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LAX COMMA CATEGORIES: CARTESIAN CLOSEDNESS,
EXTENSIVITY, TOPOLOGICITY, AND DESCENT

MARIA MANUEL CLEMENTINO, FERNANDO LUCATELLI NUNES AND RUI
PREZADO

Abstract. We investigate the properties of lax comma categories over a base category
X, focusing on topologicity, extensivity, cartesian closedness, and descent. We establish
that the forgetful functor from Cat//X to Cat is topological if and only if X is large-
complete. Moreover, we provide conditions for Cat//X to be complete, cocomplete,
extensive and cartesian closed. We analyze descent in Cat//X and identify necessary
conditions for effective descent morphisms. Our findings contribute to the literature on
lax comma categories and provide a foundation for further research in 2-dimensional
Janelidze’s Galois theory.

Introduction

The ubiquitous notion of comma category has a natural 2-dimensional lax notion, called
lax comma 2-category (see, for instance, [15, Ch. I,5]). The first two authors’ motivation
for investigating this notion stems from the fundamental role it plays in our approach to
studying 2-dimensional counterparts of Janelidze’s Galois theory [11], particularly regard-
ing its interplay with lax orthogonal factorization systems [9].

While various remarkable insights exist in the literature (see, for instance, [13, 16, 10,
34]), we identified a gap in the systematic exploration of foundational properties crucial
for advancing our research in the direction suggested in [11].

The present paper builds upon our prior examination of lax comma ordered sets [10],
extending the scope to encompass lax comma categories Cat//X, where Cat denotes the
category of small categories and X represents a (possibly large) category. Our primary
objective is to lay down the groundwork for our ongoing work in Galois theory and descent
theory initiated in [11]. In pursuit of this aim, we concentrate on four fundamental aspects:
cartesian closedness, extensivity, topologicity, and descent.

In Section 2, we start by giving conditions under which the category Cat//X is carte-
sian closed, extensive and (co)complete, showing that the properties of the base category
X play a crucial role in determining the properties of Cat//X. In this direction, we also
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establish that, if X is small, the forgetful functor Cat//X → Cat is topological if and only
if X is complete (which is equivalent to say that X is a complete lattice).

The study and characterization of effective descent morphisms have a rich and in-
tricate history. The work of Reiterman-Tholen [38] in the realm of topological spaces,
reformulated by Clementino-Hofmann [5], exemplifies the depth and complexity of this
classification problem. Several notable contributions have significantly advanced our un-
derstanding of effective descent morphisms in categories of categorical structures. Notably,
the study of effective descent morphisms in the categories of internal categories [22], the in-
vestigation into categories of enriched categories (see, for instance, [7], [23, Theorem 9.11]
and [35]), and the study of effective descent morphisms in categories of generalized multi-
categories (see, for instance, [6, 36, 37]) have each imparted pivotal insights. In Section 3,
we initiate our investigation into effective descent morphisms in Cat//X. In this direction,
we show that the forgetful functor Cat//X → Cat preserves effective descent morphisms.
Despite the seemingly basic nature of Cat//X, we unveil that the full characterization of
effective descent morphisms in this category remains an open challenge. This work serves
as the inception of our exploration into this descent aspect of Cat//X.

Our investigation on basic categorical properties of Cat//X presented herein sheds
light on the general properties of lax comma categories and lays the foundation for our
future work in generalized aspects of lax comma objects in 2-categories, particularly in
the context of 2-dimensional Janelidze-Galois theory. In Section 4, we give some further
comments and point to future work.

This paper serves as a formal exposition of our findings, contributing to the basic
literature on lax comma categories and lax comma 2-categories in general.
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1. Preliminaries

We denote by Cat the 2-category of small categories, functors and natural transformations.
In this section, we recall the explicit definition of lax comma categories Cat//X. For
additional general fundamental aspects, we recommend consulting [15, I,5] and [11].

1.1. Definition. Given a (possibly large) category X, we denote by Cat//X the category
defined by the following.

– The objects are pairs (W,a) in which W is a small category and a : W → X is a
functor.
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– A morphism in Cat//X between objects (W,a) and (Y, b) is a pairW Y
f // ,

W Y
f //W

X

a

��666666666 Y

X

b

�����������
γ +3


in which f : W → X is a functor and γ is a natural transformation.

If (f, γ) : (W,a)→ (Y, b) and (g, χ) : (Y, b)→ (Z, c) are morphisms of Cat//X, the
composition is defined by (g ◦ f, (χ ∗ idf ) · γ), that is to say, the composition of the
morphisms g and f with the pasting

W Y
f // Y Z

g //W

X

a

!!CCCCCCCCCCCCCCCCCC Z

X

c

}}{{{{{{{{{{{{{{{{{{
Y

X

b

��

γ +3 χ +3

of the natural transformations χ and γ. Finally, with the definitions above, the
identity on the object (W,a) is the morphism (idW , ida).

Herein, the category Cat//X is called the lax comma category over X.

A morphism (f, γ) in Cat//X is called strict if γ is the identity. It should be noted
that the comma category Cat/X is the subcategory of Cat//X consisting of the same
objects but only the strict morphisms.

While the category Cat//X can be endowed with a natural two-dimensional structure,
our current investigation primarily centers on its foundational one-categorical structure.
We briefly touch upon the two-dimensional aspects in Section 4. For the reader interested
in two-dimensional features, we refer to [11, 33]. Further investigation of two-dimensional
aspects is reserved for future research endeavors.

1.2. Lax comma categories as total spaces. We recall that lax comma categories
are fibred over Cat. This fibred structure over Cat is pivotal as it enables us to derive sev-
eral essential properties and insights concerning limits, colimits, extensivity, topologicity,
among other properties. We refer to [14], [20, A1.1.7 and B1.3.1], [31] and [30, Section 6]
for basic aspects on fibrations and Grothendieck constructions.

Given a (possibly large) category X, the forgetful functor defined in (1.2.1) is a fibra-
tion.

U : Cat//X → Cat, (W,a) 7→ W, (f, γ) 7→ f. (1.2.1)
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Denoting by Cat [−, X] : Catop → CAT the functor that takes every small category W to
the category Cat [W,X] of functors and natural transformations, we have that∑

Cat [−, X]

Cat//X

∼=
��

∑
Cat [−, X]

Cat
U

,,YYYYYYYYY

Cat//X

Cat
U

22eeeeeeeeeee

commutes, where we denote by
∑

Cat [−, X] the Grothendieck construction of the 2-

functor Cat [−, X], and U is the associated fibration (forgetful functor).

1.3. Adjoints. Clearly, if X has an initial object 0, then (1.2.1) has a left adjoint;
namely

L : Cat→ Cat//X, W 7→ 0, (f : W → Y ) 7→ (f, ι) (1.3.1)

where 0 denotes the functor constantly equal to the initial object, and ι : 0 → 0 ◦ f is
the only natural transformation. Dually, (1.2.1) has a right adjoint if X has a terminal
object.

2. Basic properties

In this section, we study cartesian closedness, extensivity and topologicity of lax comma
categories. As a foundational step in our study, we also provide an explicit construction
of pullbacks, equalizers and coequalizers in lax comma categories.

A fundamental underpinning for our investigation of limits and colimits in lax comma
categories lies in the pivotal observation that the forgetful functor U : Cat//X → Cat is
a fibration. For a more nuanced understanding of limits and colimits in the context of
fibred categories, we recommend consulting [14], [30, Section 6], and [31].

2.1. Cartesian closedness. We start by studying the cartesian structure of the cate-
gory Cat//X. We note that, whenever X has products, for each small category W and any
functor g : W → Y , Cat [W,X] has products, and the change-of-base functors Cat [g,X]
preserve products.

Since
∑

Cat [−, X] ∼= Cat//X, by general results on products of fibred categories, the
observation above allows us to conclude Propositions 2.2 and 2.3 (see, for instance, [14, 31]
and [30, Section 6] for further details).

2.2. Proposition. If X has a terminal object, then so does Cat//X.
More precisely, the terminal object of Cat//X is given by

(
1, 1
)

where 1 is the terminal
category, and 1 denotes the functor 1 : 1→ X whose image is the terminal object in X.

2.3. Proposition. If X has binary products then so does Cat//X.
More precisely, if (W,a), (Y, b) are objects of Cat//X, then the object (W × Y, a×b),

where a×b(w, y) = a(w)× b(y), is the product (W,a)× (Y, b) in Cat//X.
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Furthermore, if X has products, so does Cat//X. More explicitly, if (Wi, ai)i∈L is a
family of objects in Cat//X,

∏
i∈L

(Wi, ai) ∼=

(∏
i∈L

Wi, a

)
,

where a (xi)i∈L =
∏
i∈L

ai(xi).

Being a natural generalization of the setting of [10], the study of exponentials fits
the setting of [31]. However, we stick to an explicit presentation of the exponentials.
More precisely, to streamline the computation of exponentials in Cat//X, we employ the
concept of ends, as outlined in [21, 3.10] and recalled below.

Assuming that X is cartesian closed and x, y are objects of X, we denote by

px : x× y → x

the projection, and by x⇒ y the exponential; that is to say,

x⇒ − : X → X

is the functor right adjoint to x×− : X → X.
It is worth noting that a complete category inherently possesses all (Set-enriched/

ordinary) ends. Specifically, for any small category W and any functor

T : W op ×W → X,

the end

∫
W

T =

∫
w∈W

T (w,w) is given by the equalizer of the following diagram:

∏
w∈obj(W )

T (w,w)
∏

(w,y)∈obj(W×W )

∏
h∈W (w,y)

T (w, y)
t0 //∏

w∈obj(W )

T (w,w)
∏

(w,y)∈obj(W×W )

∏
h∈W (w,y)

T (w, y)
t1

//

where, for the component corresponding to (w, y, h) ∈ obj (W ×W )×W (w, y), we have
that t0 and t1 are respectively induced by T (w, h) · pT (w,w) and T (h, y) · pT (y,y).

2.4. Theorem. Let X be a cartesian closed category. We assume that (W,a), (Y, b) are
objects in Cat//X such that (2.4.1) exists in X for any functor h : W → Y . In this
setting, the exponential (W,a)⇒ (Y, b) in Cat//X exists and is given by (Cat [W,Y ] , ba).

ba(h) : =

∫
w∈W

(a(w)⇒ b · h(w)) (2.4.1)

Consequently, if X is a complete cartesian closed category, so is Cat//X.
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Proof. Indeed, we have that:

Cat//X ((W,a)× (Z, c), (Y, b))
∼= Cat//X ((W × Z, a×c), (Y, b))
∼=

∐
f∈Cat(W×Z,Y )

Cat [W × Z,X] (a×c, b · f)

∼=
∐

f∈Cat(W×Z,Y )

∫
(w,z)∈W×Z

X (a(w)× c(z), b(f(w, z)))

∼=
∐

f∈Cat(W×Z,Y )

∫
z∈Z

∫
w∈W

X (c(z), a(w)⇒ b(f(w, z)))

∼=
∐

ḟ∈Cat(Z,Cat[W,Y ])

∫
z∈Z

X

(
c(z),

∫
w∈W

(
a(w)⇒ b(ḟ(z)(w))

))
∼=

∐
ḟ∈Cat(Z,Cat[W,Y ])

∫
z∈Z

X
(
c(z), ba

(
ḟ(z)

))
∼=

∐
ḟ∈Cat(Z,Cat[W,Y ])

Cat [Z,X]
(
c(z), ba

(
ḟ(z)

))
∼= Cat//X ((Z, c) , (Cat [W,Y ] , ba))

2.5. Pullbacks. We assume that (2.5.1) is a pullback in Cat.

P W
j //P

Z

h

��

W

Y

f

��
Z Yg

//

(2.5.1)

Since the change-of-base functors of the indexed category Cat [−, X] preserve limits (and,
in particular, pullbacks), we have that:

2.6. Theorem. If X is a category with pullbacks, then Cat//X has pullbacks. Explicitly,
(2.6.2) is a pullback in Cat//X provided that (2.5.1) is a pullback in Cat and (2.6.1) is a
pullback for any object t in P .

d(t) a ◦ j(t)(j,ϕ) //d(t)

c ◦ j(t)

(h,ζ)

��

a ◦ j(t)

b ◦ (f ◦ j) (t) = b ◦ (g ◦ h) (t)

(f,γ)

��
c ◦ j(t) b ◦ (f ◦ j) (t) = b ◦ (g ◦ h) (t)

(g,χ)
//

(2.6.1)

(P, d) (W,a)
(j,ϕ) //(P, d)

(Z, c)

(h,ζ)

��

(W,a)

(Y, b)

(f,γ)

��
(Z, c) (Y, b)

(g,χ)
//

(2.6.2)
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2.7. Coproducts and Extensivity. Let X be a category with an initial object 0. For
any small category W , the fibre Cat [W,X] has an initial object 0 : W → X given by the
functor constantly equal to 0. Moreover, clearly, the indexed category

Cat [−, X] : Catop → CAT (2.7.1)

is (infinitary) extensive in the sense of [30, Section 6.6]; namely, we mean that Cat [−, X]
preserves products of Catop, and Cat has coproducts. Therefore, by [30, Corollary 35], we
have:

2.8. Proposition. If X is a category with an initial object 0, then Cat//X has coprod-
ucts.

Explicitly, the category Cat//X has an initial object defined by
(
0, 0 : ∅ → X

)
.

Furthermore, if (Wi, ai)i∈L is a family of objects in Cat//X, then

∐
i∈L

(Wi, ai) ∼=

(∐
i∈L

Wi, [ai]i∈L

)

where [ai]i∈L :
∐
i∈L

Wi → X is the induced functor.

Since Cat is (infinitary) extensive, we can also conclude that:

2.9. Theorem. If X is a category with an initial object 0, then Cat//X is (infinitary)
extensive.

Proof. The result follows from an infinitary version of the argument given in [30, Theo-
rem 41].

2.10. Coequalizers. To study the coequalizers of Cat//X, we start by observing that
(1.2.1) is a bifibration provided that X is cocomplete. More conveniently put in our
context, this means that:

Cat [f,X] : Cat [Y,X]→ Cat [W,X] (2.10.1)

has a left adjoint for any functor f : W → Y . More precisely, assuming that X is
cocomplete, Cat [f,X] has a left adjoint given by the pointwise left Kan extension

lanf : Cat [W,X]→ Cat [Y,X] . (2.10.2)

We refer the reader to [12, 21, 23] for pointwise Kan extensions. With this observation in
mind, we get:
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2.11. Theorem. If X is cocomplete, so is Cat//X.
Explicitly, we have that (2.11.4) is a coequalizer in Cat//X provided that:

– (2.11.3) is the coequalizer in Cat;

– (2.11.1) is the coequalizer of the parallel morphisms (2.11.2) in Cat [C,X], where
each unlabeled arrow in (2.11.2) is induced by the appropriate counit, and ϕt is the
mate of ϕ w.r.t the adjunction lanj a Cat [j,X].

lanjfa = lanjga lanjb66
lanjb d

ϕt
//lanjfa = lanjga lanjb

((
(2.11.1)

lanjga lanjg(b ◦ g)
lanjgγ // lanjg(b ◦ g) lanjb//

lanjfa lanjf (b ◦ f)
lanjfχ

// lanjf (b ◦ f) lanjb//

(2.11.2)

W Y

g

88 Y C
j
//W Y

f

&&

(2.11.3)

(W,a) (Y, b)

(g,χ)

66
(Y, b) (C, d)

(j,ϕ)
//(W,a) (Y, b)

(f,γ)

((
(2.11.4)

Proof. The coproducts are given by Proposition 2.8.
As for the coequalizers, the direct verification is straightforward, and the result follows

from general results on the total categories of bifibrations (see [14, 31]).

2.12. Topologicity. In order to examine the topologicity of the functor U : Cat//X →
Cat, we fully rely on the characterization of [17, Theorem 5.9.1]. In other words, U :
Cat//X → Cat is topological if, and only if, U is a bifibration whose fibres are large-
complete.

2.13. Theorem. U : Cat//X → Cat is topological if, and only if, X is large-complete.

Proof. If X is large-complete, then so is every fibre Cat(A,X) of U . Reciprocally, if U
is topological, then the fiber Cat(1, X) ∼= X is large-complete.

2.14. Corollary. Let X be a small category. U : Cat//X → Cat is topological if, and
only if, X is a complete lattice.

3. Effective descent morphisms

The study of effective descent morphisms, exhibiting a pivotal role in Grothendieck descent
theory, has far-reaching implications across various subjects (see, for instance, [2, 3, 4]).
Beyond their instrumental role, effective descent morphisms stand out as a fascinating
subject on their own right, representing a distinctive subclass of stable regular epimor-
phisms. By definition, they are morphisms that show how bundles/morphisms over their
codomain can be characterized as bundles over their domain endowed with an algebraic
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structure. We refer the reader to [18, 19, 23, 26] for further aspects of effective descent
morphisms.

We recall that, explicitly, a morphism q : u→ v in a category X with pullbacks along
q is of effective descent if the change-of-base functor

q∗ : X/v → X/u (3.0.1)

is monadic. Moreover, we are usually also interested in other cases, even if q∗ is not
monadic. More precisely, if the Eilenberg-Moore comparison functor is fully faithful (re-
spectively, faithful), q is said to be of descent (respectively, almost descent). In this
section, we embark on the study of effective descent morphisms in the lax comma cate-
gory Cat//X.

3.1. Fundamentals. Before delving into our study, we shortly recall the basic technique
to study (effective) descent morphisms in a category. We refer the reader to [23, Section 1]
for a further overview.

If q is a morphism of a category X with pullbacks, one can study if q is effective descent
by investigating the monadicity of q∗ via Beck’s monadicity theorem (see, for instance, [32,
Chapter VI], [24, Corollary 1.2], [27], and [26]). This proves to be quite fruitful in some
special cases: for instance, one can conclude that, in locally cartesian closed categories,
effective descent morphisms are the same as the stable regular epimorphisms.

Beyond Beck’s monadicity theorem, most general results we have are about reflection
of properties by functors. More precisely, pullback-preserving fully faithful functors do
not generally reflect all effective descent morphisms, but provide us with the following
classical result (see, for instance, [19, 2.6] and [23, Theorem 1.3]).

3.2. Theorem. Let V : X → N be a fully faithful pullback-preserving functor between
categories with pullbacks. We assume that V (q : e→ b) is an effective descent morphism.
The morphism q is of effective descent in X if and only if it satisfies the following property:
whenever (3.2.1) is a pullback in N , there is an object x in X such that V (x) ∼= n.

V (y) n//V (y)

V (e)
��

n

V (b)
��

V (e) V (b)
V (q)

//

(3.2.1)

The result above is one of the reasons why the main technique to study (effective)
descent morphisms in a category X is about fully embedding X into a category N whose
descent behaviour we know about. We refer the reader to [23, Section 1] for further
observations about functors reflecting descent properties of morphisms.

3.3. Preservation of effective descent morphisms. Although the main classical
results in the study of effective descent morphisms, such as Theorem 3.2, focus on un-
derstanding whether they are reflected by fully faithful, pullback preserving functors, our
main result, Theorem 3.7, is about preservation of effective descent morphisms.
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Throughout this subsection, we assume that X has a strict initial object 0. We start
by considering the left adjoint

L : Cat→ Cat//X (3.3.1)

to the forgetful functor U : Cat//X → Cat, defined in 1.3. That is to say:

3.4. Lemma. L is fully faithful and preserves limits of non-empty diagrams. In particular,
it preserves pullbacks and non-empty products.

L preserves the terminal object if, and only if, X is equivalent to the terminal category.

Proof. We have UL(C) = C for any small category C, hence L is fully faithful.
Since the initial object in X is strict by hypothesis, we get that the limit of any non-

empty diagram involving the initial object is isomorphic to the initial object. Therefore, it
follows by the constructions of pullbacks and non-empty products in Cat//X (see Theorem
2.5.1 and Proposition 2.3) that L preserves pullbacks and non-empty products.

Moreover, since L (1) = (1, 0), we conclude by Proposition 2.2 that L (1) is the terminal
object if and only if 0 ∼= 1 in X.

Since X has a strict initial object by hypothesis, then having zero object is equivalent
to having X ' 1.

3.5. Theorem. The functor L reflects effective descent morphisms.

Proof. Given any functor p : E → B in Cat, we have that, if (3.5.1) is a pullback in
Cat//X, then d = 0 since 0 is strict and γ : d⇒ 0.

L(Z) = (Z, 0) (W,d)//L(Z) = (Z, 0)

L(E) = (E, 0)
��

(W,d)

L(B) = (B, 0)

(f,γ)

��
L(E) = (E, 0) L(B) = (B, 0)

L(p)
//

(3.5.1)

This proves that, by Theorem 3.2, p is of effective descent provided that L(p) is of effective
descent.

Our first result on the preservation of effective descent morphisms follows from the
well-known result that effective descent morphisms are stable under pullback, that is, if
p is of effective descent, then so is q∗(p) in any category X.

3.6. Lemma. LU(f, γ) is of effective descent if (f, γ) is of effective descent.

Proof. Consider (idY , ιb) : (Y, 0)→ (Y, b) where ιb is the unique 2-cell ιb : 0⇒ b.
We have that LU(f, γ) = (idY , ιb)

∗ (f, γ) and, hence, whenever (f, γ) is of effective
descent so is the pullback LU(f, γ).
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As a consequence, we get:

3.7. Theorem. The functor U : Cat//X → Cat preserves effective descent morphisms
provided that X has pullbacks and a strict initial object.

Proof. If (f, γ) is of effective descent in Cat//X, then so is LU(f, γ) by Lemma 3.6.
Finally, we can conclude that U(f, γ) = f is an effective descent morphism by Theorem
3.5.

4. Further comments

We have pointed out that it is natural to consider Cat//X as a 2-category. We refer the
reader to [11, 33] and future work for more details. We recall the 2-dimensional structure
of Cat//X below.

4.1. Definition. Given a small category X, we consider Cat//X as a 2-category with
the 2-cells given by the following.

– A 2-cell between morphisms (f, γ) and (f ′, γ′) is given by a 2-cell ζ : f ⇒ f ′ such
that the equation

W Y

f ′

$$
W Y

f

::W

X

a

��

Y

X

b

}}||||||||||||||||||||

KS
ζ

γ +3
=

W Y
f ′ //W

X

a

��

Y

X

b

~~}}}}}}}}}}}}}}}}}}}
γ′ +3

holds.

The 2-category Cat//X is called the lax comma 2-category of Cat over X, while we call
the underlying category the lax comma category Cat//X.

4.2. Monadicity and lax monadicity. It is well known that the comma category
Cat/X is isomorphic to the category of coalgebras and (strict) morphisms of the (2-
)comonad TX whose underlying (2-)endofunctor is given by W 7→ W × X. In partic-
ular, this means that Cat/X is cocomplete and the forgetful functor Cat/X → Cat is
2-comonadic.

Cat//X fits into this picture as the 2-category of strict TX-coalgebras and lax TX-
morphisms (see, for instance, [25] for basic definitions). This observation shows that
it would be interesting to understand better the general interest in studying descent in
categories of (strict) algebras and lax morphisms between them.
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4.3. Free fibrations. With the definition above, we have that Cat//X can be nat-
urally embedded in CAT [Xop,Cat], as CAT//X is equivalent to the 2-category of free
fibrations over X. This embedding preserves pullbacks and, hence, it can be used to
further get results on effective descent morphisms in Cat//X. However, a strategy to get
a characterization would probably rely on a generalization of the techniques presented in
[8].

4.4. Preservation of effective descent morphisms. For basic definitions involved
in the comment below, we refer the reader to [23, Section 1]. As pointed out in Section
3, on one hand, in the study of descent, one usually relies on results about the reflection
of properties. For instance, besides Theorem 3.2, we recall that:

– G reflects almost descent morphisms if it is a pullback-preserving faithful functor;

– G reflects descent morphisms if it is a pullback-preserving fully faithful functor.

On the other hand, there aren’t many tools in the literature about the preservation of
effective descent morphisms. In this sense, Theorem 3.7 gives rise to the question of
whether one can find a general setting or framework for which the preservation of effective
descent morphisms holds. We leave this investigation to future work.

4.5. Effective descent morphisms w.r.t. other indexed categories. We left
the problem of fully characterizing effective descent morphisms (w.r.t. the basic fibration)
in Cat//X open.

We present, herein, another natural problem on effective descent morphisms arising
from our considerations; namely, for each 2-category A and object W of A, we have the
indexed category

A (−,W ) : Aop
0 → CAT,

where A0 is the underlying category, and A (X,W ) is the category of morphisms X → W
in A.

In particular, considering Cat//X as a 2-dimensional category, we have the indexed
category

Cat//X (−, (W,a)) : (Cat//X)op → CAT

for each (W,a) in Cat//X. More relevantly, we can extrapolate and consider the indexed
category

F = Cat//X (−, (X, idX)) : (Cat//X)op → CAT.

Akin [39, 28], it is natural to consider the problem of characterizing effective F-descent
morphisms. Following the insights of [28], we understand that such a study will rely on
understanding lax epimorphisms in Cat//X (see, for instance, [1, 29, 28]). We leave this
study with further 2-dimensional considerations for future work.
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