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A COMONAD FOR GROTHENDIECK FIBRATIONS

JACOPO EMMENEGGER, LUCA MESITI, GIUSEPPE ROSOLINI, AND
THOMAS STREICHER

Abstract. We prove that cloven Grothendieck fibrations over a fixed base B are the
pseudo-coalgebras for a lax idempotent 2-comonad on Cat/B . We show this via an
original observation that the known colax idempotent 2-monad for fibrations over a
fixed base has a right 2-adjoint. As an important consequence, we obtain an original
cofree construction of a fibration on a functor. We also give a new, conceptual proof of
the fact that the forgetful 2-functor from split fibrations to cloven fibrations over a fixed
base has both a left 2-adjoint and a right 2-adjoint, in terms of coherence phenomena of
strictification of pseudo-(co)algebras. The 2-monad for fibrations yields the left splitting
and the 2-comonad yields the right splitting. Moreover, we show that the constructions
induced by these coherence theorems recover Giraud’s explicit constructions of the left
and the right splittings.

1. Introduction

Grothendieck introduced fibrations in the late 1950s for the purpose of studying descent
in algebraic geometry. Fibred categories, as fibrations are also called, were then studied,
among others, by Bénabou, Giraud [1971], Gray [1966], and Street [1974]. Bénabou
developed the theory in the 1970s for the purpose of doing category theory over a general
base topos and even more generally over categories with finite limits. Unfortunately,
most of the material is unpublished. Copies of original manuscripts are available online
at www2.mathematik.tu-darmstadt.de/~streicher/FibCatTexts, see also the notes by
Streicher [2022]. Marta Bunge was a strong advocate for his approach, see e.g. [Bunge,
1979; Bunge and Paré, 1979; Bunge and Hermida, 2011].

An important well-known result is that cloven fibrations over a fixed base B are the
pseudo-algebras for a colax idempotent 2-monad M on Cat/B . Strict algebras for such
2-monad correspond to split fibrations. (Co)lax idempotent 2-monads were introduced
by Kock in his PhD thesis [Kock, 1967], with examples coming from colimit completion
processes. Zöberlein then studied the corresponding concept for pseudo-monads in his
PhD thesis [Zöberlein, 1976]. The idea of a (co)lax idempotent 2-monad is to encode a
property-like structure, see also [Kock, 1995]. Indeed objects of the base can have at most
one structure of pseudo-algebra for such 2-monads.
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The free fibration on a functor was firstly constructed by Gray. In [Gray, 1966, The-
orem 3.9], he produced a left adjoint to the forgetful functor from the category SpFib(B)
of split fibrations over B and functors that preserve the cleavage on the nose into the
slice category Cat/B . The monadicity of this forgetful functor has then been known to
some extent for many years. A complete proof appeared recently in Chapter 9 of Johnson
and Yau’s book [2021]. The algebraic character of fibrations over functors was further
clarified by Street, who introduced fibrations over a fixed base internal to a (suitable) 2-
category as pseudo-algebras for a colax idempotent 2-monad, which generalizes the one for
Grothendieck fibrations, see [Street, 1974, pp. 118, 122] where opfibrations and fibrations
are respectively called 0-fibrations and 1-fibrations.

One of the main results of the paper is that cloven fibrations over a fixed base B
are also the pseudo-coalgebras for a lax idempotent 2-comonad on Cat/B (Theorem 3.4).
We prove this by observing that the underlying 2-functor M of the 2-monad M can be
expressed as the composition of two left adjoint 2-functors. So that M has a right 2-adjoint
N . This observation is original. By an extension of the classical argument of Eilenberg
and Moore [1965, Proposition 3.3], we can conclude that N underlies a lax idempotent
2-comonad N whose pseudo-coalgebras are isomorphic to the pseudo-algebras for M, and
thus coincide with cloven fibrations. We also give an explicit description of the 2-comonad
N for fibrations in Remark 3.6, obtained via mating calculus.

The comonadicity result for Grothendieck fibrations has many important consequences.
Notably, it provides in particular an original cofree construction of a fibration on a func-
tor (Theorem 4.1). This gives a right adjoint to the forgetful functor from the category
SpFib(B) of split fibrations over B and functors that preserve the cleavage on the nose
into the the slice category Cat/B . Such right adjoint was devised by the second author
in his MSc thesis under the supervision of the third author. We could not find previous
traces of it in the literature.

Another main result is a new, conceptual proof of the fact that the forgetful 2-functor
from split fibrations to cloven fibrations over a fixed base has both a left 2-adjoint and
a right 2-adjoint (Theorem 5.4). We deduce this from the monadicity and the comon-
adicity results for Grothendieck fibrations. Both explicit left adjoint and right adjoint
splittings of fibrations were introduced in [Giraud, 1971, Théorèmes 2.4.2 et 2.4.4], which
is unfortunately hard to read. The right splitting, with a proof that the counit consists
of equivalences, then appeared in Bénabou’s lectures in 1974 at Montreal and in 1980
at Louvain-la-Neuve, with a construction based on his “fibered Yoneda lemma”. The
left splitting was brought to public attention again in [Kapulkin and Lumsdaine, 2021].
The two adjoints gained interest as they provide two ways of turning a fibration into an
equivalent split one: a description of this can be found in [Streicher, 2022, Section 3].

We prove that both left and right splittings coincide with coherence phenomena of
strictification of pseudo-(co)algebras, studied by Power [1989] and Lack [2002]. The 2-
monad M yields the left adjoint splitting as the left adjoint to the forgetful from strict
algebras to pseudo-algebras. The 2-comonad N yields the right adjoint splitting as the
right adjoint to the forgetful from strict coalgebras to pseudo-coalgebras.
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Moreover, we show that the recipes described in [Lack, 2002] and [Power, 1989] to
strictify pseudo-(co)algebras recover the explicit constructions of the right and left split-
tings given by Giraud [1971] (Remark 5.5 and Remark 5.8). We believe this sheds new
light on Giraud’s explicit constructions.

Outline of the paper. In Section 2, we recall that cloven fibrations over a fixed base
B are the pseudo-algebras for a colax idempotent 2-monad M on Cat/B .

In Section 3, we prove that cloven fibrations over B are the pseudo-coalgebras for a
lax idempotent 2-comonad N on Cat/B . We show this via an original observation that
the 2-monad M has a right 2-adjoint.

In Section 4, we show that the comonadicity result of Section 3 provides in particular
an original cofree construction of a fibration on a functor.

In Section 5, we give a new, conceptual proof of the two splittings of fibrations, in terms
of coherence phenomena of strictification of pseudo-(co)algebras. We also show that the
constructions induced by these coherence theorems recover Giraud’s explicit construction
of the left and right splitting.

Acknowledgements. We would like to acknowledge the two reviewers’ very helpful
suggestions. They were extremely useful to redraft our original submission as well as to
complement it with references of which we were originally unaware.

2. A colax idempotent monad for fibrations

In this section, we recall that Grothendieck fibrations over a fixed base B are the pseudo-
algebras for a colax idempotent 2-monad on Cat/B . The result has been known to some
extent for many years. Gray [1966, Theorem 3.9(ii)] constructed a left adjoint to the
inclusion into Cat/B of its sub-category SpFib(B) on split Grothendieck fibrations over
B and functors that preserve the cleavage on the nose. It is quite straightforward to see
that the canonical comparison functor into the (strict) algebras for the monad generated
by Gray’s adjunction is an isomorphism. By taking the 2-cells in SpFib(B) to be all 2-cells
in Cat/B , this upgrades to a 2-isomorphism between the 2-category of (strict) algebras
and (strict) algebra morphisms and the 2-category SpFib(B). One can then see that the
2-category of pseudo-algebras is isomorphic to the 2-category Fib(B) of cloven fibrations
and functors that preserve the cleavage up to isomorphism.

The monadicity result for fibrations played a crucial role in [Street, 1974], where
fibrations in a 2-category are introduced precisely as the pseudo-algebras for a colax
idempotent 2-monad which generalizes the one for Grothendieck fibrations. Recently, a
complete proof of the monadicity result for fibrations appeared in Chapter 9 of [Johnson
and Yau, 2021].

(Co)lax idempotent 2-monads were introduced by Kock in his PhD thesis [Kock, 1967],
with examples coming from colimit completion processes. Zöberlein then studied the
corresponding concept for pseudo-monads in his PhD thesis [Zöberlein, 1976]. Another
useful reference is [Power et al., 2000].
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2.1. Definition. [Kock, Zöberlein] A 2-monad M = (M,µ, η) on a 2-category K is
called colax idempotent (or coKZ) if either of the following equivalent conditions holds:

(i) the multiplication µ is right adjoint left inverse of ηM ;

(ii) any pseudo-algebra structure map α:M(K) // K for M is right adjoint left inverse
of the unit ηK.

Notice that for a colax idempotent 2-monad M on K , any object of K can have at
most one structure of pseudo-algebra for M up to isomorphism. In this sense, a colax
idempotent 2-monad encodes a property-like structure.

2.2. Remark. We would like to produce a free Grothendieck fibration on a functor
F : A //B . So, for every object a in A and map f : b // F (a), we want to force the exist-
ence of a cartesian lifting of f to a. The idea is then to freely add all pairs (b f //F (a) , a),
and thus to consider the comma category B/F .1 This can be compared for example to
the construction of the free monoid on a set.

2.3. Proposition. [Gray, Street] The 2-functor M : Cat/B //Cat/B that maps a func-
tor F : A //B into the functor on the left in the comma object diagram in Cat

B/F P2 //

P1
��

A
F
��

B
IdB

// B
•

>>

extends to a colax idempotent 2-monad M = (M,µ, η).

Proof. By the universal property of the comma object, the identity natural transform-
ation induces the unit ηF : A //B/F over B . Explicitly,

ηF (a) = (F (a) id //F (a) , a).

Then the pasting

B/P1
P ′2 //

P ′1
��

B/F P2 //

P1
��

A
F
��

B
IdB

// B
IdB

//
•

<<

B
•

>>

induces the multiplication µF : B/P1 //B/F over B . Explicitly,

µF ((b1 f1 //b2 , (b2 f2 //F (a) , a))) = (b1 f2f1 //F (a) , a)

1We shall often write an object in a comma category B/F as a pair (b f //F (a) , a) instead of the
appropriate triple (b, a, b f //F (a)) when no confusion arises.
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and it acts on the arrows by pasting the two commutative squares.
Using the universal property of the comma object, it is straightforward to prove that

(M,µ, η) is a colax idempotent 2-monad.
Explicitly, ηM a µ with the unit of the adjunction being the identity and counit

with component uF : ηM(F )µF • // IdM(MF ) the natural transformation given by the family
of arrows in B/M(MF ), which component at the index (b1 f1 //b2 , (b2 f2 //F (a) , a)) is

b1

idb1
��

idb1 // b1

f1
��

b1

f1
��

f2f1 // F (a)

idF (a)
��

b1
f1
// b2 b2

f2
// F (a)

from (b1 id //F (a) , (b1 f2f1 //F (a) , a)) to (b1 f1 //b2 , (b2 f2 //F (a) , a)).

2.4. Remark. Clearly the functor underlying the 2-monad M is polynomial, see [Gambino
and Kock, 2013].

2.5. Remark. The 2-monad M extends to a colax idempotent 2-monad on the 2-category
Cat 2 of arrows of Cat , that applies Cat/B into itself and commutes with change-of-base
functors. However, such extension does not seem to work well with the rest of the theory.
See for example Remark 2.7 and Remark 3.5.

The following result follows from the theory of fibrations internal to a 2-category as
developed by Street [1974, 1980]. The argument we present is based on the well-known
fact that fibrations can be characterized as those functors F such that the unit of M on
F has a right adjoint in Cat/B, see for instance [Weber, 2007, Theorem 2.7]. This is an
instance of the general phenomenon observed by Kock [1995], with the caveat that Kock
only considers left adjoint right inverses (lari) to the unit since he is working with lax -
idempotent monads (hence the left instead of right), and normal pseudo-algebras (hence
the right inverse). About the latter observation, see also the discussion in [Street, 1974,
p. 120] following the proof of Proposition 9.

As we already recalled at the beginning of the section, Johnson and Yau [2021] devote
Chapter 9 to a detailed proof of the following theorem.

2.6. Theorem. [Street, Johnson–Yau] The 2-category of pseudo-algebras for the colax
idempotent 2-monad M on Cat/B is isomorphic to the 2-category Fib(B) of cloven
Grothendieck fibrations over B and functors that preserve the cleavage up to isomorphism.

The 2-category of strict algebras for M is isomorphic to the 2-category SpFib(B) of
split Grothendieck fibrations over B and functors that preserve the cleavage on the nose.

Proof. By the characterization theorem for pseudo-algebras for a colax idempotent
monad of [Kock, 1995] (see also Definition 2.1), a functor F : A //B sustains a structure
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of pseudo-algebra for M if and only if the unit

A
ηF //

F
��

B/F
M(F )
��

B
IdB

// B

has a right adjoint α in Cat/B .2 For every a in A and f : b // F (a) in B , the object
α(b f //a, F (a)) is over b and the component of the counit of ηF a α on (b f //a, F (a))
is a lifting of f to a, since the counit is vertical. The couniversality of the counit precisely
translates as such lifting being cartesian.

The strict axioms for strict algebras translates as the cloven fibration being split.

2.7. Remarks. (a) Recall from [Street, 1980] that a functor F : A // B is a Street fibration
if, for every object a in A and arrow f : b // F (a), there are an isomorphism ha: ba // b
and a cartesian arrow into a over the composite fha: ba // F (a). Street fibrations can
be characterized as pseudo-algebras for the “same” monad M of Grothendieck fibrations,
but lifted to the pseudo-fibre Cat//B , see [Street, 1980]. The 2-category Cat//B has the
same objects as Cat/B , 1-cells are triangles filled with a natural isomorphism, and 2-cells
are those 2-cells in Cat/B which commute with the two natural isomorphisms. For the
characterization of Street fibrations, it is enough to observe that the underlying functor
of M lifts, and that unit and counit are still natural. The rest of the proof works the
same as for Proposition 2.6.
(b) As M is a monad also on the whole 2-category Cat 2, we can also look at the pseudo-
algebras there. It is easy to see that the strict algebras are again split Grothendieck
fibrations. Following Kock [1995], pseudo-algebras for M on Cat 2 can also be characterized
as those functors F such that the unit (Id, ηF ) has a right adjoint in Cat 2. Let

B/F A //

F
��

A
M(F )
��

B B // B

be such a right adjoint. In particular, the functor B is isomorphic to the identity on B via
an isomorphism ζ:B // IdB . Unfolding the other conditions one sees that for every object
a in A and arrow f : b // F (a), there is a cartesian arrow into a over fζb:B(b) // F (a). It
follows that a pseudo-algebra for M in Cat 2 is a Street fibration. However, the converse
does not seem to hold. Indeed, in both cases, given a in A and f : b // F (a), we can
choose an isomorphism h such that the composite fh has a cartesian lift to a. But in a
Street fibration the choice of h depends on the object a, whereas in a pseudo-algebra in
Cat 2 the choice is given uniformly for every object a by the isomorphism ζb.

2Indeed, Kock [1995] shows just a bijection between the objects.
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Notice also that a normal pseudo-algebra in Cat 2, being a right adjoint right inverse to
the unit, is in particular an arrow in Cat/B and, in fact, a right adjoint right inverse to the
unit in Cat/B . It follows that a normal pseudo-algebra in Cat 2 is a normal Grothendieck
fibration. This fact suggests that (normal) Street fibrations are strictly more general than
pseudo-algebras in Cat 2.

3. A lax idempotent comonad for fibrations

In this section, we prove an original result of comonadicity for Grothendieck fibrations.
More precisely, we prove that fibrations over a fixed base B are also the pseudo-coalgebras
for a lax idempotent 2-comonad on Cat/B. We show this by an original observation that
the 2-monad M has a right 2-adjoint.

We will see in the following sections that the comonadicity theorem has important
consequences. It provides in particular an original cofree construction of a fibration on a
functor (Theorem 4.1). Moreover the monad and the comonad induce respectively the left
splitting and the right splitting of fibrations (Theorem 5.4, Remark 5.5, Remark 5.8). The
comonadicity of fibrations has also consequences for (higher) elementary topos theory.

To reach the comonadicity result for Grothendieck fibrations, we notice the following
useful equivalent description of the 2-monad.

3.1. Proposition. The 2-functor underlying the 2-monad M coincides with the compos-
ition

Cat/B cod∗ // Cat/B2 dom• // Cat/B

of the 2-functor cod∗ that calculates pullbacks along cod: B2 //B and the 2-functor dom•
of postcomposition with dom: B2 //B.

Proof. The comma object in Cat

B/F P1 //

P2
��

B
IdB
��

A
F

// B

•

~~

from IdB to F is equivalent to the pullback of F along the lax limit of the arrow IdB (that
acts as a replacement):

B/F //

P2
��

B2 dom //

cod
��

B
IdB
��

A
F

// B
IdB

// B

•

��



378 EMMENEGGER, MESITI, ROSOLINI, AND STREICHER

3.2. Remark. The 2-monad M can thus be expressed as the composition of left adjoint
2-functors. This observation is original.

The adjunction dom• a dom∗ is the usual change of base. And the functor cod∗ has
indeed a right 2-adjoint cod∗ because cod is an opfibration. Hence it is 2-exponentiable
as stated in Giraud [1964, Théorème 4.4] and in Conduché [1972, 2nd Proposition on
p. 894], but for an explicit proof of the characterisation of exponentiable functors, see
Street [1986] where such functors are called powerful. See also Street and Verity [2010,
Theorem 2.16] for the extension to the case of internal categories in a cartesian closed
category with pullbacks.

3.3. Proposition. The 2-functor underlying the 2-monad M has a right 2-adjoint N ,
expressed as the composite

Cat/B dom∗ // Cat/B2 cod∗ // Cat/B

Therefore N underlies a lax idempotent 2-comonad N = (N,µ′, η′) on Cat/B.

Proof. The mating calculus ensures that the double category of left adjoints in a 2-
category is isomorphic to the double category of right adjoints, see [Kelly and Street,
1974]. It follows that the right 2-adjoint of a colax idempotent 2-monad underlies a lax
idempotent 2-comonad.

For 1-dimensional monads, Eilenberg and Moore [1965] showed that the coalgebras for
the right adjoint of a monad coincide with the algebras for the monad. Lauda [2006] then
proved that this works for pseudo-monads as well, obtaining a 2-equivalence between
the pseudo-coalgebras and the pseudo-algebras. In the present case, we can prove the
following stricter result.

3.4. Theorem. The 2-category of pseudo-coalgebras for the lax idempotent 2-comonad N
on Cat/B is isomorphic to the 2-category Fib(B) of cloven Grothendieck fibrations over
B and functors that preserve the cleavage up to isomorphism.

The 2-category of strict coalgebras for N is isomorphic to the 2-category SpFib(B) of
split Grothendieck fibrations over B and functors that preserve the cleavage on the nose.

Proof. The isomorphism between the double category of left adjoints in a 2-category
and the double category of right adjoints [Kelly and Street, 1974] (via mating calculus)
transforms the 2-category of pseudo-algebras for M into the the 2-category of pseudo-
coalgebras for N. Indeed, Lauda [2006] showed that a right pseudo-adjoint to a pseudo-
monad in a Gray-category is a pseudo-comonad with pseudo-coalgebras 2-equivalent to
the pseudo-algebras of the pseudo-monad. We notice that, when the pseudo-adjunction
is a strict 2-adjunction and the interchange rule is strict, the 2-equivalence becomes a
2-isomorphism. We can then conclude by Theorem 2.6.
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3.5. Remark. For the comonadicity of fibrations, it is essential to restrict to fibrations
over a fixed base B . The factorization of Proposition 3.1 indeed only holds for the 2-monad
restricted to Cat/B .

3.6. Remark. We can calculate the 2-comonad N = (cod∗dom∗, µ′, η′) more explicitly.
Indeed, as observed by Giraud [1964], the isomorphism between homsets that gives the
adjunction cod∗ a cod∗ determines the explicit definition of cod∗, up to isomorphism.
Notice that dom∗ sends every functor F : A //B to the forgetful F/B //B2. Since the
fibre of cod over b in B is B/b, we find that N(F ) is the projection on the first component
GF //B , where GF is the category defined as follows. Its objects are pairs 〈b,X〉 where
b is an object in B and X is a functor such that

B/b A

B

X

∂0 F

commutes. An arrow 〈f, α〉 : 〈b,X〉 〈b′, X ′〉 consists of an arrow f : b b′ in

B and a natural transformation

B/b A

B/b′

X

f ◦B – X ′

•

α

with vertical components.
N then sends every morphism H:F // F ′ in Cat/B to 〈Id, H ◦ −〉 : GF //GF ′ , which is
over B . And the action of N on 2-cells is analogous.

By the mating calculus, the counit η′ of the 2-comonad N is the composite

cod∗dom∗
•−−−−−−→

η cod∗dom∗
dom•cod∗cod∗dom∗

•−−−−−−−→
dom• ξdom∗

dom•dom∗
•−→
ζ

id,

where ξ is the counit of cod∗ a cod∗, whose components are evaluation functors, and ζ
is the counit of dom• a dom∗. Given a functor F : A //B , the component of η′ on F is
then given by “evaluating at the identity”

GF A

〈b,X〉 X(idb)

〈b′, X ′〉 X ′(idb′)

X(idb) X ′(f)

E

〈f, α〉 X ′(f : f −→ idb′) ◦ αidb

αidb
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The comultiplication µ′ of the 2-comonad N has component µ′F on F : A //B given
by the functor GF //GN(F ) that sends 〈b,X〉 to

〈
b,X)

〉
with

B/b GF

(h: b′ → b) 〈b′, X ◦ (h ◦ −)〉

X

After Remark 3.8, we will be able to see µ′F as the coalgebra structure map of the split
fibration N(F ).

One could also use the isomorphism between homsets, given by the adjunction M a N ,
as guaranteed by Proposition 3.3, to determine N directly as follows.

Given b in B , write y(b): B/b B for the split fibration given by the (restriction of
the) domain functor from the comma category B/b to B . That assignment extends to a
functor

B SpFib(B)

b1 B/b1

b2 B/b2

y

f f ◦B –

3.7. Proposition. Fix a functor F : A B in Cat/B. Homming from each y(b) into F
in the comma 2-category Cat/B

Bop Cat

b (Cat/B)(y(b), F )

b′ (Cat/B)(y(b′), F )

F̂

fBop – ◦Cat/B y(f)

gives a strict indexed category over B, and its fibration of points∫
F̂ : GF //B

is precisely N(F ).

Note that it follows directly from Proposition 3.7 that N(F ) is split, which we know
already from Theorem 3.4 as N(F ) is a cofree strict coalgebra.

3.8. Remark. The pseudo-coalgebra structure map of a cloven fibration p: E //B is,
explicitly,

E GF

B

α

p N(p)
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where α sends E in E to the triangle

B/p(E) E

B

(−)∗E

∂0
p

with (−)∗E calculating the domains of the chosen cartesian liftings to E, and is extended
by cartesianity to a functor α: E //GF .

The rest of the pseudo-coalgebra structure of p is given by the isomorphisms αη′ and
αµ′ that regulate respectively liftings in the chosen cleavage of p of an identity and of a
composite.

The well-known observation that the component at F of the comultiplication µ′F of the
comonad N is precisely the coalgebra structure map of the split fibration N(F ) translates,
in the notation of Remark 3.6, as

X = (−)∗ 〈b,X〉 .

That is, X shows the explicit chosen cartesian liftings for the split fibration N(F ), which
can be read from Proposition 3.7.

4. The cofree fibration on a functor

An important consequence of the comonadicity result is the fact that the forgetful 2-
functor from the 2-category SpFib(B) of split fibrations over a fixed B to Cat/B also has
a right adjoint. This result seems not to appear in the literature.

4.1. Theorem. The forgetful 2-functor U : SpFib(B) //Cat/B has a right 2-adjoint.
The cofree fibration on a functor F : A //B is the split fibration N(F ): GF //B, de-
scribed in Remark 3.6 and Proposition 3.7.

Proof. The right 2-adjoint to U is given by the forgetful-cofree adjunction given by the
2-comonad N. By Theorem 3.4, the strict coalgebras for the 2-comonad N are precisely
the split fibrations.

4.2. Remark. The fact that N gives a right adjoint to U could also be proved directly,
showing that the counit η′ is 2-universal. The component on p of the unit of the adjunction
is given by the coalgebra structure map of the split fibration p, described in Remark 3.8.
However a direct proof is considerably more involved than the one that just follows from
the factorization of the 2-monad as the composite of two left adjoint 2-functors. It is
indeed much easier to calculate the right adjoint to the monad M than the right adjoint
to U .
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4.3. Remark. We briefly describe a strategy for a direct proof of the comonadicity of U .
In order to prove that a coalgebra (F : A //B , α:F N(F )) for the 2-comonad N is

a split fibration, start from a diagram

a

b F (a)

F

f

and construct a cartesian lifting of f to a. The idea is to apply α to such a diagram
and compute the cartesian lifting with respect to the split fibration N(F ) of f to α(a) =
〈F (a), X: B/(F (a)) //A〉. Next, applying the counit η′F recovers the starting data of
the diagram above and exhibits a lifting of f to a:

η′F (〈b,X ◦ (f ◦ −)〉) a

b F (a)

η′F (〈f, id〉)

F F

f

Note that, by Remark 3.6,

η′F (〈b,X ◦ (f ◦ −)〉) = X(f).

One is left with proving directly that such a lifting of f to a is cartesian, whose proof is
lengthy. The proof of Theorem 3.4 uses instead what was already known for the 2-monad
M.

5. Recovering the two ways to split a fibration

In this section, we present a new, conceptual proof of the fact that the forgetful 2-functor
from split fibrations to cloven fibrations over a fixed base has both a left 2-adjoint and
a right 2-adjoint. Both explicit left and right splittings of fibrations were introduced in
[Giraud, 1971, I.2.4].

We prove that both left and right splittings coincide with coherence phenomena of
strictification of pseudo-(co)algebras. We show that such strictification adjoints are guar-
anteed for the monad M and the comonad N by the theorems of Lack [2002]. The
2-monad M yields the left adjoint splitting as the left adjoint to the forgetful from strict
algebras to pseudo-algebras. The 2-comonad N yields the right adjoint splitting as the
right adjoint to the forgetful from strict coalgebras to pseudo-coalgebras.

Moreover, we show that the recipes described in [Lack, 2002; Power, 1989] to strictify
pseudo-(co)algebras concretely, recover the explicit constructions of right and left split-
tings given by Giraud [1971]. This sheds new light on Giraud’s explicit constructions.

A conceptual proof of the two splittings of fibrations is obtained via a result of [Lack,
2002, Theorem 3.2], which we shall apply in its dual form, as we recall in the following.
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5.1. Theorem. [Lack] If T is a 2-comonad on a 2-category K admitting descent objects,
and T preserves them, then the inclusion T -CoAlgs //Ps-T -CoAlg of strict coalgebras
into pseudo-coalgebras has a right adjoint, and the components of the counit are equival-
ences in Ps-T -Alg. In particular this is the case if K has iso-inserters and equifiers, and
T preserves these.

The following two propositions show that the 2-monad M and the 2-comonad N satisfy
the assumptions of Theorem 5.1, guaranteeing the existence of the strictification adjoints.

5.2. Proposition. Cat/B has all weighted 2-colimits, created by the domain functor into
Cat . In particular, it has all codescent objects.

Moreover Cat/B also has all iso-inserters and equifiers, thus all descent objects.

Proof. Cat/B is the 2-category of strict coalgebras for the 2-comonad − × B on Cat .
So the forgetful into Cat creates all weighted 2-colimits. Since Cat is cocomplete as a
2-category, Cat/B is cocomplete as well. As shown in [Lack, 2002], codescent objects are
particular weighted 2-colimits.

The iso-inserter of two functors F,G: C //D over B is given by the category whose
objects are all pairs (C, φC) with C in C and φC :F (C) ∼= G(C) an isomorphism in D
over the identity, and whose morphisms (C, φC) // (C ′, φC′) are morphisms f :C // C ′ in
C such that G(f)φC = φC′F (f). We are thus restricting the usual inserter in Cat taking
only those φC that are vertical.

Equifiers in Cat/B are just calculated in Cat . By [Lack, 2002], Cat/B has then descent
objects as well, as they can be produced via an iso-inserter followed by two equifiers.

5.3. Proposition. The 2-monad M preserves codescent objects. The 2-comonad N
preserves descent objects.

Proof. By Proposition 3.3, M a N . So M preserves all weighted 2-colimits and N
preserves all weighted 2-limits.

We can now present a new, conceptual proof for the following theorem, which firstly
appeared in [Giraud, 1971].

5.4. Theorem. The forgetful 2-functor V : SpFib(B) //Fib(B) from split fibrations over
B to cloven fibrations over B has both a left 2-adjoint L and a right 2-adjoint R.

Moreover, the components of the unit of the adjunction L a V are equivalences in
Fib(B). And the components of the counit of V a R are equivalences in Fib(B).

Proof. Thanks to Proposition 5.2 and Proposition 5.3, Lack [2002] (see Theorem 5.1)
guarantees that the forgetful 2-functor from strict algebras to pseudo-algebras for M has
a left 2-adjoint, such that the components of the unit are equivalences between pseudo-
algebras. Dually, the forgetful 2-functor from strict coalgebras to pseudo-coalgebras for
N has a right 2-adjoint, such that the components of the counit are equivalences between
pseudo-coalgebras. Both forgetful 2-functors coincide (up to isomorphism) with V , by
Theorem 2.6 and Theorem 3.4.
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Since adjoints are unique up to isomorphism, the two splitting adjoints of Theorem 5.4
need to be realized by the explicit constructions of Giraud [1971]. But we can do more
than this. Lack [2002] also gives a concrete recipe to calculate the strictification of pseudo-
algebras, in terms of codescent objects. Dually, for the strictification of pseudo-coalgebras
in terms of descent objects. In the rest of this section, we show that our conceptual proof
of Theorem 5.4 also produces the explicit splitting constructions of Giraud [1971].

5.5. Remark. Using the explicit construction of descent objects in Cat/B given in Pro-
position 5.2, one can recover the explicit construction of the right splitting of fibrations
of Giraud [1971]. Let p: E //B be a cloven fibration, with pseudo-coalgebra structure
for the 2-comonad N given by a map α: p // N(p) and isomorphisms αη′ and αµ′ (see
Remark 3.8). Following the concrete recipe of Lack [2002] to strictify pseudo-coalgebras,
we have that R(p) is the descent object in SpFib(B) of the coherence data

N(p) N2(p) N3(p)

µ′p

Nα

Nη′p

µ′Np

N2α

Nµ′p

By Proposition 5.2 and Proposition 5.3, such descent object is calculated in Cat/B , as an
inserter followed by two equifiers. The first step is to calculate the iso-inserter of

N(p) N2(p)
µ′p

Nα

By Proposition 5.2, such iso-inserter is given by the category whose objects are all pairs
(〈b,X〉, φ) with 〈b,X〉 in Gp and φ:µ′p(〈b,X〉) ∼= (Nα)(〈b,X〉) an isomorphism in GNp

over the identity, and whose morphisms (〈b,X〉, φ) // (〈b′, X ′〉, φ′) are morphisms 〈h, λ〉
in Gp such that (Nα)(〈h, λ〉) ◦ φ = φ′ ◦ µ′p(〈h, λ〉).

In the notation of Remark 3.6, φ is a natural isomorphism

B/b Gp

E

X

X α

•

φ

over B . For every f : a // b in B , the component φf of φ on f is given by a natural
isomorphism

B/b

B/a E

X

(−)∗X(f)

f ◦ −
•

φf
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over B . For every u: a′ // a in B , the component φf,u of φf on u is given by an isomorphism

φf,u:X(fu) ∼= u∗X(f)

in E over ida′ . Naturality of φf on u yields in particular a commutative triangle

X(fu) X(f)

u∗X(f)

X(u)

φf,u Cart(u,X(f))

where Cart(u,X(f)) is the chosen cartesian lifting of u to X(f). This triangle subsumes
all the other conditions φ needs to satisfy, by cartesianity arguments.

So an arbitrary object of the iso-inserter is equivalently given by 〈b,X〉 equipped with
chosen isomorphisms φf,u that satisfy the commutative triangle above. Under the axiom
of choice, this is equivalent to restrict to those 〈b,X〉 in Gp such that X is a cartesian
functor, i.e. a functor that preserves the cleavage up to isomorphism.

The naturality-like condition that the morphisms of the iso-inserter need to satisfy
is equally subsumed under the commutative triangle above. So that morphisms in the
iso-inserter are simply all morphisms 〈h, λ〉 in Gp.

In order to produce a descent object, we should then take two equifiers to force the
following two conditions (the second one is a cocycle condition):

φf,id = αη′ :X(f) ∼= (id)∗X(f)

X(fuv) (uv)∗X(f)

v∗X(fu) v∗u∗X(f)

φf,uv

φfu,v

∼= αµ′

v∗φf,u

where the isomorphisms αη′ and αµ′ are those of the pseudo-coalgebra structure α on
p, i.e. those given by the chosen cleavage of p (see Remark 3.8). Both conditions are
however true for all (〈b,X〉 , φ), as they are subsumed by the commutative triangle above,
by cartesianity arguments. So the iso-inserter calculated above is already the descent
object we needed.

We conclude that the concrete recipe of Lack [2002] to strictify pseudo-coalgebras
translates as taking R(p) to be the restriction of N(p) to those objects 〈b,X〉 with X that
preserves the cleavage up to isomorphism (actually with chosen isomorphisms), without
any further condition on morphisms. This is precisely the right splitting construction of
Giraud [1971].
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5.6. Remark. We note another way to recover the right adjoint splitting of fibrations.
By Theorem 3.4, the pseudo-coalgebra structure α of a cloven fibration p is a right adjoint
right inverse of the counit η′F :N(F ) //F . This α is a homomorphism of fibrations which
embeds F into the split fibration N(F ). Closing under isomorphism the image of F into
N(F ) provides a split fibration equivalent to F .

This recovers also the right splitting construction of Giraud [1971], as by Remark 3.8
such image is made of triangles

B/p(E) E

B

(−)∗E

∂0
p

and (−)∗E preserves the cleavage up to isomorphism.

In the following Remark 5.8, we recover the explicit construction of the left splitting
of fibrations given in [Giraud, 1971]. Notice that the explicit construction of codescent
objects in Cat is much more convoluted than the one of descent objects. So it is better to
use the concrete recipe of strictification of pseudo-coalgebras given by Power [1989], later
refined by Lack [2002]. Such an approach uses enhanced factorization systems. We recall
Lack’s result [2002, Theorem 4.10], built on results of Power [1989].

5.7. Theorem. [Lack, Power] If K is a 2-category with an enhanced factorization system
(E ,M ) having the property that if j in M and jk ∼= 1 then kj ∼= 1, and if T is a 2-monad
on K for which Tf in E whenever f in E , then the inclusion T -Algs //Ps-T -Alg has a
left adjoint, and the components of the unit of the adjunction are equivalences in Ps-T -Alg.

While it seems that Remark 5.6 could as well be inscribed in this idea, it is hard to
capture the essential image in a strict factorization system.

We now use Lack (and Power)’s concrete proof of Theorem 5.7 to recover Giraud’s
explicit construction of the left splitting of fibrations.

5.8. Remark. Recall that a factorization system on a 2-category is enhanced when
squares which are pseudo morphisms in Cat 2 with domain in E and codomain in M —so
they commute up to an invertible 2-cell α—can be filled with a unique diagonal such
that the upper triangle commutes strictly and the lower one commutes up to a unique
invertible 2-cell which coincides with α on the whole square.

The factorization system on Cat where E consists of the bijective-on-objects functors
and M consists of the fully-faithful functors, is enhanced. This lifts to a factorization
system on the 2-category Cat/B , which is easily seen to be enhanced.

The other two assumptions of Theorem 5.7 are easily verified for the 2-monad M.
Indeed a fully faithful functor with a right quasi-inverse is clearly an equivalence. And it
is easily seen from the definition of the 2-monad M (see Proposition 2.3) that M preserves
bijective-on-objects functors. In fact, the action of M on morphisms in Cat/B , induced
by the universal property of the comma object, is almost trivial.
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Power’s insight is that an enhanced factorization system can be used to extract a strict
algebra from a pseudo one. In particular, the underlying object of the strict algebra can
be computed factoring the pseudo-algebra map.

Let p: E //B be a cloven fibration, with pseudo-algebra structure for the 2-monad
M given by a map α:M(p) // p and isomorphisms αη and αµ that regulate respectively
liftings in the chosen cleavage of p of an identity and of a composite. Using (the proof of)
Theorem 5.7, we obtain that the underlying object of the left splitting L(p) of p is the
full image of the pseudo-algebra map α:M(p) // p. That is, the objects are the same of
M(p), but an arrow from (f, a) to (f ′, a′) is an arrow α(f, a) // α(f ′, a′) in E and thus
an arrow f ∗a // (f ′)∗a′ in E . This is precisely the left splitting construction of Giraud
[1971].
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