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INTEGRATION OF 1-FORMS AND CONNECTIONS

To my friend Marta Bunge.

ANDERS KOCK

Abstract. We present a geometric/combinatorial version of the theorem that a flat
torsion-free affine connection on a manifold locally may be integrated into an affine
structure.

Introduction

We shall present a geometric/combinatorial version of the theorem1 that a flat torsion-free
affine connection on a manifold locally may be integrated into an affine structure.

We obtain this integration result via two other integration results: closed group valued
1-forms locally have primitives; which in turn implies that flat connections in groupoids
locally have trivializations.

For each of these integration results, some further conditions have to be imposed.
Also, integration here is only formal: it means passing from first order infinitesimal data to
higher order infinitesimal data (formal power series). And they do not address convergence
questions, and they work over quite general commutative rings, when coordinatized. But
largely, our exposition is coordinate free, and is of synthetic/geometric nature. In fact we
shall quote notions and arguments from the literature on synthetic differential geometry
(SDG), notably [7], [12], and [5].

Via well adapted models of synthetic differential geometry, as constructed by Dubuc,
(see [4] or [7]), the results can be interpreted in the category of smooth manifolds in the
classical sense. But some of them apply in other categories, e.g. in some categories coming
from algebraic geometry. We shall consider the some suitable category of manifolds, e.g.
as in [7] I.17. The main thing is that the objects M which we consider come equipped
with a reflexive symmetric relation ∼ (preserved by the morphisms). For schemes M
in algebraic geometry, such ∼ was introduced by French algebraic geometry (notably
Grothendieck) in the 1960s, via what was called the first neighbourhood of the diagonal,
M(1) ⊆ M ×M . So the notation is that x ∼ y iff (x, y) ∈ M(1) ⊆ M ×M .

Part of the notions and proofs we develop in the present paper are phrased entirely
in terms of this relation ∼ and are purely combinatorial. But to be specific, we consider
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manifolds only: the phrase “locally” refers to subsets which are formally open, i.e. closed
under the relation ∼.

We call ∼ the (first order) neighbour relation, so x ∼ y is read “x and y are neigh-
bours”, or even (first order) infinitesimal neighbours. The set of neighbours of x, we
denote M(x), the (first order) monad2 of x. So x ∼ y iff y ∈ M(x) iff (x, y) ∈ M(1).

Note that the relation ∼ is not assumed to be transitive. The transitive closure of ∼
is an equivalence relation denoted ∼∞. The equivalence class of x is denoted M∞(x) (the
∞-monad around x).

1. Group valued 1-forms

The following section depends on the axiomatics of synthetic differential geometry; the
reader who wants to go straight to the combinatorics, may skip this, and take the con-
clusion Proposition 1.1, and in more general form, Proposition 1.2, as an axiom.

Let M be a manifold and G a group (not necessarily commutative, multiplication
denoted by ∗, unit by 1). Recall (from [12], say) that a G-valued 1-form is a map ω :
M(1) → G with ω(x, x) = 1 for all x ∈ M . It is closed if

ω(x, y) ∗ ω(y, z) = ω(x, z), (1)

whenever x, y and z are mutual (= pairwise) neighbours (in the sense of ∼). In particular,
for a closed 1-form ω, we have for mutual neighbours x, y, z that ω(x, y) ∗ ω(y, z) is
independent of y. We may ask whether this independence of y also applies if we do not
assume that x ∼ z. We shall prove that this is indeed the case, provided that G is a
subgroup of the multiplicative monoid of some finite dimensional algebra W . We shall
refer to such groups as matrix groups; we shall ultimately be interested in the case where
W is the algebra of n × n matrices over R (where R, and hence W (as an R-module),
satisfy the basic KL axiom, as in [12] 1.3).

1.1. Proposition. [Quadrangle Law] Let ω be a closed G-valued form on M , where G
is a matrix group. Then for x ∼ y ∼ z, we have that ω(x, y) ∗ω(y, z) is independent of y.
Proof. The question is local on M , so we may consider it in a formally open chart
U ⊆ V (with V a finite dimensional vector space) around x, y, z. This means that ω
may be encoded by an (everywhere defined) function Ω : U × V → W , with ω(x, y) =
ω(x, x) + Ω(x; y − x) for x ∼ y, and with Ω(x;−) : V → W linear (so Ω(x;−) is the
differential of ω(x,−) at x). Let d1 = y − x and d2 = z − y, with d1 and d2 in D(V ).
(Recall that the first order monad of 0 ∈ V is denoted D(V ), and it is characterized by:
d ∈ D(V ) iff any bilinear V ×V → R vanishes on the (d, d), cf. [12] 1.2.) So the x, y, and
z considered are of the form x, x + d1, and x + d1 + d2, respectively, with d1 and d2 in
D(V ). We calculate for such (d1, d2) ∈ D(V )×D(V ) the expression for ω(x, y) ∗ ω(y, z)
in terms of Ω, using that ω(x, x) = 1:

2the use of word monad here is not related to the use of this word in the sense of triples (T, η, µ) in
category theory.
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ω(x, y) ∗ ω(y, z) = (1 + Ω(x; d1)) ∗ (1 + Ω(x+ d1; d2))

= 1 + Ω(x; d1) + Ω(x+ d1; d2) + Ω(x; d1) ∗ Ω(x+ d1; d2).

By Taylor expansion, Ω(x+ d1; d2) = Ω(x; d2)+ dΩ(x; d1, d2); substituting this in the two
places where Ω(x+ d1; d2) occurs, allows us to continue

= 1 + Ω(x; d1) +Ω(x; d2) + dΩ(x; d1, d2) +

+ Ω(x; d1) ∗ Ω(x; d2) + Ω(x; d1) ∗ dΩ(x; d1, d2)

The last term here contains d1 in a bilinear way, so it vanishes. So using that Ω(x;−) is
linear, we conclude

ω(x, y) ∗ ω(y, z) = 1 + Ω(x; d1 + d2) + dΩ(x; d1, d2) + Ω(x; d1) ∗ Ω(x; d2). (2)

If d1 + d2 ∈ D(V ), i.e. if x ∼ z, we have

ω(x, z) = Ω(x; d1 + d2)

so if ω is closed, and d1 + d2 ∈ D(V ), the expression dΩ(x; d1, d2) + Ω(x; d1) ∗ Ω(x; d2)
vanishes. By “2) ⇒ 3)” in Proposition 1.3.3 in [12], this implies that the value of the
expression in (2), for all (d1, d2) ∈ D(V )×D(V ), only depends on d1 + d2.

The reason for the name “quadrangle law” is that the conclusion may be expressed
by saying that given a ∼-quadrangle, meaning four points x, y1, y2, z with x ∼ y1 ∼ z
and x ∼ y2 ∼ z, we have (for ω closed) that ω(x, y1) ∗ ω(y1, z) = ω(x, y2) ∗ ω(y2, z). This
equality we shall express as an equality of two “path integrals”, or “curve integrals” of
the 1-form ω along the periphery of the quadrangle.

We shall, more generally, describe path integrals of a G-valued 1-forms ω along “paths”
of arbitrary finite length. We consider the formal (infinitesimal) substitute for the notion
of path x, for which the task is to describe the “path integral”

∫
x
ω ∈ G; we define an n-

path x in a manifold M to be an n+1-tuple (x0, x1, . . . , xn) of points in M with xi ∼ xi+1

for i = 0, . . . , n− 1. The point x0 is the domain of x, and the point xn is the codomain of
x. If ω is a G-valued 1-form on M , we define the “path integral”

∫
x
ω by∫

x

ω := ω(x0, x1) ∗ ω(x1, x2) ∗ . . . ∗ ω(xn−1, xn). (3)

Note that the paths in M form a category, by concatenation of paths; and that
∫
ω is

takes composition in this category to multiplication ∗ in G.
The following is now a version of the integration result that “closed G-valued 1-forms

have primitives”. The group G is assumed to be a matrix group.
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1.2. Proposition. If ω is a closed G-valued 1-form on a manifold M , then
∫
x
ω only

depends on the domain and the codomain of the path x.

Note: the reason that we do not have a “simply-connected” assumption on M is that
the path notion used here is quite restricted. In fact it implies that M = M∞(x) for any
x ∈ M .

Proof. As in the proof of the Proposition 1.1, we pick an arbitrary chart U contaning all
the xis of the path; so the path with x0 as domain (say, an n-path) may, in coordinates
given by the chart, be presented by a sequence d = d1, d2, . . . , dn (with di ∈ D(V )) with
xi = xi−1 + di for i = 1, . . . , n. From Proposition 1.1 follows that∫

x

ω =

∫
x′
ω,

where x′ is obtained from x by swapping the ith and (i+1)st of the djs (i = 1, . . . , n−1),
so as to obtain a new point x′

i = xi−1 + di+1 (this x′
i is something that depends on the

chart):

������

�
�
�� �

�
��������

xi−1

xi

x′
i

xi+1

xi+2 · ·

di+1

di

di

di+1

��· · xi−2

��

We can thus swap any two consecutive entries in the sequence of djs, without changing the
value of the integral; and since neighbour transpositions generate the whole symmetric
group Sn of permutations σ of n letters, it follows that (for closed ω)∫

x

ω =

∫
σ(x)

ω, (4)

where σ(x) replaces the xi = x0 +
∑i

j=1 dj in the original x by x′
i := x0 +

∑i
j=1 dσ(j). For

fixed x0, we therefore have a map which is invariant under the n! permutations of the
n input entries (d1, d2, . . . , dn), By the “Symmetric Functions Property” in its geometric
manifestation, [5] Theorem 2.1, it follows that (4), as a function of the dis, factors (in
fact uniquely) across the addition map D(V )n → Dn(V ), i.e. it depends only of the sum∑

dj, not on the indivual djs. Equivalently,
∫
x
ω only depends on x0 and xn. This is now

a statement which does not mention any particular chart. This proves the Proposition.
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There is a similar result for 1-forms with values in (the additive group of) a vector
space, - say, in the space of scalars R. The proof is simpler, but similar. It is sketched in
[5] Section 3, and it was one of the motivations for that paper.

2. Connections in groupoids

Let M be a set equipped with a reflexive symmetric relation ∼. Let π : E → M be a map
(“E is a bundle over M”). For x ∈ M , Ex denotes the fibre π−1(x) over x. A (bundle-)
connection on E means (Joyal) that for each x ∼ y in M , there is given a map Ex → Ey,
typically denoted ∇(x, y). One requires a unit law: ∇(x, x) is the identity map of Ex;
usually, one also requires that ∇(x, y) and ∇(x, y) are inverse to each other, hence both
are isomorphisms (bijections). With the inversion law, ∇ may be seen to have its values
in the groupoid of isomorphisms between the fibres of E. If the fibres of E → M have
some structure, one may consider the subgroupoid of those isomorphisms which preserve
the structure.

We are ultimately interested in the bundle π : M(1) → M , where π to the pair x ∼ y
associates x. The fibre over x is thus {y ∈ M | x ∼ y}, i.e. the monad of x; and it has a
priori a structure as pointed set, with the chosen point being x ∈ M(x). (More generally,
we are also interested in the bundle whose fibre over x ∈ M is the set of n-paths with
domain x. It likewise has the structure of pointed set, with x being the point x. The
bundle M(1) → M is the special case n = 1 of such path-bundle.)

We can abstract the bundle-notion of connection, and the resulting family of isomor-
phisms between the fibres, into the notion of groupoid valued connection as follows:

We consider a groupoid Φ ⇒ M (internal to the category of “spaces” in which we work)
where M (= the space of objects of Φ) is equipped with a reflexive symmetric relation
∼. Recall from [6], [16] or [12] that a (groupoid valued) connection in such groupoid may
be defined as a map ∇ : M(1) → Φ with ∇(x, y) an arrow from x to y, with ∇(x, x) = 1x
and with ∇(y, x) inverse to ∇(x, y).

The paths in M form a category P (∼) ⇒ M , with concatenation of paths as com-
position; in fact, P (∼) ⇒ M is the free category defined generated by the relation ∼ on
M . Therefore, the map ∇ from M(1) to Φ extends to a functor3 P (∼) → Φ; explicitly,
for a path x = (x0, x1, . . . , xn) in M , one has an arrow from x0 to xn in the groupoid Φ,
namely the following composite, which we in analogy with (3) denote by

∫
x
∇,∫

x

∇ := x0

∇(x0, x1)- x1

∇(x1, x2)- x2 · ·
∇(xn−1, xn)- xn.

The connection ∇ is called flat (or curvature-free) if (composing from left to right)

∇(x, y).∇(y, z) = ∇(x, z), (5)

3Thinking of the category of paths as a formal version of the category of (Moore-) paths in M , this
functor is in terminology from [16] (see also 5.8 in [12]), the path connection given by ∇.
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whenever x ∼ y, y ∼ z and x ∼ z, in analogy with (1). In fact (1) may be seen as the
special case where the groupoid Φ ⇒ M is M ×M × G, and the connection is given by
∇(x, y) := (x, y, ω(x, y)). For a groupoid which is locally of this form, one can locally
encode the connection by a G-valued 1-form, which is closed iff the connection is flat.

The following4 is now an immediate generalization of Proposition 1.2.

2.1. Proposition. Assume that, locally, Φ ⇒ M admits some isomorphisms (over M)
with groupoids of the form M ×M ×G for some matrix group G ; then if ∇ is flat,

∫
x
∇

only depends on the endpoints of x.

Proof. The auxiliary isomorphism allows us to translate the data of ∇ into a G-valued
1-form ω, which is closed iff ∇ is flat. Then Proposition 1.2 shows the independence.

Note that such an auxiliary isomorphism of Φ with M × M × G is not intrinsic to
the geometry; but since the conclusion of the Proposition does not mention this auxiliary
isomorphism, the conclusion is intrinsic to ∇ and Φ ⇒ M .

3. Affine connections

The formation of parallelograms is a fundamental construction in geometry. It may be
formulated in terms of a ternary operation λ: to points x, y, z, the fourth point in the
parallelogram spanned by the “vectors” xy and xz is the value λ(x; y, z). This may also
be seen (in a less symmetric way) as the point obtained by parallel transport of z along
the “vector” xy,

������

�
�
��

�
�
��������

x

y

z

λ(x; y, z)

(Example: in a group, one may put λ(x; y, z) = y · x−1 · z).
The “geometry” of such a ternary operation is the motivation for an (“infinitesimal”

combinatorial version of) the notion of affine connection in more general manifolds. This
was argued in [8] and other places; here, the “vectors” xy and xz have to be sufficiently
small, (first order infinitesimals, meaning that x ∼ y and x ∼ z).

To be explicit about the algebra/combinatorics involved: Let M be a set equipped
with a symmetric reflexive relation ∼. In this context, an affine connection λ is a partially
defined ternary operation λ, onM , with λ(x; y, z) being defined whenever the book-keeping
conditions x ∼ y and x ∼ z hold (note that we are not assuming y ∼ z), in which case
one assumes validity of the book-keeping laws

λ(x; y, z) ∼ y and λ(x; y, z) ∼ z. (6)

4I believe that an analogous result was first proved by Virsik, cf. [16], Theorem 7.
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The operation λ is required to satisfy two unit laws:

λ(x;x, z) = z and λ(x; y, x) = y (7)

as well as the inversion law
λ(y;x, λ(x; y, z)) = z. (8)

The book-keeping conditions and book-keeping laws for λ can be visualized by the figure
above, with the lines expressing the relation ∼; also, the unit laws appear as evident from
the geometry of the figure.

A quadrangle which is of the form x, y, z, λ(x; y, z), we call a parallelogram according
to λ.

To emphasize the relation ∼ in the book-keeping condition, we also say that λ is
restricted by ∼. The integration problem for a ∼-restricted λ is essentially to remove the
restriction, or at least to replace it by a weaker ∼. More precisely, in our case, to replace
∼ by its the transitive closure ∼∞; this amounts in a fully coordinatized situation to
formal integration, i.e. to the construction of formal power series solutions.

If λ(x; y, z) = λ(x; z, y) for all y ∼ x ∼ z, the affine connection λ is called symmetric
or torsion-free. The affine connections arising from a Riemannian metric are symmetric.
If the connection arises from a group, as described above, it is symmetric iff the group is
commutative.

Another property which an affine connection λ may or may not have is flatness, which
means that parallel translation, using λ, of a point along a path only depends on the
endpoints of the path. This is a condition which is best formulated by re-interpreting λ
as a groupoid valued connection ∇, in the sense of Section 2, as will be made explicit in
Subsection 3.2 below. The notion of flatness of a groupoid valued connection was defined
in the previous section.

An unrestricted flat and symmetric λ is essentially the same as a “Schar”-structure, in
the sense of Prüfer [15], who derives abelian group structures in terms of such unrestricted
operation λ; see also [14]. (A Schar is a set with an ternary operation, satisfying certain
equations; [15] denotes the operation AB−1C, it corresponds to our λ(B,A,C). The
flatness is in [15] an associative law of the form (AB−1C)D−1E = AB−1(CD−1E.)

3.1. Paths and grids. The following describe some auxiliary concepts, derived from a
reflexive relation ∼ on a set M . Recall that a path x of length k, or a k-path, is a sequence
x0, x1, . . . , xk of points in M , with xi ∼ xi+1 for i = 0, . . . , k − 1. We call x0 the domain
of the path, and xk the codomain of the path.

Similarly, a 2-dimensional grid Z of size k × l is a (k + 1)× (l + 1) matrix zi,j whose
rows and columns are paths.

Let λ(x; y, z) be a (partially defined) ternary operation on M , with book-keeping
conditions as for an affine connection. Then out of two paths x and y with common
domain x0 = y0, we can use λ to construct a grid z = λ(x0;x, y) of size k × l by double
induction: Initial data zi,0 = xi and z0,j = yj, and

zi+1,j+1 := λ(zi,j; zi+1,j, zi,j+1).
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The domain of the grid is z0,0 = x0 = y0, the codomain of this grid is zk,l (A grid of size
2 × 1 constructed this way is exhibited in (9) below). If λ(x;−,−) is symmetric for any
x, one has that λ(x0; y, x) is the transpose of λ(x0;x, y) (provided x0 = y0).

In particular, if λ is symmetric (i.e. λ(x; y, z) = λ(x; z, y)), interchanging the two
generating paths gives two grids whose codomains are equal.

3.2. Affine connections as groupoid connections. We shall describe how an
affine connection on a manifold M may be seen as a particular case of groupoid valued
connection in the sense of Section 2.

The groupoid in question is the groupoid GL(M) ⇒ M , where an arrow x → y is a
bijection M(x) → M(y) taking x to y. This groupoid is canonically isomorphic to the
groupoid consisting of fibrewise linear isomorphims Tx(M) → Ty(M), see Theorem 4.3.4
in [12]. And this groupoid in turn is, for an n-dimensional manifold, locally isomorphic
to the groupoid M ×M × GL(n,R) (whence the choice of the acronym “GL”). So that
Proposition 2.1 applies.

Given an affine connection λ on M . We describe a connection ∇ in the groupoid
GL(M):5 for x ∼ y in M , the map z 7→ λ(x; y, z) is a map ∇(x, y) : M(x) → M(y), by
the (first) book-keeping law in (6), and it takes x ∈ M(x) to y ∈ M(y) by the second law
in (6); so for z ∈ M(x)

∇(x, y)(z) := λ(x; y, z) ∈ M(y).

Equivalently, this is describing a bundle connection on the bundle M(1) → M . We say
that λ is flat if the associated groupoid valued connection ∇ is flat.

Note that y and z play a different role in the interpretation of λ as a bundle connection.
We think of x, y as the “active” aspect, and z as the passive: we transport z along x, y.
In the diagram (9) below, the arrows indicate the active aspect; the lines (as well as the
arrows) indicate the relation ∼.

Another bundle connection may be constructed, by interchanging the role of the y and
z.

Let us describe the composite map∇(x, y1).∇(y1, y2), i.e. λ(x; y1,−).λ(y1; y2,−) (com-
posing from left to right); its value in z ∼ x can be read off from the diagram (for
x ∼ y1 ∼ y2)

z λ(x; y1, z) λ(y1; y2, λ(x; y1, z))

x - y1 - y2.

(9)

Since the local triviality assumptions of Proposition 2.1 are valid for the groupoid
GL(M), we have the following special case of Proposition 2.1:

5This viewpoint was introduced in [8], see also [12] 2.3.
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3.3. Proposition. For a flat λ, the result of iterated transport of z ∼ x along a path y
with domain x only depends on z and and on the codomain of the path y.

By induction in the length l of a path z, one now may conclude more generally

3.4. Proposition. For a flat λ, the last column in the grid constructed from two paths
y and z with common domain x only depends on z and on the codomain of y.

In particular, if λ is also symmetric, the codomain of the grid constructed by λ out of
y and z only depends on the codomains of y and z.

We now state the main integration result. It applies to path connected manifolds M ;
but recall that the present path notion is of infinitesimal nature, since “paths” are finite
chains of first order infinitesimal neighbours x ∼ y. The combinatorics resides in proving
the Cube Lemma, Lemma 3.6 below.

3.5. Theorem. If λ is a flat and symmetric affine connection, restricted by ∼, then λ
extends canonically to an unrestricted flat and symmetric affine connection λ∞.

We consider a ∼-restricted affine connection λ, assumed to be symmetric and flat.

3.6. Lemma. [Cube Lemma] Consider a triple x, y, z of points, each of which is neighbour
of a point o. Then there exists a unique point Λ = Λ(o;x, y, z) which fits into a “cube”
shaped diagram

z λ(o;x, z)

λ(o; y, z) Λ(o;x, y, z)

o x

y λ(o;x, y)

(10)

where the lines indicate the relation ∼, and where each of the six faces are parallelograms
according to λ.

Proof. The three faces containing o are by construction λ-parallelograms. The unique-
ness of the Λ(o;x, y, z) is clear just by (say) the requirement that the right hand face
is a λ-parallelogram. So the assertion is that then also the top face and the front face
are λ-parallelograms. To say that the right hand face is a λ-parallelogram is to say that
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Λ = λ(x;λ(o;x, y), λ(o;x, z)). There are similar expressions for the top and right hand
squares, so the equational content of the Lemma is that these three expressions have equal
value. They occur in the three equations (to be proved) in (14), (15), and (16) below.

We have λ(o;x, y) = λ(o; y, x), and therefore, we have two paths (of length 2) from o
to this point, namely (o, x, λ(o;x, y)) and (o, y, λ(o; y, x)), and therefore moving z along
either of these two paths give same result, by Proposition 2.1.

(If further we happen to have o ∼ λ(o;x, y), this equals, by flatness, the result
λ(o;λ(o;x, y), z) of moving z directly along the “path” (of length 1) from o to λ(o;x, y),
and obtain

λ(o;λ(o;x, y), z) = λ(x;λ(o;x, y), λ(o;x, z)).) (11)

The formula for the result of moving z ∼ o along the path (o, x, λ(o;x, y)) can be read
off from the diagram

z λ(o;x, z) λ(x;λ(o;x, y), λ(o;x, z))

o - x - λ(o;x, y)

(12)

and the formula for the result of moving z ∼ o along the path (o, y, λ(o; y, x)) can similarly
be read off from the diagram

z λ(o; y, z) λ(y;λ(o; y, x), λ(o; y, z))

o - y - λ(o; y, x)

(13)

and using flatness of λ and λ(o;x, y) = λ(o; y, x), we therefore have the equation (14):

λ(x;λ(o;x, y), λ(o;x, z)) = λ(y;λ(o; y, x), λ(o; y, z)) (14)

λ(y;λ(o; y, z), λ(o; y, x)) = λ(z;λ(o; z, y), λ(o; z, x)) (15)

λ(z;λ(o; z, x), λ(o; z, y)) = λ(x;λ(o;x, z), λ(o;x, y)) (16)

The equations (15) and (16) are permutation instances of (14): the expressions in
these two equations come about by cyclically permuting the occurrence of x, y, z in (14),
and are therefore valid, since the the book-keeping assumptions on o, x, y, z are symmetric
in x, y, z.

Now the by symmetry of λ, the right hand side of (14) equals the left hand side of
(15); and the right hand side of (15) equals the left hand side of (16); and the right hand
side of (16) equals the left hand side of (14), so we conclude that all the six expressions in
these three equations are equal. This proves the Cube Lemma, and hence Theorem 3.5.
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3.7. Affine structure. By Theorem 3.5, a flat symmetric ∼-restricted affine connec-
tion λ extends to a flat symmetric unrestricted connection λ∞; being flat and symmetric,
the Cube Lemma 3.6 therefore applies to λ∞. But now the book-keeping conditions vac-
uously hold, and this implies that we can augment the equation triad (14), (15), (16) by
some further equations, which are not generally meaningful for the restricted λ. We have
for instance validity of (11) for λ∞.

To exhibit this equation, and two analogous ones, in a more readable way, we found
it useful to switch to the following lightweight notation for λ∞:

[xoy] := λ∞(o;x, y).

(Note the change in the ordering of the two first arguments in the notation; we argue for
the reasonableness of the notations in the Appendix below.) Then equation (11) reads

[[xoy]oz] = [[xoy]x[xoz]],

and permutation instances thereof (permuting x, y, z). Combining with the triad of equa-
tions (14), (15), (16) (valid for λ∞), and changing to the lightweight notation, we therefore
have equality of all nine expressions in

[[xoy]oz] = [[xoy]x[xoz]] = [[yox]y[yoz]]

[[yoz]ox] = [[yoz]y[yox]] = [[zoy]z[zox]]

[[zox]oy] = [[zox]z[zoy]] = [[xoz]x[xoy]]

In particular, we have [[xoy]oz] = [[yoz]ox], and using symmetry of λ, the right hand side
of this may be written [xo[yoz]], so that we have the associative law

[[xoy]oz] = [xo[yoz]].

Therefore we have, for infinitesimally path connected M ,

3.8. Theorem. For any o ∈ M , the operation +o given by x+o y := [xoy] makes M into
an abelian group, with o as unit. The inverse of x is λ(x; o, o)

Proof. The associative law for +o was argued above. The inverse of x w.r.to the ad-
dition +o is λ(x; o, o); this follows as a substitution instance of the inversion law (8),
λ(o;x, λ(x; o, o)) = o.

With this result, the Λ(o;x, y, z) in the Cube Lemma is simply x+o y +o z, and each
of the six expressions in represent the various ways this triple sum can be expressed in
the terms of x, y, z and the binary +o.

Furthermore, the way is now open to use all of the power of the algebraic theory of
abelian groups, e.g. defining n-ary sums relative to +o, or forming affine combinations
with integral coefficients; they are independent of the choice of o, since translation by
λ(o; o′,−) is a group homomorphism from +o to +o′ .



INTEGRATION OF 1-FORMS AND CONNECTIONS 335

3.9. Scalars. Prüfer observed that a “Schar” (a heap) admits affine combinations with
coefficients from Z (an affine combination being a linear combination where the sum of
the coefficients is 1). In geometry, one is also interested in affine combinations with more
general coefficients, e.g. 1

2
∈ Q, to form the midpoint 1

2
x+ 1

2
y of x and y. It can be proved

that in the context of affine connections λ as considered presently in SDG terms, the data
of a symmetric affine combination may equivalently be encoded as the data of forming
midpoints of any x and y which are second order neighbours, cf. [11] or [12] 8.2. I do not
know to what extent flatness of a symmetric affine connection can be formulated in terms
of such midpoint formation, or more generally, in terms of binary affine combinations
(1 − t)x + ty; also, I do not know to what extent affine combinations of n + 1-tuples
x0, x1, . . . , xn with x0 ∼ xi for i = 1, . . . n may be formed with more general coefficient
than Z. The Λ(o;x, y, z) in (10) is an affine combination with four terms, with coefficients
from Z.

The question with general coefficients (say, coefficients from R in well-adapted models
for SDG) has been studied in [2].

Appendix on notation

The main structure studied here: affine connections, has been presented with various
notations: λ(x; y, z), [yxz], y +x z (and even ∇(x, y)(z)). The first notation reflects the
coordinate formulation which affine connections have in terms of Christoffel symbols Γ;
thus, in [12] 2.3, λ(x; y, z) = Γ(x; y − x, z − x), with Γ(x;−,−) : V × V → V bilinear,
where V is the coordinatizing vector space. The notation [yxz] is essentially the one used
by Prüfer [15], who writes (yx−1z). The notation y +x z indicates what [15] and we are
aiming for, namely to enter the promised land of abelian groups, with arbitrary x as 0.

Finally, the special role of x in the ternary operation [yxz] = λ(x; y, z) is, from the
notational viewpoint: that x is the middle entry, respectively that x appears before the
semicolon. For the 4-ary operation Λ(o;x, y, z), as in the Cube Lemma, the “middle-
entry” option is not available, whereas the semicolon option is.
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Diff. Cat. 12 (1971), 197-212.

Diagrams were made with Paul Taylor’s package.

Department of Mathematics, University of Aarhus,
DK 8000 Aarhus C, Denmark

Email: kock@math.au.dk

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
John Bourke, Masaryk University: bourkej@math.muni.cz
Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt
Valeria de Paiva, Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Rune Haugseng, Norwegian University of Science and Technology: rune.haugseng@ntnu.no
Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt
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