows of B that makes sense with the forgetful operation they define. Doing so defines an
inclusion functor ι : B ↪→ Seg(Ω×4), a functor T : B → Set and a natural transformation
T ⇒ AEε

b ◦ ι that model the table given at the beginning of this example.
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3.26. Remark. [Resolving inconsistencies] The present remark discusses the choices
made in Example 3.25 for the construction of the functor T : B → Set. We shall
keep the same notations as those introduced therein. First, recall that the category B
(the domain of T ) was defined so that the images T (![8], [0011]) and T (![9], [0011]) could not
connect through another image of T .

T (![8], [0011])

''

T (![9], [0011])

ww

AEε
b (![9], [0001])

(7)

The reason for this was that not every element in T (![8], [0011]) could find a correspond-
ing element in T (![9], [0011]) through the set AEε

b (![9], [0001]) so that diagram (7) would
eventually lead to label those elements as inconsistent. In our case, this type of scenario
should be avoided because we are mainly interested in unravelling inconsistencies between
different tables produced by the dynamic programming algorithm of section 2.1 (while di-
agram (7) compares alignments coming from the same table). However, it could certainly
be interesting to be able to know whether the sequence alignments of Craig and Doug of
length 8 are consistent with those of length 9. A way to do this without creating a conflict
with our main goal would be to add a new color to Ω, say by taking the pre-ordered set
Ω = {0 ≤ 1 ≤ 2} and keeping b = (1, 1, 1, 1). Then, we could use this new color to study
the compatibility of the alignments coming from the same table. For instance, we could
give T an image at the segment (![8], [0022]) that would contain the same alignments as
those contained in T (![9], [0011]), but the resulting image T (![8], [0022]) would be linked to
the image T (![8], [0011]) through the image

T (![9], [0001]) := AEε
b (![9], [0001])

as shown in the diagram given below (the left-hand side arrow makes sense with the
functor structure because the inequality [0001] � [0022] holds in Ω×4).

T (![8], [0022])

&&

T (![9], [0011])

xx

T (![9], [0001])

Meanwhile, the image T (![8], [0011]) would be reserved to studying the compatibility with
the other pairs of individuals and would be isolated from T (![9], [0011]) because the category
Seg(Ω) does not allow morphisms of the type (![8], [0011])→ (![8], [0022]) to exist.

3.27. From right Kan extensions to multiple sequence alignments. In this
section, we show that the right Kan extension (see Definition 3.32) of a sequence alignment
functor (Definition 3.23) contains what one would like to understand as the outputs of
the table gluing algorithm described at the end of section 2.1.

We start the section with an example showing how sequence alignment functors can
be used, along with limits, to reason about the relatedness of a group of individuals. In
particular, we illustrate it in the context of our main example (section 2.1).
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3.28. Example. [Reasoning with sequence alignment functors] The present example con-
tinues the discussion of Example 3.25 and shows how the sequence alignment functor
(ι, T, σ) defined therein can be used to reason about our main example given in section
2.1. More specifically, we will show how the sequence alignment functor (ι, T, σ) can be
used to deduce phylogenetic relationships between the individuals of section 2.1 by look-
ing at whether certain arrows induced by the structure of (ι, T, σ) are proper surjections,
bijections and simply functions.

We start this example by looking at a surjection. First, an easy calculation shows that
the pullback of diagram (5) can be mapped surjectively onto the image T (![8], [1010]) by
forgetting the DNA sequences associated with Bob.

T (![8], [1100])×xb T (![8], [0110])→ T (![8], [1010]) (8)

More specifically, the associated surjection, of the form shown in (8), maps the pairs of
pairwise sequence alignments shown in (9) (the domain of (8)) to the pairwise sequence
alignments shown in (10) (the codomain of (8)) by forgetting the bottom and top sequences
of the first and second components of the pairs contained in the domain.

(
ACCGACTG

AεCATCTG

)
(

AεCATCTG
ACCGTCεA

)
(

ACCGACTG

ACAεTCTG

)
(

ACAεTCTG
ACCGTCεA

)
(

ACCGACTG

AεCATCTG

)
(

AεCATCTG
ACCGTCAε

)
(

ACCGACTG

ACAεTCTG

)
(

ACAεTCTG
ACCGTCAε

)
 (9)

{ (
ACCGACTG

ACCGTCεA

)(
ACCGACTG

ACCGTCAε

) }
(10)

As seen in (9), the elements of the domain can be interpreted as multiple sequence align-
ments of Anne, Bob and Craig, where the sequence of Bob is repeated twice. The fact
that these multiple sequence alignments can be sent to the pairwise sequences of Anne

and Craig tells us that Bob does not inform us of new ways of relating Anne and Craig

together. Furthermore, the fact that function (9) is also a surjection tells us that the
sequence of Bob is also unable to provide any potential correction to the sequence align-
ments of Anne and Craig (by showing us some sequence alignment of Anne and Caig

that would not be supported by the sequence alignments of (9)). In the present case, it
is as if Bob is unnecessary for understanding possible nuances in the evolution of Anne

and Craig. A very probable reason could be that Anne and Craig are much closer to
each other genetically than they are to Bob – this would be represented by the following
evolutionary tree.

Anne Craig Bob

From the point of view of the problem exposed in section 2.1, surjection (8) tells us that
gluing the comparison table of Anne and Bob with the comparison table of Bob and Craig
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along the edge of Bob does not contradict the table of Anne and Craig. In other words,
there is no obstruction for passing from the two dimensional comparisons of Anne with
Bob and Bob with Craig to the three dimensional table comparing Anne, Bob and Craig

together.
Let us now look at an example for which the function is not surjective. First, recall that

the sequence alignment (ι, T, σ) was defined such that cospan (11) exists (see Example
3.25).

T (![8], [1010])

&&

T (![8], [1001])

xx

T (![8], [1000])

(11)

An easy calculation then shows that the pullback of cospan (11) contains multiple sequence
alignments of Anne, Craig and Doug that can be mapped to the sequence alignments of
Craig and Doug contained in T (![8], [0011]) by forgetting the DNA sequences associated
with Anne.

T (![8], [1010])×xa T (![8], [1001])→ T (![8], [0011]) (12)

However, comparing the cardinalities of the domain and codomain of the resulting func-
tion, shown in (12), informs us that this mapping cannot be surjective. This suggests that,
while Anne does not give new ways of relating Craig and Doug together, the relatedness
of Craig and Doug may still be nuanced by the consideration of Anne. In other words,
the evolution of Craig and Doug cannot completely be explained without the sequence of
Anne. Such a relationship could be represented by one of the following evolutionary trees,
in which the removal of Anne may prevent us from understanding how different Craig

and Doug are.

Craig Anne Doug Craig DougAnne

From the point of view of the problem exposed in section 2.1, function (12) tells us
that gluing the comparison table of Anne and Craig with the comparison table of Anne

and Doug along the edge of Anne does not confirm all the pairwise sequence alignments
computed for Craig and Doug. This suggests that the relatedness of Craig and Doug may
be too old to be completely described by the table computed for Craig and Doug and
would be better analyzed through the gluing of other tables.

Our goal is now to formalize the discussion of Example 3.28 through the notion of right
Kan extension (given in Definition 3.32). This will allow us to motivate the introduction
of chromologies in Example 3.38. We start by defining the category on which the right
Kan extension is computed.

3.29. Definition. [Extending category] Let (Ω,�) be a pre-ordered set. For every object
τ in Seg(Ω) and functor ι : B → Seg(Ω), we will denote by (τ ↓ ι) the category whose
objects are pairs (υ, f) where υ is an object in B and f is a morphism τ → ι(υ) in Seg(Ω)
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and whose arrows (υ, f)→ (υ′, f ′) are given by morphisms g : υ → υ′ in B that make the
following square commute in Seg(Ω).

τ

f
��

τ

f ′

��

ι(υ)
ι(g)
// ι(υ′)

3.30. Remark. [Extending category as a cone] Let (Ω,�) be a pre-ordered set. For
every object τ in Seg(Ω) and functor ι : B → Seg(Ω), the category (τ ↓ ι) defined in
Definition 3.29 can be pictured as a cone of the form ∆(τ↓ι)(τ) ⇒ ιτ ◦ ι (section 2.33).
The arrows of the transformation associated with the cone are given by the objects of the
category (τ ↓ ι) (see non-dashed arrows shown below) while its diagram is formed by the
arrows of (τ ↓ ι) (see dashed arrows shown below).

τ

yy

		

��   

��

''

ι(υ1) ι(υ2) . . . ι(υn−1) ι(υn)

ι(υ1,2)
ι(g1)

__

ι(g2)

??

. . . ι(υn−1,n)
ι(gn−1)

cc

ι(gn)

<<

3.31. Convention. [Extending diagram] Let (Ω,�) be a pre-ordered set. For every
object τ in Seg(Ω) and functor ι : B → Seg(Ω), we will denote by ιτ the obvious functor
(τ ↓ ι)→ B that maps an object (υ, f) in (τ ↓ ι) to the object υ in B and maps an arrow
g : (υ, f)→ (υ′, f ′) in (τ ↓ ι) to the arrow g : υ → υ′ in B.

The following definition introduces the concept of right Kan extension by using its
well-known expression in terms of limits (see [12, Chap. X, Th. 1]).

3.32. Definition. [Right Kan extensions] Let (Ω,�) be a pre-ordered set, and ι : B →
Seg(Ω) and T : B → Set be two functors. We define the right Kan extension of T along ι
as the canonical functor RanιT : Seg(Ω)→ Set defined by the following limit construction
at every object τ in Seg(Ω).

RanιT (τ) = lim(τ↓ι)T ◦ ιτ (13)

The images of this functor on the arrows of Seg(Ω) will be described, later, in Remark
3.35.

3.33. Example. [Right Kan extensions] Let (ι, T, σ) denote the sequence alignment func-
tor over AEε

b defined Example 3.28. The goal of the present example is to show what the
images of the right Kan extension of T : B → Set along the inclusion ι : B → Seg(Ω×4)
look like. We will compute two images, namely RanιT (![8], [1100]) and RanιT (![8], [1110]).

Let us start with the image of the segment (![8], [1100]). According to Definition 3.32, we
need to compute the set of objects and the set of arrows defining the category ((![8], [1100]) ↓
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ι). We follow Definition 3.29, for which we use the category B described in Example 3.25,
and deduce that the objects of ((![8], [1100]) ↓ ι) are of the following form.

(![8], [1100])→ (![8], [0100]) (![8], [1100])→ (![8], [1000])
(![8], [1100])→ (![8], [1100]) (![8], [1100])→ (![9], [1100])

(14)

Then, Definition 3.29 tells us that the arrows of the category ((![8], [1100]) ↓ ι) are given
by the arrows of B that can form commutative triangles with the arrows of (14).

Let us describe the arrows of ((![8], [1100]) ↓ ι) more explicitly. First, by definition
of B, any object of ((![8], [1100]) ↓ ι) of the type shown in the bottom-right corner of
(14) is isolated from any object of a different type in (14). Since there are exactly 9
representatives of the type

(![8], [1100])→ (![9], [1100])

in Seg(Ω×4 | 9), the category ((![8], [1100]) ↓ ι) has exactly 9 isolated objects of this
type. However, because the image of the segment (![9], [1100]) via T is terminal (see
Example 3.25), these isolated objects will not matter in the computation of the limit
RanιT (![8], [1100]) (see formula (13)). What matters is the diagram encoded by the other
objects, which we now describe. First, because Seg(Ω×4 | 8) is a pre-order category
(Proposition 2.31), the arrows of ((![8], [1100]) ↓ ι) that relate the remaining objects are
unique. Also, observe that the object (![8], [1100]) can be related to the objects (![8], [0100])
and (![8], [1000]) through a cospan in B. Using formula (13), we deduce that isomorphism
(15) holds.

RanιT (![8], [1100]) ∼= T (![8], [1100]) (15)

In other words, the image of the right Kan extension RanιT at the segment (![8], [1100])
contains all the pairwise sequence alignments of Anne and Bob coming from the dynamic
programming algorithm.

Let us now compute the image of the segment (![8], [1110]). To do so, we need to
describe the set of objects and the set of arrows of the category ((![8], [1110]) ↓ ι). In the
present case, the set of objects is made of arrows of the following type.

(![8], [1110])→ (![8], [1000]) (![8], [1110])→ (![8], [0100]) (![8], [1110])→ (![8], [0010])

(![8], [1110])→ (![8], [1010]) (![8], [1110])→ (![8], [0110])

(![8], [1110])→ (![8], [1100]) (![8], [1110])→ (![9], [1100])

After eliminating the objects whose images via T are terminal and only considering the
morphisms that relate the remaining objects in ((![8], [1110]) ↓ ι), we can deduce from
formula (13) that the image of RanιT at the segment (![8], [1110]) is isomorphic to the limit
of the following diagram.

T (![8], [1010])

%% **

T (![8], [0110])

yy %%

T (![8], [1100])

yytt

T (![8], [0010]) T (![8], [1000]) T (![8], [0100])

(16)
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As shown in Example 3.28, the elements of RanιT (![8], [1110]) can be seen as triples of
pairwise sequence alignments contained in T (![8], [1010]), T (![8], [0110]) and T (![8], [1100])
that encode multiple sequence alignments between the sequences of Anne, Bob and Craig.

3.34. Remark. [Right Kan extension and gluing of tables] It should be clear that the im-
ages of the right Kan extension computed in Example 3.33 capture the higher dimensional
gluings mentioned in section 2.1. The idea is that one formally specifies how the pairwise
comparison tables are glued together via the category defined in Definition 3.29 and one
uses the limit formula given in Definition 3.32 to collect the compatible sequence align-
ments for these gluings. As a result, the right Kan extension can be seen as a model for
a multiple sequence alignment algorithm. From now on, our goal will be to describe how
this model can be used to reason about the mechanisms linking the individuals considered
in the sequence alignment functor.

3.35. Remark. [Functoriality] Let (Ω,�) be a pre-ordered set, and ι : B → Seg(Ω) and
T : B → Set be two functors. Let us explain why the map τ 7→ RanιT (τ) constructed
in Definition 3.32 induces a functor from Seg(Ω) to Set. First, notice that the functor
ιτ : (τ ↓ ι) → B defined in Convention 3.31 is natural in τ on the opposite category
Seg(Ω)op, which means that every morphism h : τ → τ ′ in Seg(Ω) induces a functor

h∗ : (τ ′ ↓ ι)→ (τ ↓ ι)

for which the identity ιτ ′ = ιτ ◦ h∗ holds. This last equation means that the functor
h∗ sends an object (υ, f) in (τ ′ ↓ ι) to the object (υ, f ◦ h) in (τ ↓ ι). The image of the
morphism h : τ → τ ′ via RanιT is then the canonical morphism induced by pre-composing
the diagram of the limit shown below, on the left, with h∗.

lim(τ↓ι)T ◦ ιτ
RanιT (h)

// lim(τ↓ι)T ◦ ιτ ◦ h∗

The functor structure of the mapping τ 7→ RanιT (τ) then follows from the universality of
limits.

3.36. Example. [Reasoning with right Kan extensions] The present example is a con-
tinuation of the discussion of Example 3.28 from the point of view of Definition 3.32 and
Example 3.33. We shall keep the same notations as those used in Example 3.28 and let
(ι, T, σ) denote the sequence alignment functor over AEε

b used thereof. Our goal is to
reformulate the statement given in Example 3.28 regarding the surjection

T (![8], [1100])×xb T (![8], [0110])→ T (![8], [1010])

in terms of the right Kan extension of T along ι. First, it follows from the description
given therein that this function, represented by the dashed arrow below, induces a cone
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over diagram (16) – the cone is shown below, using the dashed and dotted arrows.

T (![8], [1100])×xb T (![8], [0110])

**��tt

T (![8], [1010])

"" **

T (![8], [0110])

ww ''

T (![8], [1100])

||tt

T (![8], [0010]) T (![8], [1000]) T (![8], [0100])

The universal property of limits then gives us a factorization of the dashed surjection
through one of the canonical projections associated with the limit of diagram (16). More
specifically, this projection is of the form shown in (17).

RanιT (![8], [1110])→ T (![8], [1010]) (17)

The usual properties of surjections (or, in fact, those of epimorphisms) imply that pro-
jection (17) is also a surjection. Using a similar reasoning to the one used to deduce
isomorphism (15), we can show that the codomain of projection (17) is isomorphic to
RanιT (![8], [1010]). This means that (17) is of the following form.

RanιT (![8], [1110]) −→ RanιT (![8], [1010]) (18)

In fact, we can even show that the previous surjection is the image of the obvious morphism
of segments

(![8], [1110])→ (![8], [1010])

via the functor described in Remark 3.35. In the spirit of Remark 3.34, in which the
images of the right Kan extension were interpreted as models for higher dimensional
gluings of comparison tables between DNA sequences, surjection (18) tells us that the
higher dimensional gluing of the comparison tables of Anne, Bob and Craig is completely
captured by the comparison table of Anne and Craig, with some uncertainty as to what
exactly links Anne and Craig through Bob.

3.37. Example. [Reasoning about data consistency] As already suggested through the
discussions of Example 3.25, Remark 3.26 and Example 3.28, limits can give ways to
assess the consistency of the data. For instance, the right Kan extension of a sequence
alignment functor is given by a limit (Definition 3.32) that computes compatible sets
of sequence alignments (these compatible sets of alignments were interpreted as multiple
sequence alignments in Remark 3.34). In this example, we compute limits of images of the
right Kan extension to study how consistent these compatible sets of sequence alignments
are. As before, we assess this consistency by studying the properties of certain canonical
arrows induced by these limits.

We shall continue the discussion started in Example 3.36 and look at the limit of
diagram (16). First, observe that we can copy the reasoning that was used in Example
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3.33 to deduce isomorphism (15) to show that diagram (16) is in fact a diagram of images
of RanιT as follows.

RanιT (![8], [1010])

&& **

RanιT (![8], [0110])

xx &&

RanιT (![8], [1100])

xxtt

RanιT (![8], [0010]) RanιT (![8], [1000]) RanιT (![8], [0100])

Remark 3.35 even tells us that the previous diagram is the image of the underlying diagram
of segments via the right Kan extension RanιT . More specifically, if we let F : A→ Seg(Ω)
denote the diagram of segments indexing the previous diagram, then the computation of
the image RanιT (![8], [1110]) described in Example 3.33 shows that the following canonical
arrow is an isomorphism in Set.

RanιT (![8], [1110])→ limARanιT ◦ F

From the point of view of Remark 3.34, this means that there is no uncertainty as to how
Anne, Bob and Craig relate to each other from the point of view of their pairwise sequence
alignments – the previous isomorphism thus informs us that the table gluing procedure
is perfectly consistent. In Example 3.38, we will look at an instance of a canonical arrow
that fails to be an isomorphism and is only a surjection. We will see that this type of
arrow informs us that the integrated data is associated with some uncertainties.

The idea behind the right Kan extension of a sequence alignment functor is to collect
all the local and global information that is accessible from the point of view of a par-
ticular segment (for more intuition, see Remark 3.30). Since the domain category of a
sequence alignment functor can be designed to control the integration of this information
(see Remark 3.26), the right Kan extension of a sequence alignment functor gives us a
controlled procedure to construct multiple sequence alignments (Remark 3.34) through
the parsing of local and global pieces of information within the data set.

In bioinformatics, similar heuristics have been developed for the construction of se-
quence alignments, one of the most popular being the algorithm BLAST [1]. This algo-
rithm constructs a sequence alignment by looking at the local patches of a set of DNA
strands and aligning them according to a given scoring system. While the right Kan ex-
tension of a sequence alignment functor proceeds in a similar fashion, its scoring system
is more categorical than numerical – this is discussed in Example 3.38.

3.38. Example. [Global alignments versus local alignments] In bioinformatics, the dy-
namic programming algorithm presented in section 2.1 is usually used with two main
classes of scoring systems. The first class, known as the Needleman-Wunsch algorithm
[16], aims to find global sequence alignments by initializing the comparison table with
incremented gap penalties. This was the type of scoring system that we used in section
2.1, in which gap penalties were incremented by 1. The second class is known as the
Smith-Waterman algorithm [26] and is used to find local sequence alignments by initial-
izing the comparison table with null gap penalties. Hybrid scoring systems that only set
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gap penalties to 0 for either the rows or the columns can be used to detect semi-global
sequence alignments.

Global Semi-global Local
•
��

••
��

•
��

•••••
��

•••◦••••••
•
��

••
��

•
��

•••••
��

•••◦••••••◦◦◦
•
��

••
��

•
��

•••••
��

◦◦◦•••◦••••••◦◦◦

In this example, our goal is to show that the right Kan extension RanιT associated with the
sequence alignment functor constructed in Example 3.25 captures both local and global
aspects of the sequence alignment algorithms mentioned earlier. We will see that the
local information is detected by the type of morphism presented in Example 2.23. The
subsequent discussion will show that local pieces of information often come with more
uncertainty than global ones. The first part of our discussion will consist in comput-
ing the images of the four homologous segments (![8], [1000]), (![8], [1010]), (![8], [1001]) and
(![8], [1011]) via RanιT . Because the computation of these images are all very similar and
all follow formula (13), we will only detail the calculation of the image RanιT (![8], [1011])
and directly give the images of the other segments.

To compute the image of the segment (![8], [1011]) via RanιT , we need to look at the
collection of objects of the category ((![7], [1011]) ↓ ι) which consists of all the arrows of
the following type in Seg(Ω×4).

(![8], [1011])→ (![8], [1001]) (![8], [1011])→ (![8], [1010]) (![8], [1011])→ (![8], [0011])

(![8], [1011])→ (![8], [1000]) (![8], [1011])→ (![8], [0010]) (![8], [1011])→ (![8], [0001])

(![8], [1011])→ (![9], [0011])

While the objects encoded by arrows in Seg(Ω×4 | 8) are unique (see Proposition 2.31),
the objects of the type (![8], [1011])→ (![9], [0011]) possess exactly 9 representatives. After
examining the relations existing between these objects in ((![8], [1011]) ↓ ι), formula (13)
implies that the image of RanιT at the segment (![8], [1011]) is isomorphic to the set

L8([1011])× T (![9], [0011])×9

where we denote by L8([0111]) the limit of the diagram induced by the arrows of the
category ((![7], [1011]) ↓ ι) between the segments of the domain [8] (see the diagram below).

T (![8], [0011])

%% **

T (![8], [1010])

yy %%

T (![8], [1001])

yytt

T (![8], [0010]) T (![8], [0001]) T (![8], [1000])

A similar analysis for the images of RanιT at the segments (![8], [1000]), (![8], [1010]), and
(![8], [1001]) gives the following collection of isomorphisms.

RanιT (![8], [1000]) ∼= T (![8], [1000])
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RanιT (![8], [1010]) ∼= T (![8], [1010])

RanιT (![8], [1001]) ∼= T (![8], [1001])

Let us now use the images of the four segments (![8], [1000]), (![8], [1010]), (![8], [1001])
and (![8], [1011]) to see how the images of the right Kan extension integrate the local
pieces of information available from the sequence alignment functor (ι, T, σ). First, the
functoriality of RanιT gives us a commutative diagram as follows for the obvious choices
of morphisms in Seg(Ω | 8).

RanιT (![8], [1011])

uu **

RanιT (![8], [1010])

**

RanιT (![8], [1001])

uu

RanιT (![8], [1000])

Even though the conclusion of Example 3.37 could suggest that this diagram is a pullback,
our computation shows that the image RanιT (![8], [1011]) is not isomorphic to the pullback
of the lower part of the diagram and is only related to it via a projection of the following
form.

L8([1011])× T (![9], [0011])×9 −→ T (![8], [1010])×xa T (![8], [1001]) (19)

Here, we can view the set T (![9], [0011])×9 as (formally) containing the local sections of
length 8 taken from the sequence alignments of length 9 associated with Doug and Craig.
Arrow (19) then tries to relate these local sections to the local sections of length 8 taken
from the sequence alignment of Anne and Craig and that of Anne and Doug. However,
arrow (19) fails to map the elements of the product

T (![9], [0011])×9

to elements in its codomain and is forced to forget these elements in the same way as
a proper Cartesian projection map would do. This failure is not surprising since we
designed the domain of T so that the alignments of T (![9], [0011]) can never be connected
to those of T (![8], [0011]) through T (![9], [0001]) and T (![9], [0010]). The reason for this was to
prevent the limit construction of the right Kan extension from forgetting the alignments
of T (![8], [0011]) that were inconsistent with the alignments of T (![9], [0011]) (see Example
3.25). In fact, the reader can check that if we had done so, then we would also have
prevented the resulting version of (19) from being a bijection. This suggests that whatever
method we try to use, the data contained in T tends to prevent arrow (19) from being a
bijection.

. Interpretation: This last fact actually hides important information about the re-
latedness of our four individuals. Indeed, the difference between the conclusion of the
present example and that of Example 3.37, in which we were able to show that a certain
canonical arrow was a bijection, informs us that the genetic data of Anne, Bob and Craig
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are overall rather similar while the genetic data of Anne, Craig and Doug are much more
different. This can already be seen in the sizes of the images of the functor T at the
segments (![8], [0011]) and (![9], [0011]), which are much larger than the images of T at the
other segments (see the table of Example 3.25). In fact, the sizes of these images are
related to the uncertainty of finding the right alignment for the sequences of Craig and
Doug, and the simple fact that T even has an image at the segment (![9], [0011]), while the
genetic data of Craig and Doug is only of length 7, tells us that the dynamic program-
ming algorithm is struggling to find an obvious match between the sequences of Craig

and Doug.
. Conclusion: We see that the obstruction – or rather the uncertainty – resulting from

aligning a set of distant DNA sequences is detected by the ability of certain canonical
arrows to be isomorphisms or epimorphisms. It is precisely for these reasons that the
concepts of chromology and pedigrad become relevant to the study of our main example.

3.39. Exactly distributive and injective chromologies. The goal of the present
section is to define two canonical classes of chromologies. As usual, we let (Ω,�) be a
pre-ordered set, b be an element in Ω, A be a small category, τ be an object in Seg(Ω |n)
and ρ : ∆A(τ) ⇒ θ be a cone in Seg(Ω |n) for some non-negative integer n. First, note
that the application of the truncation functor Trb : Seg(Ω |n) → Setop on the cone ρ
gives rise to a cocone in Set as follows.

Trb(ρ) : Trbθ ⇒ ∆A ◦ Trb(τ)

The colimit adjoint of this natural transformation in Set gives us a function as follows.

colimATrb(ρ) : colimATrbθ −→ Trb(τ) (20)

3.40. Definition. [Exactly distributive cones] A cone of the form ρ : ∆A(τ) ⇒ θ in
Seg(Ω |n) will be said to be exactly b-distributive if the arrow of (20) is an isomorphism
in Set.

3.41. Definition. [Injective cones] A cone of the form ρ : ∆A(τ)⇒ θ in Seg(Ω |n) will
be said to be b-injective if the arrow of (20) is a monomorphism in Set.

3.42. Example. [Exactly distributive cones] Let Ω denote the pre-ordered set {0 ≤ 1 ≤
2}. In this example, we give various instance of exactly distributive cones and injective
cones in Seg(Ω). Before showing these instances, let us mention that a cone ∆(τ) ⇒ θ
should be seen as a structure specifying an integration operation from the diagram θ to
the object τ – this may be useful to understand what these cones are meant to specify.

First, we can give the following diagram, living in one of the pre-order categories
Seg(Ω : t) for the obvious topology t of domain [12], as an example of an exactly 1-
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distributive cone, but also as an example of a 2-injective cone.

(000)(11)(111)(0000)
��

(2

(τ)

22)(11)(222)(2222)

66

//

((

(000)(11)(000)(2222) // (000)(11)(000)(0000)

(222)(11)(000)(0000)

BB

Here, the idea is that an exactly 1-distributive cone cannot have nodes of color above 1 at
a given position in the segment if these nodes are not both mapped to a common node of
color above 1. Intuitively, one could imagine to use this type of cone to integrate different
alignment methods on the objects of the diagram θ into a unique one on the object τ .

We now give the following diagram as an example of a exactly 1-distributive cone and
a 2-injective cone in the category of quasi-homologous segments Seg(Ω | 12).

(000)(11)(111)(0000)
��

(2)

(τ)

(2)(2)(11)(22)(2)(22)(22)

66

//

((

(000)(11)(000)(2222) // (000)(11)(000)(0000)

(222)(11)(000)(0000)

BB

The difference between the very first cone and the one given above is that the latter
specifies an integration operation whose action also applies to a more refined topology
(on τ). For instance, aligning a set of DNA strands with respect to the codon topology
will necessarily align the DNA strands with respect to the nucleotide topology.

Finally, the following arrow in Seg(Ω | 12) is an example of an exactly 0-distributive
cone as well as an example of a 1-injective cone.

(1)

(τ)

(11)(11)(11)(1)(111)(1) // (000)(11)(000)(1111)

3.43. Definition. [Exactly distributive chromologies] Let b be an element in Ω. A chro-
mology (Ω, D) will be said to be exactly b-distributive if all the cones in D are exactly
b-distributive.

3.44. Definition. [Injective chromologies] Let b be an element in Ω. A chromology
(Ω, D) will be said to be b-injective if all the cones in D are b-injective.

3.45. Logical systems for pedigrads in sets. In this section, we show that the
functors defined in Definition 3.13 are pedigrads in two different logical systems of Set
for two different types of chromologies.

3.46. Definition. [Logical systems of bijections] We will denote by Wbij the class of
cones ∆A(X)⇒ F in Set whose limit adjoints X → limAF are bijections.

In section 4, we will show that one can use the following theorem to study the infor-
mation contained in a sequence alignment functor (Definition 3.23).
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3.47. Theorem. For every element b in Ω and exactly b-distributive chromology (Ω, D),

the functor Eε
b : Seg(Ω)→ Set is a Wbij-pedigrad for (Ω, D).

Proof. Let ρ : ∆A(τ) ⇒ θ be a cone in D[n1] for some given non-negative integer n1.
Because (Ω, D) is an exactly b-distributive chromology, it follows from Definition 3.40 and
Definition 3.43 that the canonical arrow

colimATrbθ → Trb(τ)

is an isomorphism in Set. As a result, the image of this arrow via the functor Set( , E) :
Setop → Set is a bijection. By Proposition 3.17 and the usual definition of colimits in
Set, the resulting bijection is (naturally) isomorphic to the following canonical arrow.

Eε
b (τ)→ limAE

ε
b ◦ θ

This precisely shows that Eε
b : Seg(Ω)→ Set is a Wbij-pedigrad for (Ω, D).

3.48. Definition. [Logical systems of surjections] We will denote by Wsurj the class of
cones ∆A(X)⇒ F in Set whose limit adjoints X → limAF are surjections.

3.49. Theorem. For every element b in Ω and b-injective chromology (Ω, D), the functor

Eε
b : Seg(Ω)→ Set is a Wsurj-pedigrad for (Ω, D).

Proof. Before showing the statement, recall that for every monomorphism m : A → B
in Set, the function Set(j, E) : Set(B,E) → Set(A,E) is a surjection. Indeed, because
E has a pointed structure, every function f : A → E can be extended to a function
f ′ : B → E by mapping every x ∈ B\A to the point ε of E. We can check that the
identity f = f ′ ◦ j holds, which amounts to saying that the image of j via the functor
Set( , E) : Setop → Set is a surjection.

We now prove the statement. Let ρ : ∆A(τ)⇒ θ be a cone in D[n1] for some given non-
negative integer n1. Because (Ω, D) is a b-injective chromology, it follows from Definition
3.40 and Definition 3.43 that the canonical arrow

colimATrbθ → Trb(τ)

is a monomorphism in Set. As a result, the image of this arrow via the functor Set( , E) :
Setop → Set is a surjection. By Proposition 3.17 and the usual definition of colimits in
Set, the resulting surjection is (naturally) isomorphic to the following canonical arrow.

Eε
b (τ)→ limAE

ε
b ◦ θ

This precisely shows that Eε
b : Seg(Ω)→ Set is a Wsurj-pedigrad for (Ω, D).
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3.50. Example. [Controlling uncertainties via chromologies] The goal of this example
is to show that the presence of uncertainties discussed at the end of Example 3.38
can be controlled through the design of chromologies. We will keep the same nota-
tions as those used therein. First, recall that the point of Example 3.37 was to show
that the following exactly (1, 1, 1, 1)-distributive cone in Seg(Ω×4) was suitable to define
an exactly (1, 1, 1, 1)-distributive chromology that would make the right Kan extension

RanιT : Seg(Ω×4)→ Set a Wbij-pedigrad.

(![8], [1110])

ss �� ++

(![8], [1010])

&& ++

(![8], [0110])

xx &&

(![8], [1100])

xxss

(![8], [0010]) (![8], [1000]) (![8], [0100])

On the other hand, the point of Example 3.38 was to show that not every exactly

(1, 1, 1, 1)-distributive cone is suitable to make a functor a Wbij-pedigrad. In particu-
lar, it was shown that the following cone could not make the right Kan extension RanιT

a Wbij-pedigrad, but only a Wsurj-pedigrad

(![8], [1011])

ww ''

(![8], [1010])

''

(![8], [1001])

ww

(![8], [1000])

(21)

The reason for this obstruction was that the genetic data of Craig was much different
from that of Doug. As a result, the image of the functor T : B → Set at the segment
(![9], [0011]) was non-trivial and thus prevented the canonical limit arrow associated with
the previous cone from being a bijection. At least, knowing that it is a surjection tells us
that there is no inconsistencies between the table of Anne and Craig and that of Anne

and Doug

Note that the obstruction associated with (21) to make RanιT a Wbij-pedigrad could
be reduced if we could prevent the objects of (21) from going to segments of B that are
associated with this so-called uncertainty. This would prevent the limit construction of
RanιT from considering too many images of T in its computation.

A way to do so could be to change the topology of the segments on which the functor
T : B → Set is defined. Of course, being able to do so would mean that we either know
more about our problem or that we make an assumption about our four individuals. For
example, we could consider the situation in which one decides to parenthesize all the
adjacent matches that appear in the pairwise sequence alignments of T together. Here is
an illustration. First, recall that the image of T (![9], [0011]) was taken to be as follows (see
Example 3.25).
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T (![9], [0011]) =

{
ACCGTεCεA
AεCεTACTG

;
ACεεCGTCA
ACTACεTεG

;
ACCGTεCAε
AεCεTACTG

;
ACεεCGTCA
ACTACεTGε

}
If we now parenthesize the matching and mismatching patches of maximal lengths in the
sequence alignments of T (![9], [0011]), we obtain the parenthesized sequence alignments
shown in the following table.

T (![9], [0011])

T (t1, [0011]) =

{
(A)(C)(C)(G)(T)(ε)(C)(εA)
(A)(ε)(C)(ε)(T)(A)(C)(TG)

,
(A)(C)(C)(G)(T)(ε)(C)(Aε)
(A)(ε)(C)(ε)(T)(A)(C)(TG)

}
T (t2, [0011]) =

{
(AC)(εε)(C)(G)(T)(CA)
(AC)(TA)(C)(ε)(T)(εG)

,
(AC)(εε)(C)(G)(T)(CA)
(AC)(TA)(C)(ε)(T)(Gε)

}
Because this bracketing suggests the use of two new topologies, we want to stay consistent
with the definition of T and associate the previous alignments with the two segments of
non-terminal topologies shown on the left-hand side of the previous table. Since a segment
of trivial topology ![8] : [8]→ [1] cannot be mapped to segments of non-terminal topologies,
the domain of the canonical arrow

RanιT (![8], [1011])→ RanιT ◦ F, (22)

where the diagram F is the lower cospan of diagram (21), will not contain the sets
T (t1, [0011]) and T (t2, [0011]) (and the term T (![9], [0011])×9 no longer appears in the do-
main). This means that arrow (22) is more likely to be a bijection of sets, hence making
diagram (21) more likely to be suitable for the definition of a chromology that makes

RanιT a Wbij-pedigrad.
We thus conclude that the process of looking for chromologies (or, in fact, their cones),

given a set of possible functors T : B → Set, can be seen as a way of isolating uncertainties
and hence producing a refined analysis of the genetic data of Anne, Bob, Craig and Doug.

4. Solving our problem and identifying mechanisms

In this section, we formalize what should be seen as the categorical answer of the problem
exposed in section 2.1, namely a method to assess the validity of the multiple sequence
alignments computed by a right Kan extension of a sequence alignment functor. More
specifically, we show that chromologies give a way to select multiple sequence alignments
with respect to various types of mechanisms. As usual, we will let (E, ε) denote a pointed
set and (Ω,�) be a pre-ordered set.

4.1. Link between right Kan extensions and pedigrads. In this section, we
recall the definition of the unit associated with a right Kan extension and relate this unit
to the concepts of pedigrad and chromology.
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4.2. Convention. [Notations] For every small category C, we will denote by [C,Set]
the category whose objects are functors from C to Set and whose arrows are natural
transformations.

The following proposition states that a right Kan extension in Set along a certain
functor ι (Definition 3.32) is a right adjoint for the pre-composition functor induced by
the functor ι – see [12, Chapter X] for more detail.

4.3. Theorem. [12] Let (Ω,�) be a pre-ordered set and ι : B → Seg(Ω) be a functor.
The right Kan extension operation Ranι induces a functor [B,Set] → [Seg(Ω),Set] that
maps any natural transformation σ : A ⇒ B in Set over B to the canonical natural
transformation (23) induced by the limit construction of Definition 3.32.

Ranισ : lim(τ↓ι)A ◦ ιτ ⇒ lim(τ↓ι)B ◦ ιτ (23)

The resulting functor Ranι : [B,Set] → [Seg(Ω),Set] is a right adjoint for the pre-
composition functor induced by ι.

4.4. Remark. [Units of right Kan extensions] The present remark reminds the reader
about the form of the unit associated with the adjunction described in Theorem 4.3. Let
(Ω,�) be a pre-ordered set and ι : B → Seg(Ω) be a functor. As a right adjoint of the
pre-composition functor

◦ ι : [Seg(Ω),Set]→ [B,Set],

the functor Ranι is associated with a natural transformation, called the unit, of the form
shown in (24) for every functor P : Seg(Ω)→ Set.

η : P ⇒ Ranι(P ◦ ι) (24)

The components of (24) correspond to the canonical arrows associated with the limit
construction of Definition 3.32. This means that the evaluation of the previous natural
transformation at an object τ in Seg(Ω), as shown below in (25), is the limit adjoint
arrow for the cone described in Remark 3.30.

P (τ)→ lim(τ↓ι)P ◦ ιτ ◦ ι (25)

4.5. Remark. [Right Kan extensions and pedigrads] The present remark extends Remark
4.4 and shows how right Kan extensions and pedigrads are related. First, note that the
arrow shown in (25) looks a lot like the type of arrow used in Definition 3.46 and Definition

3.48 to define Wbij- and Wsurj-pedigrads. To make this more precise, let us denote by
ρι[τ ] the cone defined in Remark 3.30, that is to say the obvious natural transformation

∆(τ↓ι)(τ)⇒ ιτ ◦ ι

induced by the objects of the category (τ ↓ ι) over the diagram formed by its arrows. Let
us also suppose that the cone ρi[τ ] is part of a chromology (Ω, D). In this case, we can
notice two facts:
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- if P is a Wbij-pedigrad for (Ω, D), then arrow (25) is a bijection.

- if P is a Wsurj-pedigrad for (Ω, D), then arrow (25) is a surjection.

Later on, we will use these two facts with some functor P that is the composition of
functors of the form described in Definition 3.13 and Example 2.27 (for instance, see
Convention 4.8). In particular, if the pedigrad P can be written as a composite Q ◦ R
where Q is a more canonical pedigrad, then we will prefer to apply the previous two points
to Q, namely by looking at whether the image of the cone ρι[τ ] via R is in the chromology
of Q.

4.6. Slices of a sequence alignment. In this section, we define the concept of slice
for a sequence alignment functor. This concept will later be used to reason about the
possible mutation mechanisms contained in a sequence alignment functor. Throughout
this section, we shall let A be an alignment specification of the form {fi : (Ω,�)→ (Ωi,�i
)}i∈A.

4.7. Remark. [Projection maps] Let (E, ε) be a pointed set. For every element b in Ω,
the product structure of AEε

b (see Definition 3.21) gives us the following natural projection
for every i ∈ A.

κi : AEε
b ⇒ Eε

fi(b)
◦ Seg(fi)

This arrow, living in [Seg(Ω),Set], will repeatedly be used throughout this section.

4.8. Convention. [Notation] For the sake of convenience, for every element i ∈ A and
element b ∈ Ω, we will let f ∗i E

ε
b denote the composite functor Eε

fi(b)
◦ Seg(fi) : Seg(Ω)→

Set.

In Example 3.38, we saw that, even for exactly distributive chromologies (Definition

3.43), the right Kan extension of a sequence alignment functor is not necessarily a Wbij-
pedigrad. On the other hand, the functor of Definition 3.13 was shown to be a Wbij-
pedigrad for any such cone (Theorem 3.47). The idea of Definition 4.9, given below, is
to compare a non-pedigrad object to a pedigrad object in order to detect the pieces of
pedigradic information that would live in the non-pedigrad object.

4.9. Definition. [Slices] Let b be an element in Ω and (ι, T, σ) be a sequence alignment
functor over AEε

b . For every element i ∈ A, we will speak of the i-slice of (ι, T, σ) to
refer to the pullback arrow η∗i : [T/AEε

b ]i ⇒ RanιT of the unit of the right Kan extension
at the functor f ∗i E

ε
b along the natural transformation Ranι(κi ◦ σ) (as shown below).

[T/AEε
b ]i x

η∗i
��

+3 f ∗i E
ε
b

η

��
RanιT Ranισ

+3 Ranι(AE
ε
b ◦ ι) Ranικi

+3 Ranι(f
∗
i E

ε
b ◦ ι)

(26)
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4.10. Remark. [General versus individual slices] Throughout the present section, the
reader may wonder why we only consider the pullback of η along a natural transformation
of the form Ranι(κi ◦ σ) while the pullback of η along the natural transformation Ranι(σ)
is left out. The reason is that the former integrates the data with respect to a unique
‘individual’ i ∈ A while the latter consider all ‘individuals’ in A. As a result, the latter
will contain very few elements, if any. The algorithm proposed in Remark 4.14 tries to
maximize both the size of the integrated data and the number of individuals considered.

4.11. Remark. [Data integration along cones] The idea behind the slice of a sequence
alignment functor is to select the multiple sequence alignments of RanιT for which the
type of uncertainty described in Example 3.38 and Example 3.50 can be resolved from the
point of view of a particular individual. While Example 4.12 will illustrate how this type
of uncertainty can be eliminated, the present remark shows how the cones of a chromology
inform us of the ways via which we can safely integrate the data through slices.

Let b be an element in Ω, (ι, T, σ) be a sequence alignment functor over AEε
b and τ

be an object in Seg(Ω). For every element i ∈ A, evaluating the i-slice of (ι, T, σ) at τ
gives us a pullback square in Set as follows.

[T/AEε
b ]i(τ)

x

��

σ∗τ // f ∗i E
ε
b (τ)

ητ

��

lim(τ↓ι)T (τ)
Ranι(κi◦σ)τ

// lim(τ↓ι)f
∗
i E

ε
b ◦ ιτ ◦ ι

(27)

Now, recall that, by universal property of pullbacks, the pullback of an isomorphism (resp.
a surjection) is an isomorphism (resp. a surjection). By Remark 4.5, this means that if

- the image of the cone ρι[τ ] via Seg(fi) is in the chromology of Eε
fi(b)

, and

- the functor Eε
fi(b)

is a Wbij-pedigrad (resp. Wsurj-pedigrad),

then the leftmost vertical arrow of diagram (27) is an isomorphism (resp. a surjection).
In this sense, we would like to say that all the gluings computed by RanιT make sense
(resp. make sense up to some uncertainty) from the point of view of fi, for they can be
lifted to the pullback [T/AEε

b ]i(τ).
Thus, the role of the functor [T/AEε

b ]i is to take care of selecting all those multiple
sequence alignments generated by T that make sense with the component fi : (Ω,�) →
(Ω,�i), where the idea of “making sense” is strongly related to the pedigrad structure of
the functor

Eε
fi(b)

: Seg(Ωi)→ Set.

In Example 4.12, we show that something more subtle happens when the cone Seg(fi)ρι[τ ]
is not in the chromology of Eε

fi(b)
.
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4.12. Example. [Resolving uncertainties] Let (ι, T, σ) be the sequence alignment con-
structed in Example 3.25. The present example discusses the meaning of the elements
contained in the image RanιT (![8], [1011]), which we computed in Example 3.38, from the
point of view of slices. We shall consider the same notations as those used in Example
3.38, but, for convenience, we will denote the segment (![8], [1011]) of Seg(Ω×4) as τ . In this
case, the evaluation of diagram (26) at τ is of the following form for every i ∈ {a, b, c, d}.

[T/AEε
b ]i(τ)

��

σ∗τ // π∗iE
ε
b (τ)

ητ

��

L8([1011])× T (![9], [0011])×9
Ranι(σ)τ

// Ranι(AE
ε
b ◦ ι)(τ)

Ranι(κi)τ
// Ranι(π

∗
iE

ε
b ◦ ι)(τ)

(28)

We are going to illustrate a case in which the 9-fold Cartesian product

T (![9], [0011])×9 (29)

appearing in the left-bottom corner of (28) (i.e the object RanιT (τ)) prevents pullback
(28) from lifting any element in RanιT (τ) to the i-slice [T/AEε

b ]i(τ). The reason for
this obstruction is that object (29) contains tuples that fail to match the type of tuples
associated with the images of the function ητ (given on the right of diagram (28)).

Before discussing the aforementioned obstruction, let us describe the form of the
mappings associated with the arrows of diagram (28) in more detail (see diagram (30),
below, for future reference). First, recall that every copy T (![9], [0011]) of the 9-fold
Cartesian product given in (29) is associated with one of the 9 morphisms of the form
(![8], [1011])→ (![9], [0011]) in Seg({0, 1}×4) (see examples below).

(
1•2•3•4•5•6•7•) −→ (

∗•1•2•3•4•5•6•7•) , (
1•2•3•4•5•6•7•) −→ (

1•∗•2•3•4•5•6•7•) , etc.

Let us denote these morphisms as gk : (![8], [1011]) → (![9], [0011]) for every k ∈ [9]. The
leftmost horizontal arrow given at the bottom of (28) then sends a pair (x, y), where x is
an element of L8([1011]) and y = (y1, . . . , y9) is an element of the 9-fold Cartesian product
of T (![9], [0011]), to the same tuple (x, y) in Ranι(AE

ε
b ◦ ι)(τ) provided that one sees x and

y1, . . . , y9 as elements taken from the images of AEε
b (see Definition 3.23). Then, the tuple

(x, y) in Ranι(AE
ε
b ◦ ι)(τ) is sent to a tuple of the form (xi, (y1,i, . . . , y9,i)) made of the i-th

projections of x and y1, . . . , y9 with respect to the 4-fold product structure underlying the
definition of AEε

b . It follows that the tuple (x, y) living in the left-bottom corner of (28)
is lifted to the left-top corner of (28) if there exists an element z in π∗iE

ε
b (τ) whose image

through ητ is equal to the image Ranι(κi)τ (x, y).

((x, y), z) � //

_

��

z_

ητ
��

(x, y) �Ranι(σ)τ // (x, y) � Ranι(κi)τ
// (xi, (y1,i, . . . , y9,i))

(30)
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Let us now focus on a particular example. Let the index i be equal to the element c rep-
resenting Craig’s viewpoint. If we take z to be the element ACCGTCεA in π∗cE

ε
b (![8], [1011]),

then its image through ητ is of the following form.(
ACCGTCεA ,

(
εACCGTCεA , AεCCGTCεA , . . . , ACCGTCεAε

))
(31)

On the other hand, the following element ACCGACTG

ACCGTCεA
AεCTACTG

,

(
ACCGTεCεA
AεCεTACTG

,
ACCGTεCεA
AεCεTACTG

, . . . ,
ACCGTεCεA
AεCεTACTG

)  , (32)

living in the image RanιT (τ) = L8([1011])× T (![9], [0011])×9, is sent through Ranι(κi ◦ σ)τ
to the following tuple in Ranι(π

∗
iE

ε
b ◦ ι)(τ).(

ACCGTCεA ,
(
ACCGTεCεA , ACCGTεCεA , . . . , ACCGTεCεA

))
(33)

As can be seen, the element z = ACCGTCεA cannot be a valid integration of the element
given in (32) because the image of (32) through Ranι(κi◦σ)τ – shown in (33) – is not equal
to the image of z through ητ – shown in (31). The reader can easily see that the main rea-
son for this is that the rightmost tuple of (32) (which stands for y = (y1, . . . , y9)) consists
of equal components (i.e. y1 = . . . = y9) while the existence of a lift would imply that the
resulting collection of components y1,i, . . . , y9,i can equal the distinct components of the
image of z through ητ . Obviously, to do so, we would need to make the components of the
rightmost tuple of (32) vary through various pairwise sequence alignments. Unfortunately,
an analysis of the elements of T (![9], [0011]) quickly reveals that the set T (![9], [0011]) does
not contain enough elements to make the elements of L8([1011]) × T (![9], [0011])×9 match
the images of the morphism ητ . This shows that there is not enough evidence that the
alignment

ACCGACTG

ACCGTCεA
AεCTACTG

(34)

is a good alignment from the point of view of Craig (i.e. i = c). Here the main obstruction
is that the exponent of T (![9], [0011])×9 is too big for the cardinality of T (![9], [0011]) (which
is due to the uncertainty related to aligning distant DNA sequences). On the other hand,
adding more colors (see Example 3.26) and using more complex topologies (see Example
3.50) can reduce the exponent of T (![9], [0011])×9, which would have the consequence of
making alignment (34) more likely to be liftable from the point of view of the added
knowledge.

4.13. Remark. [Multiple sequence alignments and mechanisms] Tuple (32), displayed
in Example 4.12, shows us that slices produce two types of data integration. The first
type of integration looks at the construction of multiple sequence alignments, such as the
one shown on the left of tuple (32), while the second type of integration concerns the
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other part of tuple (32) that consists of the collection of pairwise sequence alignments.
Example 4.12 does not tell us much about this type of integration, except for creating
some uncertainty. In section 4.15, we will see that this uncertainty is actually associated
with the presence and detection of mutation mechanisms. In the case of Example 4.12,
no mechanism could be recognized from the data, which translates into an absence of lift.

4.14. Remark. [Finding a multiple sequence alignment] Example 4.12 and Remark 4.13
implicitly motivate an algebraic method to select multiple sequence alignments along with
mechanisms. Specifically, the method would look at the pullbacks of the slices of a certain
sequence alignment functor, say (ι, T, σ) and, for a given segment τ , would try to find the
maximal subset A′ ⊆ A for which the wide pullback of the i-slices, for every i ∈ A′, is
maximal at the segment τ (see below).

[T/AEε
b ]i1(τ)

''

∩i∈A′ [T/AEε
b ]i(τ)

55

//

))

[T/AEε
b ]i2(τ)

...

// RanιT (τ)

[T/AEε
b ]in(τ)

77

Ideally, the segment τ should only be made of a maximal color, but segments of interme-
diate colors could also be used for heuristics, if necessary.

4.15. Slices and mechanisms. In section 4.6, we showed that the cones associated
with the slices of a sequence alignment functor (ι, T, σ) could be used to query multiple
sequence alignments that make sense from the point of view of a particular individual
(see Example 4.12). Then, in Remark 4.14, we suggested that these queries could be used
to find a set of multiple sequence alignments in the right Kan extension of T along ι that
maximize the number of individuals agreeing with the alignments.

The goal of this section is to show that the querying process inherent to slices (Defi-
nition 4.9) can be used to query mechanisms, too. Here, we will show that mechanisms
such as duplication events, which are mutations responsible for triggering certain cancers
[18], and inversion events, which are rearrangements of certain sections of a segment in
reverse order, can be detected through particular types of cones (see Remark 4.11).

Note that previous works have already investigated the recognition of duplication and
inversion mechanisms in multiple sequence alignments [21, 20, 23, 29]. While these papers
develop methods for predetermined patterns, slices are more flexible in that they inform
us of existing patterns without requiring us to know what these patterns should look
like. More specifically, these patterns are encoded in the shape of the cones described
in Remark 4.11 and are thus systematically given through the computation of right Kan
extension. The recognition of mechanisms could then be done by comparing the shape of
the cones for which the slices are non empty with the shape of cones that are known to
characterize specific mechanisms.
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The present section does not introduce any new concept and only aims to show ex-
amples. The reader will be assumed to remember the reasoning of Example 4.12, which
we intend to mimic in this section – the goal is again to match certain tuples through the
arrows of diagram (26).

4.16. Example. [Duplication mechanisms] For our first example, we shall let A denote
the alignment specification defined by the following collection of projections (already used
in Example 3.20)

{πi : {0, 1}×4 → {0, 1}}i∈{a,b,c,d}
and let b be the element (1, 1, 1, 1) of {0, 1}×4. Because the sequence alignment functor of
Example 3.25 was built from data that are not suited for a good illustration of duplication
mechanisms, we will let (ι, T, σ) be an undetermined sequence alignment functor over AEε

b ,
where E is the set {A, C, G, T, ε}. Our goal is to illustrate the types of situations in which
duplication mechanisms can be queried within the right Kan extension.

For every object τ in Seg({0, 1}×4), we will denote by ρι[τ ] the cone in Seg({0, 1}×4)
encoded by the arrows and objects of the category (τ ↓ ι) (see Remark 3.30 for a detailed
description). As in Example 4.12, we want to study the functor T from the point of
view of a certain individual; we will consider Craig, who is, as usual, associated with
the index c. Now, suppose that the image of the cone ρι[τ ] via the functor Seg(πc) :
Seg({0, 1}×4)→ Seg({0, 1}) is of the form shown in (35).

(
1•2•)(3•)(∗•)(••••)

(
1•2•)(3•)(••••)

66

(( (
1•2•)(∗•)(3•)(••••)

(35)

For such a cone, the pullback of Definition 4.9 lifts any element of RanιT (τ) to Craig’s slice
if this element can be sent, through the function Ranι(κc ◦ σ)τ : RanιT (τ)→ Ranι(π

∗
cE

ε
b ◦

ι)(τ), to an image of ητ in Ranι(π
∗
cE

ε
b ◦ ι)(τ) – for instance, a pair of the following form.

ητ (x1x2Zx3x4x5x6) = (x1x2εZx3x4x5x6, x1x2Zεx3x4x5x6) (36)

If our sequence alignment functor (ι, T, σ) is constructed from the outputs of a dynamic
programming algorithm, as in Example 3.25, then the elements of RanιT (τ) that match
pair (36) through the function Ranι(κc ◦ σ)τ will most likely be tuples of sequence align-
ments in which each of the components of tuple (36) appears. An example of such an
element in RanιT (τ) is given by the following pair of sequence alignments, which tries to
align the sequence x1x2ZZx3x4x5x6 with the sequence x1x2Zx3x4x5x6.(

x1x2εZx3x4x5x6
x1x2ZZx3x4x5x6

,
x1x2Zεx3x4x5x6
x1x2ZZx3x4x5x6

)
In this case, the tuple given below lives in the image of Craig’s slice at the segment τ
(i.e. [T/AEε

b ]c(τ)) and plays the role of the desired lift.(
x1x2εZx3x4x5x6
x1x2ZZx3x4x5x6

,
x1x2Zεx3x4x5x6
x1x2ZZx3x4x5x6

, x1x2Zx3x4x5x6

)
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Intuitively, the previous element tells us that Craig is separated from a certain other indi-
vidual (whose genetic data is x1x2ZZx3x4x5x6) by a duplication mechanism. On the other
hand, if the sequence of the other individual were of a different form, say x1x2ZYx3x4x5x6,
the scoring system of the dynamic programming algorithm would only be expected to
provide the sequence alignment given below, on the left (at least for an adequate scoring
system).

x1x2Zεx3x4x5x6
x1x2ZYx3x4x5x6 ��

���
���

�XXXXXXXXX

x1x2εZx3x4x5x6
x1x2ZYx3x4x5x6

In the end, this would prevent the existence of an element in RanιT (τ) matching tuple
(36) and would hence prevent the existence of a lift to Craig’s slice.

To conclude, designing the domain B of the functor T (either using colors or brackets)
such that cone (35) is the image of a cone of the form ρι[τ ] via Seg(πc) will force the
pullback of Definition 4.9 to select alignments that may be explained by duplication
mechanisms – at least from Craig’s viewpoint.

4.17. Remark. [Types of cones detecting mechanisms] Note that, while multiple se-
quence alignments would be lifted along cones that belong to chromologies (as in Remark
4.11), mechanisms (such as duplications) would usually be lifted along cones that are
not part of chromologies, since they would usually be made of morphisms of the type
described in Example 2.23 to create mutation events (see diagram (35) and the definition
of section 2.36).

4.18. Example. [Inversion mechanisms] Let us now give an example of a cone that
lifts inversion mechanisms. This time, we will need to take Ω to be the pre-ordered set
{0 ≤ 1 ≤ 2}. We will implicitly use the color 2 of Ω to restrict the number of arrows that
ρι[τ ] may possess (see diagram (37)). In addition, we will to take A to be the alignment
specification consisting of the following projections.

{πi : {0, 1, 2}×4 → {0, 1, 2}}i∈{a,b,c,d}

The element b will be taken to be equal to the element (1, 1, 1, 1) of {0, 1, 2}×4 and
(ι, T, σ) will denote an undetermined sequence alignment over AEε

b , where E is the set
{A, C, G, T, ε}. For the present example, we will suppose that the image of the cone ρι[τ ]
via the functor Seg(πc) : Seg({0, 1, 2}×4)→ Seg({0, 1, 2}) is of the form given in (37).

(
1
1
2
1)(
∗
2)(
∗
2)(

3
1)(

4
1)(

5
1)(1111)

(
1
1
2
1)(

3
1)(

4
1)(

5
1)(1111)

88

&&

// (
1
1
2
1)(

3
1)(
∗
2)(

4
1)(
∗
2)(

5
1)(1111)

(
1
1
2
1)(

3
1)(

4
1)(

5
1)(
∗
2)(
∗
2)(1111)

(37)

We want to show that, for such a cone, Craig’s slice, evaluated at the segment τ , can
detect inversion mechanisms. First, by the shape of cone (37), the pullback of Definition
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4.9 lifts any element of RanιT (τ) to Craig’s slice if this element can be sent, through the
function Ranι(κc ◦ σ)τ : RanιT (τ)→ Ranι(π

∗
cE

ε
b ◦ ι)(τ), to an image of ητ in Ranι(π

∗
cE

ε
b ◦

ι)(τ), and hence a triple of the following form.

(x1x2εεABCx3x4x5x6, x1x2AεBεCx3x4x5x6, x1x2ABCεεx3x4x5x6) (38)

If our sequence alignment functor (ι, T, σ) is constructed from the outputs of a dynamic
programming algorithm, as in Example 3.25, then the elements of RanιT (τ) that match
pair (38) through the function Ranι(κc ◦ σ)τ will most likely be tuples of sequence align-
ments in which each of the components of (38) appears. An example of such an element
in RanιT (τ) is given by the following triple of sequence alignments, which tries to align
the sequence x1x2ABCx3x4x5x6 with the sequence x1x2CBAx3x4x5x6.(

x1x2εεABCx3x4x5x6
x1x2CBAεεx3x4x5x6

,
x1x2AεBεCx3x4x5x6
x1x2εCBAεx3x4x5x6

,
x1x2ABCεεx3x4x5x6
x1x2εεCBAx3x4x5x6

)
(39)

In this case, the tuple displayed below lives in the image of Craig’s slice at the segment
τ and plays the role of the desired lift.(

x1x2εεABCx3x4x5x6
x1x2CBAεεx3x4x5x6

,
x1x2AεBεCx3x4x5x6
x1x2εCBAεx3x4x5x6

,
x1x2ABCεεx3x4x5x6
x1x2εεCBAx3x4x5x6

, x1x2ABCx3x4x5x6

)
As can be seen, this type of tuple tries to align the sequence x1x2ABCx3x4x5x6 with the
sequence x1x2CBAx3x4x5x6, which are clearly related by an inversion of the patch ABC. As
in Example 4.16, trying a different sequence, say x1x2EFGx3x4x5x6, is unlikely to create
a triple as in (39) and hence a lift to Craig’s slice. In other words, the earlier tuple
specifically tells us that Craig is separated from a certain other individual (whose genetic
data is x1x2CBAx3x4x5x6) by an inversion mechanism.

To conclude, designing the domain B of the functor T such that cone (37) is the
image of a cone of the form ρι[τ ] via Seg(πc) will force the pullback of Definition 4.9 to
select alignments that may be explained by inversion mechanisms – at least from Craig’s
viewpoint.

5. Conclusion

We formalized the concept of sequence alignment in terms of a subcategory B of seg-
ments (Definitions 2.14 & 2.20) and a functor T : B → Set whose images contain usual
sequence alignments (Definition 3.23). We showed that we could design comparison rules
between the sequence alignments contained in T through the structure of the category
B (Examples 3.25 & 3.26). We then showed that we could integrate multiple sequence
alignments from the data contained in T by using the right Kan extension of T to the
whole category of segments (section 3.27). In addition, we showed how the right Kan
extension of T could be used to study the consistency of the integrated data through the
use of limits and the existence of certain functions (see Example 3.28). While inconsistent
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data could be associated with non-surjective functions, consistent data could be associ-
ated with either surjections or isomorphisms. Regarding these last two types of arrows,
we showed that isomorphisms informed us of a perfect consistency (Example 3.37) while
surjections indicated some uncertainty (Examples 3.36, & 3.38), which we later related to
the presence of mutation mechanisms (Remark 4.13). We then introduced the concept of
slice (Definition 4.9) as a way to resolve this uncertainty and, at the same time, discover
mutation mechanisms (Remark 4.14 and section 4.15).
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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