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LEFT ADJOINT TO PRECOMPOSITION
IN ELEMENTARY DOCTRINES

FRANCESCA GUFFANTI

Abstract. It is well-known in universal algebra that adding structure and equational
axioms generates forgetful functors between varieties, and such functors all have left ad-
joints. The category of elementary doctrines provides a natural framework for studying
algebraic theories, since each algebraic theory can be described by some syntactic doc-
trine and its models are homomorphisms from the syntactic doctrine into the doctrine
of subsets. In this context, adding structure and axioms to a theory can be described
by a homomorphism between the two corresponding syntactic doctrines, and the forget-
ful functor arises as precomposition with this last homomorphism. In this work, given
any homomorphism of elementary doctrines, we prove the existence of a left adjoint of
the functor induced by precomposition in the doctrine of subobjects of a Grothendieck
topos.

1. Introduction

In universal algebra, adding structure or equational axioms is a widely used technique:
classical results say that for a given category of algebraic structure—e.g. monoids—,
adding some structure or axioms—e.g. groups, commutative monoids—defines a forgetful
functor from the new category to the original one, with a left adjoint. The 2-category
ED of elementary doctrines provides a natural framework for studying algebraic theories,
with each theory T for a particular algebraic language Σ described by some doctrine of
formulae HFΣ

T . From a categorical point of view, every variety is equivalent to a category
of homomorphisms of elementary doctrines ED(HFΣ

T ,P∗) between a doctrine of formulae
and the subsets doctrine P∗: Setop

∗
// Pos. Moreover, adding structure and equational

axioms translates to a doctrine homomorphism (E, e): HFΣ
T

// HFΣ′

T′ . Precomposition with
this homomorphism induces a functor − ◦ (E, e): ED(HFΣ′

T′ ,P∗)
// ED(HFΣ

T ,P∗), and it
represents the forgetful functor between the correspondent varieties, hence it has a left
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adjoint.

ModΣ′

T′ ModΣ
T

ED(HFΣ′

T′ ,P∗) ED(HFΣ
T ,P∗)

∼=

−◦(E,e)

∼=

In this work we extend this classical result in ED by considering the subobject doctrine
Sub: Eop // Pos from a Grothendieck topos E instead of the doctrine of subsets, and
precomposition with any homomorphism (F, f):P // R instead of the forgetful functor.
The whole article is dedicated to the proof that also in this case the functor

− ◦ (F, f): ED(R, Sub) // ED(P, Sub)

has a left adjoint, showing how the existence of free functors in universal algebra follows
from a more general result that lives in the theory of elementary doctrines.

2. Elementary doctrines

We start by recalling the language of elementary doctrines introduced in [Maietti and
Rosolini, 2013b, Maietti and Rosolini, 2015, Maietti et al., 2017], as a generalization
of Lawvere’s hyperdoctrine [Lawvere, 1969a, Lawvere, 1969b, Lawvere, 1970]. While in
general, doctrines are a way to generalize the posets of well-formed formulae ordered by
provable consequence, the particular context of elementary doctrines is a suitable one in
which we can interpret conjunctions and equality of formulae. We define the 2-category
ED of elementary doctrines, which will be the main protagonists of this work, and show
some relevant examples.

2.1. Definition. Let C be a category with finite products and let Pos be the cate-
gory of partially-ordered sets and monotone functions. A primary doctrine is a functor
P : Cop // Pos such that for each object A in C, the poset P (A) has finite meets, and

the related operations ∧:P × P ·−→ P and >: 1
·−→ P yield natural transformations. The

category C is called base category of P , each poset P (X) for an object X ∈ C is called
fiber, the function P (f) for an arrow f in C is called reindexing.

We recall the definition of elementary doctrines, which are—informally speaking—
doctrines in which we can interpret equality. The original definition of equality for hyper-
doctrines was given by Lawvere in [Lawvere, 1970]: for any object X in the base category
the equality is defined as Σ∆X

(>X), where Σ∆X
:P (X) //P (X ×X) is the left adjoint of

the reindexing P (∆X):P (X ×X) //P (X) of the usual diagonal map ∆X :X //X ×X.
Since Lawvere’s definition of doctrines with equality, there have been many equivalent
definitions up to date—some can be found in [Maietti and Rosolini, 2013a, Maietti and
Rosolini, 2013b]. The one we chose to deal with in this work is taken from the character-
ization in Proposition 2.5 of [Emmenegger et al., 2020].
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2.2. Definition. A primary doctrine P : Cop // Pos is elementary if for any object A
in C there exists an element δA ∈ P (A× A) such that:

1. >A ≤ P (∆A)(δA);

2. P (A) = DesδA : = {α ∈ P (A) | P (pr1)(α) ∧ δA ≤ P (pr2)(α)};

3. δA � δB ≤ δA×B, where δA � δB = P (〈pr1, pr3〉)(δA) ∧ P (〈pr2, pr4〉)(δB).

In 2., pr1 and pr2 are the projections from A × A in A; in 3., the projections are from
A×B × A×B. The element δA will be called fibered equality on A.

2.3. Example.

1. The functor P: Setop //Pos, sending each set in the poset of its subsets, ordered
by inclusion, and each function f :A //B to the inverse image f−1: P(B) //P(A)
is an elementary doctrine. For any set A, the intersection of two subsets is their
meet, A is the top element, the subset {(a, a) | a ∈ A} ⊆ A × A is the fibered
equality on A.

2. For a given category C with finite limits, the functor SubC: Cop //Pos sending each
object to the poset of its subobjects in C and each arrow f :A //B to the pullback
function f ∗: SubC(B) // SubC(A), is an elementary doctrine. For any object A in
C, the pullback of a subobject along another defines their meet.

dom(α ∧ β) domα

dom β A

π1

π2

α

β

α∧β

The arrow idA is the top element. The usual diagonal map ∆A:A� A × A is the
fibered equality on A—see in [Maietti and Rosolini, 2013a] the Example 2.4.a.

3. For a given theory T on a one-sorted first-order language L with equality, let CtxL
be the category of contexts: an object is a finite list of distinct variables, and an
arrow between two lists ~x = (x1, . . . , xn) and ~y = (y1, . . . , ym) is

(t1(~x), . . . , tm(~x)): (x1, . . . , xn) // (y1, . . . , ym)

an m-tuple of terms in the context ~x. The functor LTLT : Ctxop
L

//Pos sends each list
of variables to the poset reflection of well-formed formulae written with at most those
variables ordered by provable consequence in T ; moreover, LTLT : Ctxop

L
//Pos sends

an arrow ~t(~x): ~x // ~y into the substitution [~t(~x)/~y]. For any list ~x, the conjunction
of two formulae is their binary meet, the true constant > is the top element, the
formula

(
x1 = x′1 ∧ · · · ∧ xn = x′n

)
in LTLT (~x; ~x′) is the fibered equality on ~x. The

functor LTLT is an elementary doctrine.
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4. For a given category D with finite products and weak pullbacks, the functor of weak
subobjects ΨD: Dop // Pos sending each object A to the poset reflection of the
comma category D/A is an elementary doctrine: for each arrow f :A // B, ΨD(f)
sends the equivalence class of an arrow α: domα //B to the equivalence class of the
projection π1 of a chosen weak pullback of α along f—see Example 2.9 in [Maietti
and Rosolini, 2013b] for more details.

W domα

A B

π1

π2

α

f

For any object A in D, a choice of a weak pullback of a representative of a weak
subobject along another defines their meet.

dom(α ∧ β) domα

dom β A

π1

π2

α

β

α∧β

The class of idA is the top element. The equivalence class of the usual diagonal map
∆A:A� A× A is the fibered equality on A.

2.4. Definition. An elementary doctrine homomorphism—1-cell or 1-arrow—between
two elementary doctrines P : Cop //Pos and R: Dop //Pos is a pair (F, f) where F : C //D
is a functor that preserves finite products and f:P

·−→ R ◦ F op is a natural transformation
preserving finite meets and the fibered equality, i.e.

fA(α ∧A α′) = fA(α) ∧FA f(α′); fA(>A) = >FA; fA×A(δA) = δFA.

Sometimes a homomorphism between P and R will be called a model of P in R. A 2-
cell between (F, f) and (G, g) from P to R is a natural transformation θ:F

·−→ G such
that fA(α) ≤ R(θA)(gA(α)) for any object A in C and α ∈ P (A). Elementary doctrines,
elementary doctrine homomorphisms with 2-cells defined here form a 2-category, that will
be denoted ED.

Cop Dop Cop Dop

Pos

Pos

F op

P R

F op

P R

Gop

f

f
g

θop
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2.5. Example. For a given category C with finite limits, the inclusion of SubC(A) into
the poset reflection of C/A yields a natural transformation SubC

//ΨC; pairing it with
the identity on the base category C, this defines a 1-arrow in ED.

3. The definition of the left adjoint functor

Fix in the category ED of elementary doctrines a homomorphism (F, f) between two
elementary doctrines P and R:

Cop Dop

Pos

F op

P R

f

·

where F : C //D is a product preserving functor, f:P
·−→ RF op is a natural transformation

that preserves meets, top element and the elementary structure. Moreover, suppose that
C is small. Consider a Grothendieck topos E, and the associated subobjects doctrine
Sub: Eop //Pos, which is elementary—indeed, it is enough to ask for a finitely complete
base category, see Example 2.3(2). Trivially we can precompose any homomorphism
(K, k):R // Sub in ED with (F, f) to obtain a homomorphism (K, k)(F, f):P // Sub;
this gives a functor

− ◦ (F, f): ED(R, Sub) // ED(P, Sub).

We look for a left adjoint for this precomposition.

Cop Eop

Dop

Pos

F op

P

Hop

Sub
R

f

h

The whole section is devoted to the proof of the following:

3.1. Theorem. Let (F, f):P // R be a homomorphism in ED, and suppose the base
category of P to be small. Moreover, let E be a Grothendieck topos and Sub: Eop //Pos
be the subobject doctrine. Then, the functor induced by precomposition

− ◦ (F, f): ED(R, Sub) // ED(P, Sub)

has a left adjoint.
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We start from a homomorphism (H, h):P // Sub, our first goal is to find a functor
D //E. An easy choice is to take the left Kan extension of H along F , whose existence is
granted by the fact that E is a Grothendieck topos—since it is cocomplete, see Chapter X
in [MacLane, 1971]. Recall that the left Kan extension comes with a natural transforma-

tion µ:H
·−→ (LanF H)F such that for any other functor K: D //E and any other natural

transformation θ:H
·−→ KF there exists a unique θ̂: LanF H

·−→ K making the obvious
diagrams commute:

C E C E C E

D D D
F

H

F

H

F

LanF H

K
LanF H

H

K

µ θ

θ̂

θ .

Before we continue, we need LanF H to be product preserving.

3.2. Proposition. Let C,D,E be categories with finite products such that C is small and
E is cocomplete and cartesian closed, and let F : C // D and H: C // E be finite product
preserving functors. Then LanF H: D // E preserves finite products.

This is a classical result in the theory of Kan extension that can be shown in differ-
ent ways, see for instance Proposition 2.5 of [Kelly and Lack, 1993], or [Karazeris and
Protsonis, 2012].

If E is a Grothendieck topos, the hypotheses of the proposition above are satisfied, so
LanF H preserves finite products.

Define now a natural transformation l:R
·−→ Sub(LanF H)op. For any object D ∈ D,

and any γ ∈ R(D), write

lD(γ) =
∧

(K,k),θ

θ̂∗D(kD(γ))

where (K, k):R // Sub is an arrow in ED and θ: (H, h) // (K, k)(F, f) is a 2-arrow,
i.e. hA(α) ≤ θ∗A(kFA(fA(α))) for all A ∈ C and α ∈ P (A). Observe that kD(γ) is a

subobject of KD, θ̂ is defined by the universal property of the left Kan extension, and
θ̂∗D(kD(γ)) is the pullback of kD(γ) along θ̂D: (LanF H)(D) //KD, hence it is a subobject

of (LanF H)(D). Since E is a complete category, the infimum of {θ̂∗D(kD(γ))}(K,k),θ exists,
and we call it lD(γ).

3.3. Lemma. The following properties hold:

1. l:R
·−→ Sub(LanF H)op is a natural transformation;

2. l:R
·−→ Sub(LanF H)op preserves finite meets;

3. lD×D(δD) ∈ Sub
(
(LanF H)(D) × (LanF H)(D)

)
is an equivalence relation for any

object D ∈ D.
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Proof.

1. Take an arrow g:D′ // D in D, we prove that
(
(LanF H)(g)

)∗
lD(γ) = lD′R(g)(γ)

for any γ ∈ RD:(
(LanF H)(g)

)∗
lD(γ) =

(
(LanF H)(g)

)∗ (∧
(K,k),θ θ̂

∗
D(kD(γ))

)
=
∧

(K,k),θ

(
(LanF H)(g)

)∗
θ̂∗D(kD(γ))

=
∧

(K,k),θ

θ̂∗D′
(
K(g)

)∗
(kD(γ))

=
∧

(K,k),θ

θ̂∗D′(kD′R(g)(γ)) = lD′(R(g)γ).

Note that the second equality follows from the fact that pullback functors between
subobjects categories preserve arbitrary limits—since in regular categories they have
a left adjoint—; the other equalities follow from naturality of θ̂ and k.

2. The top element >D ∈ RD for any object D ∈ D is preserved by lD since kD(>D)
is idKD:KD //KD the top element in Sub(KD) by assumption, and its pullback

along any θ̂D is the identity of (LanF H)(D). Similarly, lD preserves binary meets
since any kD and any pullback functor do.

3. Compute

lD×D(δD) =
∧

(K,k),θ

θ̂∗D×D(kD×D(δD)) =
∧

(K,k),θ

(θ̂D × θ̂D)
∗
(∆KD).

Note that each (θ̂D × θ̂D)
∗
(∆KD) is an equivalence relation on (LanF H)(D), since

it is the kernel pair of the map θ̂D. So lD×D(δD) is an equivalence relation itself,
being the infimum of equivalence relations.

Before we go on, we recall from Section 4 of [Maietti and Rosolini, 2013a] the ele-
mentary quotient completion of an elementary doctrine. Given any elementary doctrine
P : Cop // Pos one can build the category RP of equivalence relations of P : objects
are pairs (A, ρ), where ρ ∈ P (A × A) is a P -equivalence relation on A—meaning that
it satisfies reflexivity δA ≤A×A ρ, symmetry ρ ≤A×A P (〈pr2, pr1〉)(ρ) and transitivity
P (〈pr1, pr2〉)(ρ) ∧ P (〈pr2, pr3〉)(ρ) ≤A×A×A P (〈pr1, pr3〉)(ρ); arrows f : (A, ρ) // (B, σ) in
RP are arrows f :A //B such that ρ ≤A×A P (f × f)(σ). Composition and identities are
computed in C. The product in the category RP of a pair of objects (A, ρ) and (B, σ)
is (A × B, ρ � σ), together with the projections from A × B to A and B. Then, the
elementary quotient completion (P )q:Rop

P
//Pos will be given by (P )q(A, ρ) = Desρ =

{α ∈ P (A) | P (pr1)(α) ∧ ρ ≤ P (pr2)(α)}, and (P )q(f) = P (f). Finite meets in Desρ are
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computed in P (A). The fibered equality in (P )q
(
(A, ρ)× (A, ρ)

)
= Desρ�ρ is ρ itself. In

particular (P )q is an elementary doctrine.
The elementary quotient completion comes with a 1-arrow (J, j):P // (P )q in ED,

where the functor J : C //RP maps a homomorphism f :A //B to f : (A, δA) // (B, δB),
and each component jA:P (A) // (P )q(A, δA) is the identity of P (A).

A P -quotient of a P -equivalence relation ρ on A is a homomorphism q:A //C in C such
that ρ ≤ P (q×q)(δC) and, for every homomorphism g:A //B satisfying ρ ≤ P (g×g)(δB),
there exists a unique homomorphism h:C // B such that g = hq. A homomorphism
f :A //B in C is descent if the functor P (f):P (B) // P (A) is full.

Then, let QED be the 2-full 2-subcategory of ED whose objects are elementary doc-
trines P : Cop // Pos in which every P -equivalence relation has a P -quotient that is a
descent homomorphism; the 1-arrows are those arrows (G, g):P //Z in ED such that G
preserves quotients—meaning, if q:A //C is a quotient of a P -equivalence relation ρ on
A, then Gq is a quotient of the Z-equivalence relation gA×A(ρ) on GA.

The doctrine (P )q and the homomorphism (J, j) have the following universal property,
stated in Theorem 4.5 of [Maietti and Rosolini, 2013a]: there is an equivalence of categories

− ◦ (J, j): QED((P )q, Z) // ED(P,Z)

for every Z in QED. Having concluded the recap, we can resume our proof.
Since lD×D(δD) is an equivalence relation on (LanF H)(D), we can define a functor

L = 〈LanF H(−), l−×−(δ−)〉: D //RSub, where RSub is the category of equivalence rela-
tions of Sub: Eop //Pos. This follows from the fact that a Sub-equivalence relation is an
equivalence relation in the usual meaning. Given an arrow g:D′ //D in D, we define

L (g) = (Lan
F
H)(g):

(
(Lan

F
H)(D′), lD′×D′(δD′)

)
//
(
(Lan

F
H)(D), lD×D(δD)

)
.

L is well-defined on arrows: In order to prove this is well-defined we need

lD′×D′(δD′) ≤
(
(Lan

F
H)(g)× (Lan

F
H)(g)

)∗
(lD×D(δD))

in Sub((LanF H)(D ×D)), so we need a map dom lD′×D′(δ
′
D) // dom lD×D(δD) making

the external diagram commute.

dom lD′×D′(δD′)

dom((LanF H)(g × g))∗(lD×D(δD)) dom lD×D(δD)

(LanF H)(D′ ×D′) (LanF H)(D ×D)

((LanF H)(g×g))∗(lD×D(δD))

(LanF H)(g×g)

lD×D(δD)
lD′×D′ (δD′ )

≤

y
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So now consider for each (K, k):R // Sub and θ: (H, h) // (K, k)(F, f).

KD′

dom θ̂∗D′×D′(∆KD′) dom θ̂∗D×D(∆KD) KD

(LanF H)(D′ ×D′) (LanF H)(D ×D) KD ×KD

θ̂∗D×D(∆KD)

θ̂D×D

θ̂D×D|dom θ̂∗
D×D(∆KD)

∆KD

y

(LanF H)(g×g)

θ̂∗
D′×D′ (∆KD′ )

K(g×g)θ̂D′×D′

θ̂D′×D′|dom θ̂∗
D′×D′

(∆KD′ )
Kg

By definition of l as infimum we can find the wanted arrow from dom lD′×D′(δD′) to
dom lD×D(δD).
L preserves products: To see this, compute L (D×D′) and L (D)×L (D′): the first
projections LanF H(D×D′) = LanF H(D)×LanF H(D′) coincide, since LanF H preserves
products; so we need to show that also the equivalence relations lD×D′×D×D′(δD×D′) and
lD(δD)� lD′(δD′) are the same subobject of (LanF H)(D ×D′ ×D ×D′). First of all, we
have that:

lD×D′×D×D′(δD×D′) =
∧

(K,k),θ

θ̂∗D×D′×D×D′(∆KD×KD′); (3.1)

on the other hand we have:

lD(δD)� lD′(δD′) = 〈pr1, pr3〉∗
 ∧

(K,k),θ

θ̂∗D×D(∆KD)

 ∧ 〈pr2, pr4〉∗
 ∧

(K,k),θ

θ̂∗D′×D′(∆KD′)


=
∧

(K,k),θ

(
〈pr1, pr3〉∗θ̂∗D×D(∆KD) ∧ 〈pr2, pr4〉∗θ̂∗D′×D′(∆KD′)

)
; (3.2)

we prove with some diagram computation that for each (K, k), θ the arguments in the

meets are the same. So we compute at first every θ̂∗D×D′×D×D′(∆KD×KD′) appearing in
(3.1):

dom θ̂∗D×D′×D×D′(∆KD×KD′) KD ×KD′

(LanF H)(D ×D′ ×D ×D′) KD ×KD′ ×KD ×KD′
θ̂∗
D×D′×D×D′ (∆KD×KD′ )

θ̂D×D′×D×D′|dom θ̂∗
D×D′×D×D′

(∆KD×KD′ )

∆KD×KD′

θ̂D×D′×D×D′

y .
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Then, for every (K, k), θ, we compute 〈pr1, pr3〉∗θ̂∗D×D(∆KD):

dom〈pr1, pr3〉∗θ̂∗D×D(∆KD) KD

(LanF H)(D ×D′ ×D ×D′) (LanF H)(D ×D) KD ×KD

KD ×KD′ ×KD ×KD′

〈pr1,pr3〉∗θ̂∗D×D(∆KD)

(θ̂D×D〈pr1,pr3〉)|dom〈pr1,pr3〉∗θ̂∗D×D(∆KD)

∆KD

〈pr1,pr3〉 θ̂D×D

y

θ̂D×D′×D×D′
〈pr1,pr3〉

, (3.3)

and similarly 〈pr2, pr4〉∗θ̂∗D′×D′(∆KD′):

dom〈pr2, pr4〉∗θ̂∗D′×D′(∆KD′) KD′

(LanF H)(D ×D′ ×D ×D′) (LanF H)(D′ ×D′) KD′ ×KD′

KD ×KD′ ×KD ×KD′

〈pr2,pr4〉∗θ̂∗D′×D′ (∆KD′ )

(θ̂D′×D′ 〈pr2,pr4〉)|dom〈pr2,pr4〉∗θ̂∗D′×D′
(∆KD′ )

∆KD′

〈pr2,pr4〉 θ̂D′×D′

y

θ̂D×D′×D×D′
〈pr2,pr4〉

. (3.4)

Taking their pullback we get the components of (3.2):

dom(〈pr1, pr3〉∗θ̂∗D×D(∆KD) ∧ 〈pr2, pr4〉∗θ̂∗D′×D′(∆KD′)) dom〈pr2, pr4〉∗θ̂∗D′×D′(∆KD′)

dom〈pr1, pr3〉∗θ̂∗D×D(∆KD) (LanF H)(D ×D′ ×D ×D′)

〈pr2,pr4〉∗θ̂∗D′×D′ (∆KD′ )

〈pr1,pr3〉∗θ̂∗D×D(∆KD)

ω2

ω1

〈pr1,pr3〉∗θ̂∗D×D(∆KD)∧〈pr2,pr4〉∗θ̂∗D′×D′ (∆KD′ )

y
.

Now, for each (K, k), θ, the inequality

θ̂∗D×D′×D×D′(∆KD×KD′) ≤ 〈pr1, pr3〉∗θ̂∗D×D(∆KD) ∧ 〈pr2, pr4〉∗θ̂∗D′×D′(∆KD′)

holds if and only if both

θ̂∗D×D′×D×D′(∆KD×KD′) ≤ 〈pr1, pr3〉∗θ̂∗D×D(∆KD) (3.5)

and
θ̂∗D×D′×D×D′(∆KD×KD′) ≤ 〈pr2, pr4〉∗θ̂∗D′×D′(∆KD′) (3.6)
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hold. To show the inequality (3.5), take the pair θ̂∗D×D′×D×D′(∆KD×KD′) and the first
projection of

θ̂D×D′×D×D′|dom θ̂∗
D×D′×D×D′

(∆KD×KD′ )
,

then use the universal property of the pullback (3.3) above. Similarly, prove the inequality

(3.6) by taking the pair θ̂∗D×D′×D×D′(∆KD×KD′) and the second projection of

θ̂D×D′×D×D′|dom θ̂∗
D×D′×D×D′

(∆KD×KD′ )
,

then use the universal property of the pullback (3.4) above. For the converse direction,

take the pair 〈pr1, pr3〉∗θ̂∗D×D(∆KD) ∧ 〈pr2, pr4〉∗θ̂∗D′×D′(∆KD′) and the arrow that has as
a first component

(θ̂D×D〈pr1, pr3〉)|dom〈pr1,pr3〉∗θ̂∗D×D(∆KD)ω2

and as second component

(θ̂D′×D′〈pr2, pr4〉)|dom〈pr2,pr4〉∗θ̂∗D′×D′ (∆KD′ )
ω1,

then use the universal property of the pullback (3.3).
(L , l) is well-defined: We want to complete the following diagram with l:

Dop Rop
Sub

Pos

L op

R (Sub)q

l
· .

We prove that l:R
·−→ (Sub)qL op is well-defined by showing that for each γ ∈ RD, we

have lD(γ) ∈ DeslD×D(δD), i.e. pr∗1lD(γ) ∧ lD×D(δD) ≤ pr∗2lD(γ) in Sub(LanF H)(D × D).
Indeed

pr∗1

 ∧
(K,k),θ

θ̂∗D(kD(γ))

 ∧ ∧
(K,k),θ

(θ̂D × θ̂D)
∗
(∆KD)

=
∧

(K,k),θ

(
pr∗1θ̂

∗
D(kD(γ)) ∧ (θ̂D × θ̂D)

∗
(∆KD)

)
=
∧

(K,k),θ

(θ̂D × θ̂D)
∗

(pr∗1(kD(γ)) ∧∆KD)

≤
∧

(K,k),θ

(θ̂D × θ̂D)
∗

(pr∗2(kD(γ))) = pr∗2lD(γ).

So we proved that we have a 1-arrow between the doctrines (L , l):R // (Sub)q.
(L , l) is in ED: By construction l is a natural transformation and preserves finite meets.
Recalling that in the elementary quotient completion (P )q:Rop

P
// Pos of a doctrine
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P : Cop //Pos, the fibered equality in (P )q
(
(A, ρ)× (A, ρ)

)
= Desρ�ρ is ρ itself, we apply

this to the case (Sub)q to obtain that

lD×D:R(D ×D) // (Sub)q
(
((Lan

F
H)(D), lD×D(δD))× ((Lan

F
H)(D), lD×D(δD))

)
or, computing the codomain,

lD×D:R(D ×D) //DeslD×D(δD)�lD×D(δD)

so l preserves the fibered equality and (L , l) is in ED.
From (Sub)q to Sub: Recall that our goal is to define for each (H, h):P // Sub in ED
a suitable 1-arrow from R to Sub. So we look for an arrow (Q, q): (Sub)q // Sub in order
to define the wanted map as the composition (Q, q)(L , l).

Rop
Sub Eop

Pos

Qop

(Sub)q Sub

q

·

To do this, we want to use the universal property of (Sub)q: applying Theorem 4.5 of
[Maietti and Rosolini, 2013a] recalled in the recap above to our case, there is an equivalence
of categories

− ◦ (J, j): QED((Sub)q, Z) // ED(Sub, Z)

for every Z in QED.
So we prove that Sub is in QED, and define (Q, q) as the essentially unique 1-arrow

such that (Q, q)(J, j) = idSub. We show that every equivalence relation 〈s1, s2〉:S �
X × X in E has a quotient that is a descent homomorphism. Since Grothendieck topos
are cocomplete, the quotient exists, and it is the coequalizer q:X //X/S of s1 and s2.
Moreover, since the pullback functor q∗: Sub(X/S) // Sub(X) along an epimorphism
reflects the order, the quotient q is a descent homomorphism, as claimed.

3.4. Claim. The assignment defined above, sending (H, h) to (Q, q)(L , l) extends to a
left adjoint to − ◦ (F, f).

We look for the universal arrow

η(H,h): (H, h) // (Q, q)(L , l)(F, f).

In particular, we need a natural transformation η(H,h):H
·−→ QL F , or equivalently—by

the properties of the left Kan extension—a factorization for any object A ∈ C(
η(H,h)

)
A

:HA
µA−→ (Lan

F
H)(FA)

ρFA−−→ Q
(
(Lan

F
H)(FA), lFA×FA(δFA)

)
for some natural transformation ρ: LanF H

·−→ QL . To define ρ, note that for any
(X, s) ∈ RSub, there is an arrow idX : (X,∆X) // (X, s) in RSub—since s is an equiv-
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alence relation. Apply Q to obtain Q(idX):X // Q(X, s) in E. So we can define
ρD = Q(id(LanF H)(D)); this is clearly a natural transformation, since the naturality square

D′ (LanF H)(D′) Q((LanF H)(D′), lD′×D′(δD′))

D (LanF H)(D) Q((LanF H)(D), lD×D(δD))

g (LanF H)(g)

Q(id(LanF H)(D))

Q(id(LanF H)(D′))

Q(LanF H)(g)

is the image through Q of

((LanF H)(D′),∆(LanF H)(D′)) ((LanF H)(D′), lD′×D′(δD′))

((LanF H)(D),∆(LanF H)(D)) ((LanF H)(D), lD×D(δD))

(LanF H)(g)

id(LanF H)(D)

id(LanF H)(D′)

(LanF H)(g) .

So η(H,h) is defined, and it is a natural transformation, since it is the composition of natural
transformations.
η(H,h) is a 2-arrow: We need to show that

hA(α) ≤
(
η(H,h)

)∗
A

(qLFAlFAfA(α)) = µ∗Aρ
∗
FA(qLFAlFAfA(α)).

Observe that from naturality of q, we have for any (X, s) ∈ RSub the following commuta-
tive diagram:

(X,∆X) (Sub)q(X,∆X) SubQ(X,∆X)

(X, s) (Sub)q(X, s) SubQ(X, s)

idX

q(X,∆X )

q(X,s)

id∗X Q(idX)∗

Note that id∗X is just the inclusion Dess ⊆ SubX, and q(X,∆X) = qJX is such that
qJXjX = idSubX , hence q(X,∆X) = idSubX , so to conclude we have that Q(idX)∗q(X,s) is the
inclusion Dess ⊆ SubX. Apply this when

(X, s) = ((Lan
F
H)(FA), lFA×FA(δFA)) = L (FA)

to get that ρ∗FAqLFA acts as the identity, so our claim becomes

hA(α) ≤ µ∗A(lFAfA(α)).
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But now

µ∗A(lFAfA(α)) = µ∗A
( ∧

(K,k),θ

θ̂∗FA(kFAfA(α))
)

=
∧

(K,k),θ

µ∗Aθ̂
∗
FA(kFAfA(α)) =

∧
(K,k),θ

θ∗A(kFAfA(α)),

but every θ is a 2-arrow, so hA(α) ≤ θ∗A(kFAfA(α)), hence η(H,h) is indeed a 2-arrow.
η(H,h) has the universal property: We now prove that for every arrow (K, k):R // Sub
in ED and every 2-arrow θ: (H, h) // (K, k)(F, f) there exists a unique 2-arrow

θ: (Q, q)(L , l) // (K, k),

making the following diagram commute:

(H, h) (Q, q)(L , l)(F, f)

(K, k)(F, f)

η(H,h)

θ θ◦(F,f)
.

For any object D ∈ D, observe that the image of θ̂D: LanF HD //KD in RSub through
J factors as follows:

(LanF HD,∆LanF HD) (LanF HD, lD×D(δD)) (KD,∆KD)
idLanF HD θ̂D

θ̂D

.

The first map trivially exists; the second one exists if and only if there exists a dotted
arrow in the diagram below:

dom lD×D(δD)

dom θ̂∗D×D(∆KD) LanF HD × LanF HD

KD KD ×KD
∆KD

θ̂D×θ̂D

θ̂∗D×D(∆KD)

lD×D(δD)

y

but it exists by definition of lD×D(δD) as the infimum of all subobject of the form

θ̂∗D×D(∆KD). Apply Q to the factorization of θ̂D above to obtain in E:

LanF HD Q(LanF HD, lD×D(δD)) KD
ρD Q(θ̂D)

θ̂D

.
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Define θD = Q(θ̂D):QLD // KD. For any given g:D′ // D in E, we have that the
image through Q of the square on the right in the diagram below gives naturality of θ:

(LanF HD
′,∆LanF HD′) (LanF HD

′, lD′×D′(δD′ )) (KD′,∆KD′)

(LanF HD,∆LanF HD) (LanF HD, lD×D(δD)) (KD,∆KD)
idLanF HD θ̂D

θ̂D

LanF H(g)

idLanF HD′

LanF H(g)

θ̂D′

K(g)

θ̂D′

.

Now, to prove that θ is a 2-arrow we show that for any object D ∈ D and any γ ∈ RD

qLDlD(γ) ≤ θ
∗
D(kD(γ)).

Since lD(γ) ≤ θ̂∗D(kD(γ)), it is enough to prove that qLDθ̂
∗
D(kD(γ)) ≤ Q(θ̂D)∗(kD(γ)). If

ρ∗D is full, the last inequality is equivalent to ρ∗DqLDθ̂
∗
D(kD(γ)) ≤ ρ∗DQ(θ̂D)∗(kD(γ)), i.e.

θ̂∗D(kD(γ)) ≤ Q(idLanF HD)∗Q(θ̂D)∗(kD(γ)) = θ̂∗DkD(γ). So we check the following:

3.5. Claim. The arrow ρD is a regular epimorphism.

Proof. For any (X, s = 〈s1, s2〉:S � X ×X) ∈ RSub, consider idX : (X,∆X) // (X, s)
in RSub and Q(idX):X //Q(X, s) in E. We prove that Q(idX) is a regular epimorphism.

Note that given any (X, r) ∈ RSub, anRSub-equivalence relation on (X, r) is an element
s in (Sub)q((X, r) × (X, r)) = Desr�r ⊆ Sub(X × X) that is an equivalence relation on
X such that r ≤ s. It follows that idX : (X, r) // (X, s) is an arrow in RSub.

Moreover, it is an RSub-quotient of s: it is an arrow such that s ≤ (id× id)∗(s) = s,
and for every homomorphism g: (X, r) //(Y, u)—i.e. g:X //Y such that r ≤ (g×g)∗(u)—
such that s ≤ (g × g)∗(u), we find a unique homomorphism h: (X, r) // (Y, u) such that
g = h id, indeed h = g, and it is an arrow inRSub since s ≤ (g×g)∗(u). If we take r = ∆X ,
we have that idX : (X,∆X) //(X, s) is an RSub-quotient of s, hence Q(idX):X //Q(X, s)
is a Sub-quotient of a Sub-equivalence relation, hence it is a regular epimorphism.

Now we check commutativity of the triangle for the universal property:

θFA
(
η(H,h)

)
A

= θFAρFAµA = θ̂FAµA = θA.

To conclude, we show that θ is unique. Suppose we have a 2-arrow λ: (Q, q)(L , l) //(K, k)
making the triangle commute. In particular, for any object A ∈ C we have λFAρFAµA = θA
and for any D ∈ D, γ ∈ RD we have qLDlD(γ) ≤ λ∗D(kD(γ)). Consider the natural

transformation λ ◦ ρ: LanF H
·−→ K. It is such that (λ ◦ ρ) ◦ µ = θ, so by the universal

property of µ we have λ ◦ ρ = θ̂, but then we have θ̂D = λDρD = θDρD, so that λD = θD.
This concludes the proof of Claim 3.4, hence of Theorem 3.1.
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4. Examples

Before we give some examples, we prove a general result for some first-order theories.
This generalizes Example 2.5.a of [Maietti and Rosolini, 2013a].

We refer to [Caramello, 2017] for the definitions about first-order calculus. We slightly
change the doctrine of well-formed formulae of Example 2.3 considering just the fragment
of Horn logic. Moreover, a theory in this context is not a set of closed formulae, but
is instead a set of Horn sequents over Σ. We write in this case HFΣ

T : Ctxop
Σ

// Pos for
the elementary doctrine of Horn formulae: the base category is the same defined in Ex-
ample 2.3, each list of variable is sent to the poset reflection of Horn formulae—defined
inductively as the smallest set containing relations, equalities, true constant and conjunc-
tions of formulae—ordered by provable consequence in T; reindexing are again defined as
substitutions.

4.1. Proposition. Let Σ be a first-order language and T a first-order theory in the
language Σ such that its axioms are Horn sequents. Then there exists an equivalence of
categories:

ED(HFΣ
T , Sub) ∼=

Σ

Mod
T

where HFΣ
T : Ctxop

Σ
// Pos is the elementary doctrine of Horn formulae in the language

Σ of the theory T, Sub: Cop // Pos is the elementary doctrine of subobject for a given
category C with finite limits, and ModΣ

T is the category whose objects are models of the
theory T in the category C, and whose arrows are Σ-homomorphism.

Proof. Since there is no confusion, we write HF instead of HFΣ
T and Mod instead of ModΣ

T .
For any given θ: (H, h) // (H ′, h′) in ED(HF, Sub), define θ(x):H(x) //H ′(x).

Observe that H(x) is indeed a model of the theory T: each n-ary function sym-
bol f in the language defines an arrow f(x1, . . . , xn): (x1, . . . , xn) // (x) in Ctx, hence
its image through H—that preserves products—defines a map fH :

(
H(x)

)n // H(x),
which is the interpretation of f in H(x); each n-ary predicate symbol R defines RH =
h(x1,...,xn)(R(x1, . . . , xn)): dom(RH) �

(
H(x)

)n
. From now on, we write ~x instead of the

list (x1, . . . , xn).
Satisfiability of axioms follows by the fact that h~x(α(~x)) is the interpretation of α in

H(x) for each α(~x) ∈ HF(~x), and h is monotone, so if we have an axiom α(~x) ` β(~x) in
T we have αH ≤ βH , i.e. H(x) satisfies α ` β. To check that h~x(α(~x)) = αH we work
recursively on the complexity of α:

� α = >: αH = id(
H(x)
)n = h~x(>) trivially holds;

� α = R(~x): αH = RH = h~x(R) by the definition given above;

� α = α1 ∧ α2: αH = αH1 ∧ αH2 = h~x(α1) ∧ h~x(α2) = h~x(α1 ∧ α2) since h~x preserves
meets;
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� α =
(
t1(~x) = t2(~x)

)
: αH = Eq(tH1 , t

H
2 ), the equalizer of the interpretations tH1 , t

H
2 of

the terms t1, t2 in H(x).

It is left to prove then that if α =
(
t1(~x) = t2(~x)

)
, we have αH = h~x

(
t1(~x) = t2(~x)

)
.

Naturality of h with respect to the arrow (t1(~x), t2(~x)): ~x // (y1, y2) in Ctx, applied to
the formula

(
y1 = y2

)
∈ HF(y1, y2) gives:

HF(y1, y2) Sub((H(x))2)

HF(~x) Sub((H(x))n)

~t(~x)/~y

h~x

h(y1,y2)

〈tH1 ,tH2 〉∗

in order to get:

h~x
(
t1(~x) = t2(~x)

)
= 〈tH1 , tH2 〉∗(∆H(x)) = Eq(tH1 , t

H
2 ),

as claimed. This proves that the association ED(HF, Sub) // Mod is well-defined on
objects.

Concerning arrows, first of all observe that since H,H ′ preserve products and θ is a
natural transformation, θ~x = θ(x) × · · · × θ(x)—n times. So the naturality diagram of θ
with respect to an arrow defined by an n-ary function symbol f(~x): ~x // (x) gives the
fact that θ(x) preserves the interpretation of the function symbol f :

θ(x)f
H = fH

′
θ~x = fH

′
(θ(x) × · · · × θ(x));

moreover, for any n-ary predicate symbol R, since θ is a 2-arrow, we have

RH = h~x(R) ≤ θ∗~x
(
h′~x(R)

)
= θ∗~xR

H′ ,

so that θ(x) is indeed a homomorphism in Mod.
Now that the functor is well-defined, we prove that it is full, faithful and essentially

surjective. Faithfulness is trivial since, as seen above, each component of θ is uniquely
determined by its component on the context with one variable.

Take now g:H(x) //H ′(x) a homomorphism in Mod, define θg~x = g×· · ·×g—|~x| times,
where |~x| is the length of the list. This defines a natural transformation θ:H //H ′: natu-
rality with respect to projections follows by definition, moreover for any function symbol
the naturality square commutes since g preserves interpretations, and then recursively
since any other arrow is a composition of projections and terms—defined by composition
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of function symbols—, naturality holds for any arrow in Ctx.

(~x) H(x)|~x| H ′(x)|~x|

(x) H(x) H ′(x)

tH

g

g×···×g

tH
′t(~x)

We show that θg is an arrow in ED(HF, Sub), i.e. that for any α(~x) ∈ HF(~x) we have
h~x
(
α(~x)

)
≤ θg~x

∗(h′~x(α(~x)
))

. Recursively on the complexity of α we observe that if α = >
or α = β∧γ, the inequality holds since h, h′ and θg~x

∗ preserve the top element and meets; if
α is an equality of terms α(~x) =

(
t1(~x) = t2(~x)

)
, we show Eq(tH1 , t

H
2 ) ≤ θg~x

∗(Eq(tH
′

1 , tH
′

2 )),
but this holds looking at the diagram below:

dom(αH)

•
(
H(x)

)n
H(x)

dom(αH
′
)

(
H ′(x)

)n
H ′(x)

αH
′

tH
′

2

tH
′

1

θg
~x

tH2
g

tH1θg
~x
∗
(αH

′
)

y

αH

the arrow dom(αH) // dom(αH
′
) exists and makes the outer left square commute if and

only if tH
′

1 θg~xα
H = tH

′
2 θg~xα

H , but this is true since tH
′

i θ
g
~x = gtHi for i = 1, 2. So the dashed

arrow above exists by the universal property of the pullback, hence αH ≤ θg~x
∗(αH

′
), as

claimed. Finally, if α = R for some predicate symbol R, we have to check RH ≤ θg~x
∗(RH′),

but this holds by definition of Σ-homomorphism. So θg: (H, h) // (H ′, h′) is well-defined,
and its image is g, so the functor is full.

To conclude, take M a model of T, and write fM :Mn //M for the interpretation
in M of any n-ary function symbol f in the language and RM : dom(RM)� Mn for the
interpretation of any n-ary predicate symbol R. We define a functor HM : Ctx // C that
maps ~x 7→M |~x|, projections in projections, f(~x) 7→ fM , and this trivially extends to lists

of terms, defining a product preserving functor. Now define hM : HF
·−→ SubHop:

hM~x (α(~x)) = αM ,

the interpretation of α in M . It is well-defined because M is a model. By definition of
interpretation, hM preserves the top element, meet and fibered equality. To prove that it
is a natural transformation, take a list of terms ~t(~x) = (t1(~x), . . . , t|~y|(~x)): ~x // ~y and we
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prove that the following diagram is commutative:

HF(~y) Sub(M |~y|)

HF(~x) Sub(M |~x|)

~t(~x)/~y

hM~x

hM~y

〈tM1 ,...,tM|~y|〉
∗

but this is true by definition of interpretation. Clearly (HM , hM) 7→ M so the functor is
essentially surjective and defines the equivalence of categories.

4.2. Example. Some algebraic examples. We prove, using the equivalence of Propo-
sition 4.1 in some specific theories, that many adjunction results in algebra can be obtained
as a particular case of the adjunction shown in Theorem 3.1.

Suppose we have an algebraic language Σ, and extend the language with some new
function symbols to obtain a new algebraic language Σ′. Then suppose to extend the
theory T—which is a theory also in the language Σ′—with some new axioms of the form
> `

(
t(~x) = s(~x)

)
, where t and s are terms in the language Σ′. Note that we could have

Σ = Σ′, so we can just extend the theory, or T = T′, so we just extend the language. This
extension can be translated in a homomorphism (E, e): HFΣ

T
// HFΣ′

T′ in ED

Ctxop
Σ Ctxop

Σ′

Pos

Eop

HFΣ
T HFΣ′

T′

e
· .

The functor E is the inclusion of terms written in the language Σ in the terms of the
language Σ′; each component e~x of the natural transformation e is the composition of the
inclusion of HFΣ

T (~x) in the poset HFΣ′
T (~x) of Horn formulae in the extended language with

respect to the same theory, with the quotient from HFΣ′
T (~x) into HFΣ′

T′ (~x), that sends the
equivalence class of a formula—with respect to reciprocal provability in the theory T—to
the equivalence class of the same formula, with respect to reciprocal provability in the
theory T′. In any such extension, we have the following commutative diagram:

ModΣ′

T′ ModΣ
T

ED(HFΣ′

T′ ,P∗) ED(HFΣ
T ,P∗)

∼=

−◦(E,e)

∼=

where P∗: Setop
∗

// Pos is the elementary doctrine of subsets removing the empty set
from the base category, and the arrow between the categories of models is the functor
that forgets both the added structure from Σ′ that is not in Σ and the axioms in T′ that
are not in T. So the left adjoint to the precomposition with (E, e) described in the first
section generalizes all such adjunctions in algebra. Some examples include the adjunction
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between: sets and pointed sets, groups and abelian groups, semigroups and monoids,
non-unitary rings and unitary rings, and so on.

4.3. Example. Extension and restriction of scalars. In a similar way, let R, S be
two commutative unitary rings, and let a:R // S be a ring homomorphism. One can
obtain the category RMod of modules over the ring R as the category of models in the
language Σ = {0,+,−} ∪ {r·}r∈R—where 0 is a constant, + is a binary function symbol,
and − and each r· are unary function symbols—of the algebraic theory T with axioms
making {0,+,−} group operations, and r· the scalar multiplication with r ∈ R.

As seen above, we can define the equivalence ED(HFΣ
T ,P∗)

∼= RMod; similarly de-
fine the equivalence ED(HFΣ′

T′ ,P∗)
∼= SMod. Here Σ′ and T′ are not extension of Σ

and T. However, we can define a functor E: CtxΣ
// CtxL′ that maps 0: () // (x),

+: (x1, x2) // (x),−: (x) // (x) in themselves, and each r·: (x) // (x) in a(r)·: (x) // (x);
moreover define e~x: HF

Σ
T (~x) //HFΣ′

T′ (~x), such that α(~x) 7→ α[a(r)/r](~x), meaning that each
formula is sent essentially in itself, but each occurrence of r in the terms that appear in
α is substituted by a(r), for every r ∈ R.

This function preserves trivially top element, meets and fibered equality, and defines
a natural transformation. The precomposition −◦ (E, e) recovers the adjunction between
RMod and SMod given by extension and restriction of scalars.

4.4. Example. A multisorted example. Consider the two-sorted language Σ and the
theory T that describes sets with an action of a monoid over it. The proof of Proposition
4.1 was done in the single sorted case, but holds also in the multisorted setting. Then
ED(HFΣ

T ,P∗)
∼= Mon Set; then extend the language and the theory to describe sets with

an action of a group over it, so ED(HFΣ′

T′ ,P∗)
∼= Grp Set.

We can again recover the left adjoint to the forgetful functor: for a given (M,X), where
M is a monoid acting on a set X, let F(M) be the free group generated by M . Define
the equivalence relation ∼ on the product F(M) ×X generated by (mn, x) ∼ (m,n · x)
for any m ∈ F(M) and n ∈M ; the action of F(M) on F(M)×X/ ∼ maps (m, [(m′, x)])
into [(mm′, x)] for any m,m′ ∈ F(M) and x ∈ X. The universal arrow is given by
(ηM , ιX): (M,X) −→ (F(M),F(M) ×X/ ∼) where ηM :M // F(M) is the inclusion of
the monoid in the free group generated by it, and ιX :X // F(M)×X/ ∼ maps x ∈ X
to [(e, x)], where e is the identity of M .

4.5. Example. Some quasi-algebraic examples. Suppose we have an algebraic lan-
guage Σ and a quasi-algebraic theory T, meaning that axioms can be quasi-identities—i.e.
formulae of the form

(
t1(~x) = s1(~x)

)
∧ · · · ∧

(
tk(~x) = sk(~x)

)
`
(
t(~x) = s(~x)

)
. In this case

we can recover, for example, the left adjoint to the forgetful functor between torsion-free
RMod and RMod, between cancellative semigroups and groups, between pseudocom-
plemented distributive lattices and boolean algebras.

4.6. Example. Some non-algebraic examples. Let Σ be a first-order language with a
binary relation R and T a theory such that the only axiom in T are reflexivity, transitivity,
symmetry or antisymmetry.
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We can easily recover some adjunction by adding axioms—of the kind defined above—
to the theory, in the same way we did for the algebraic case: for example we can find the
left adjoint to the forgetful functor from the category of sets with an equivalence relation
to the category of sets with a reflexive and symmetric relation, or from the category of
sets with a preorder to the category of sets with an order, and so on.

A little more work must be done to recover the adjunction between the category
of posets and inf-semilattices. Recall that any inf-semilattice is a poset defining that
an element is smaller than another one if their meet is the first element, so there is a
forgetful functor from inf-semilattices to posets. This forgetful functor arises again from
a precomposition between the doctrines of Horn formulae: take the language Σ with
a binary predicate symbol, and a theory T with axioms of reflexivity, transitivity and
antisymmetry; then take the algebraic language Σ′ with a constant symbol > and a binary
function symbol u, and the algebraic theory T′ that defines inf-semilattices. The functor
E: CtxΣ

// CtxΣ′ maps projections in projections and is extended to lists of projections;
e~x: HF

Σ
T (~x) // HFΣ′

T′ (~x) is defined recursively: the top element, equalities of variables and
conjunctions are sent to themselves, while the formula R(xi, xj) is sent to the formula(
u (xi, xj) = xi

)
.

4.7. Example.An example in Sub. Consider Sub: Eop //Pos, where the base category
E is a Grothendieck topos. Consider the empty language and the empty theory, then

ED(HF, Sub) ∼= E.

Extend the language with one constant symbol, so we have an equivalence of category

ED(HF{c}, Sub) ∼= E•

where {c} is the language with one constant symbol, and E• is the category of pointed
object, meaning that its objects are pairs (A, a: t // A) where A is an abject of E, and
arrows are homomorphism of E preserving the point.

So now we have the following commutative diagram:

E• E

ED(HF{c}, Sub) ED(HF, Sub)

∼=

U

−◦(E,e)

∼=

where the upper arrow is the forgetful functor that leaves out the point, and the homo-
morphism (E, e): HF //HF{c} is the usual arrow that arises from the extension of the empty
language to the language with one constant symbol. The left adjoint to U generalizes in
a Grothendieck topos the classical adjoint that adds a new element to a set.

4.8. Example. Adding an axiom. Consider an elementary doctrine P , take an ele-
ment ϕ ∈ P (t). In [Guffanti, 2023] a construction that adds ϕ as an axiom is extensively
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studied. In particular there exists a doctrine Pϕ, and an elementary doctrine homomor-
phism (id, P (!)ϕ∧−):P // Pϕ such that ϕ is interpreted as the top element in the fiber
Pϕ(t), and this homomorphism is universal with respect to this property, in the sense
that every elementary homomorphism from P that interprets ϕ in the top element, fac-
tors (uniquely) through (id, P (!)ϕ ∧ −)—see Corollary 6.5 of [Guffanti, 2023] for more
details—.

So now take (H, h):P // Sub and suppose that ht(ϕ) = >. We observe that applying
the left adjoint functor to (H, h) we obtain exactly the unique (H, h′):Pϕ // Sub defined by
the universal property of (id, P (!)ϕ∧−):P //Pϕ. Indeed, since the left Kan extension of
H along the identity is H itself, it is enough to check that lA(α) = h′(α) for all α ∈ Pϕ(A),
so that L (A) = (HA, lA×A(δA)) = (HA,∆HA), and QL (A) = HA. Consider the 1-arrow
(H, h′):Pϕ // Sub and the identity 2-arrow (H, h) //(H, h′)(id, P (!)ϕ∧−) along all the 1-
arrows (K, k):Pϕ // Sub and the 2-arrows θ: (H, h) //(K, k)(id, P (!)ϕ∧−). By definition
of lA we obtain

lA(α) =
∧

(K,k),θ

θ̂∗A(kA(α)) ≤ h′A(α).

Conversely, compute

h′A(α) = h′A(P (!A)ϕ ∧ α) = hA(α) ≤ θ̂∗A(kA(P (!A)ϕ ∧ α)) = θ̂∗A(kA(α))

hence h′A(α) ≤ lA(α).
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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